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 Block ciphers are vital for modern encryption, ensuring the security of 

digital communications. Currently, powerful attacks target block ciphers, 

prompting researchers to propose ideas to enhance their cryptographic 

strength. One notable concept involves making components dynamic and 

dependent on a secret key, with limited attention given to the dynamic 

AddRoundKey operation. In this article, we introduce the definitions of 

some Hadamard matrix forms like B_had, N_had, and NB_had matrices. 

Subsequently, we present an algorithm for generating key-dependent XOR 

charts to create a key-dependent AddRoundKey operation based on these 

matrices. We then construct a dynamic AES block cipher by applying the 

proposed AddRoundKey operation to AES. We implement the dynamic 

AES algorithm, assess its security, and evaluate AES and the advanced AES 

using NIST’s statistical standards. The dynamic AES algorithm exhibits 

improved resistance against strong block cipher attacks compared to 

conventional AES. 
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1. INTRODUCTION 

Block ciphers operate on fixed-size data blocks, typically in multiples of 64 or 128 bits. Utilizing a 

secret key, block ciphers transform fixed-size input data blocks into encrypted output blocks of the same size 

through a series of mathematical operations. Permutation-substitution networks (SPNs) [1] represent a 

common architectural pattern in block ciphers. An SPN block cipher's round function includes three 

operations: substitution, key addition, and permutation. 

NIST officially introduced the AES block cipher on November 26, 2001, as detailed in FIPS 197. 

Since its adoption, AES has become the predominant algorithm for ensuring data confidentiality across 

various applications. AES [2], [3] uses an SPN design. Several cryptographic attacks have been directed at 

the AES block cipher, but as of the present moment, AES continues to exhibit security against known attacks. 

Nevertheless, researchers still point out that powerful cryptographic analysis attacks, such as differential 

cryptanalysis [1], [4], linear cryptanalysis [1], [5]-[7], algebraic cryptanalysis, [8], [9], and several others, 

may pose potential security risks for the AES block cipher. Therefore, research efforts have been conducted 

to improve the resilience of the AES through the implementation of published dynamic methods. 

To bolster the effectiveness of SPN block ciphers, particularly AES, numerous research efforts have 

introduced dynamism through various methodologies. Presently, various research endeavors can be rendered 

dynamic within the substitution transformation, the diffusion transformation, or both. Regarding SPNs in a 

https://creativecommons.org/licenses/by-sa/4.0/
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broader sense and AES, in particular, some studies have delved into the dynamism introduced within the S-

box layer, as evidenced by references [9]-[12]. Additional research has concentrated on the implementation 

of dynamic features within the diffusion layer, as evidenced by references [13]-[16], while some works have 

inquired into the dynamic integration of both substitution and diffusion transformations, as exemplified by 

references [17]-[20]. 

James and Priya [9] introduced a method to secure communication between IoT platforms by 

developing a strong, key-dependent algorithm incorporating nonlinear S-Boxes. These dynamic algorithms 

are constructed using the PRESENT lightweight block cipher as a foundation. To assess its suitability for 

cold chain security applications, the security analysis includes evaluations of linear and differential 

cryptanalysis, non-linearity, as well as avalanche characteristics, in addition to IoT data encryption.  

Al-Dweik et al. [10] proposed a method for enhancing SPN block ciphers by creating dynamic, key-

dependent S-boxes that maintain the original algebraic properties, including the strict avalanche criterion 

(SAC), non-linearity, and bit independence criteria (BIC). Similarly, Assafli and Hashim [11] introduced an 

algorithm to generate time-variant S-boxes for the AES block cipher, allowing ciphertext variations even 

with a fixed key, thereby guaranteeing varied encryption results for the same data. Additionally, the authors 

conducted a comprehensive evaluation of the new S-box’s robustness and effectiveness, employing both 

SAC and the avalanche criterion (AC). Ejaz et al. [12] crafted a dynamic S-box reliant on the encryption key, 

employing dynamic permutations to create a dynamic block cipher with maximum security. The approach 

introduced for generating this dynamic S-box underwent empirical assessment utilizing various metrics, 

including Hamming distance, non-linearity, BIC, balanced output, and SAC. 

In their research, the authors proposed methods to introduce dynamism into the diffusion layers of 

SPN block ciphers. They developed parameterized binary matrices of size 𝑚 × 𝑚, where 𝑚 = 4𝑡, enabling 

the integration of dynamic diffusion components with minimal software overhead. Additionally, they 

presented new sets of maximum distance separable (MDS) matrices designed for dynamic diffusion 

processes, enhancing the cipher's resistance to attacks. Furthermore, they introduced a technique to 

incorporate dynamism into AES by employing a key-dependent MixColumn operation, thereby enhancing 

the security of the cipher. This innovative MixColumn operation incorporates specific DNA processes. 

Meanwhile Ismail et al. [15] presented a dynamic variant of the AES block cipher, which incorporates rotations. 

The extent of rotation varies according to the key and the data within the key scheme. Chen et al. [16] proposed 

an innovative lightweight block cipher that utilizes ARX-based dynamic techniques. They merged the secret 

key with the extended two-dimensional cat transformation to create an ever-changing rearrangement stratum, 

referred to as P1. This augmentation bolsters the unpredictability across successive iterations of the dynamic 

block cipher process. The non-linear aspect of the cycle function employs an alternating combination of the 

AND gate and the NAND gate to enhance the intricacy of potential attacks. 

To explore the dynamics of SPN block ciphers, both in the substitution and diffusion transformations, 

the authors presented a dynamic cipher, Kumar and Karthigaikumar [17] provided a dynamic AES algorithm 

aimed at safeguarding data transmitted over the Internet. Their algorithm demonstrated good SAC and 

avalanche effects. Xu et al. [18] building upon the Serpent cipher. They introduced techniques using chaotic 

mappings for key generation, substitutions, and permutations to enhance security. Hambouz [19] provided a 

dynamic cipher that replaces the MixColumn matrix and the S-box in AES with other ones dependent on a key 

while preserving strong cryptographic attributes. Salih et al. [20] a lightweight algorithm was introduced, rooted 

in AES but modifying ShiftRows, S-box, and MixColumn operations based on a secret key.  

Apart from approaches that introduce dynamism to block ciphers through substitution and diffusion 

transformations in [21], [22], the authors proposed approaches for making AES dynamic using dynamic XOR 

charts dependent on pre-shared secret values. They use chaos maps and Chebyshev mapping to generate one 

or two new XOR charts to replace the XOR chart used in AES. Moreover, the authors in [22] created a 

changing MDS matrix based on the chaos maps to substitute for AES’s MDS matrix. However, 

unfortunately, the results in [21], [22] have several limitations. For instance, the algorithms presented are not 

clearly defined, and the dynamically generated MDS matrix from the chaos mapping in [22] does not satisfy 

the properties of an MDS matrix, and so on. 

In this paper, we establish the definitions for the matrices B_had, N_had, and NB_had. Following 

that, we introduce an algorithm to produce key-dependent XOR charts for the creation of a key-dependent 

AddRoundKey procedure, which relies on these matrices. Incorporating the proposed key-dependent 

AddRoundKey operation into AES, we develop an advanced AES cipher. We implement this dynamic AES 

algorithm, perform an in-depth security evaluation and evaluate both the standard AES and our dynamic AES 

block cipher using NIST's statistical test suite. The dynamic AES algorithm displays enhanced resilience 

against formidable block cipher attacks compared to conventional AES. 

This paper is divided into the following sections: Section 2 provides the basic principles and 

background information. In section 3, we introduce an algorithm designed to construct a key-dependent 

AddRoundKey operation utilizing Hadamard matrices, specifically B_had, N_had, and NB_had. Section 4 
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details the implementation of the advanced AES cipher and presents a comprehensive security analysis. 

Finally, section 5 offers summary remarks and summarizes our findings. 
 

 
 

2. PRELIMINARIES 

The AES algorithm’s round function consists of four operations: AddRoundKey, SubByte, 

ShiftRow, and MixColumn. Among these, the AddRoundKey operation involves a bit-level XOR 

combination of the round key and the input state array for that round. This XOR operation is a standard 

bitwise XOR. The 4-bit XOR chart for AES is presented in Table 1. 

 

2.1.  Definition of the Hadamard matrix 

In [23] and [24], A Hadamard matrix is characterized by the following definition: 

Definition 1. [23], [24]: Given l elements t0, t1, … , tl−1, a matrix V = had(t0, t1, … , tl−1) = [hi,j] is 

referred to as a Hadamard matrix when its entries are defined by the relation: hi,j = ti⨁j, for 0 ≤ i, j ≤ l − 1 

and all elements of V are drawn from the field 𝔽2s. 

A 4 × 4 Hadamard matrix has the following form: 
 

𝑉 = ℎ𝑎𝑑(𝑡0, 𝑡1, 𝑡2, 𝑡3) = [

𝑡0 𝑡1 𝑡2 𝑡3
𝑡1 𝑡0 𝑡3 𝑡2
𝑡2 𝑡3 𝑡0 𝑡1
𝑡3 𝑡2 𝑡1 𝑡0

] (1) 

 

where ℎ𝑖,𝑗 = 𝑡𝑖⊕𝑗. 

 
 

2.2.  Some new definitions 

In this paper, we introduce several new definitions of N_had, B_had, NB_had matrices to facilitate 

the construction of the key-dependent dynamic XOR chart.  

 

2.2.1. Definition of the N_Had matrix 

The symbol for the NXOR operation is ⊙, which is the negation operation of the bitwise XOR 

operation. The output value is 1 if both input values are the same, and the output value is 0 if the input values 

are different. Based on the NXOR operation, we introduce the concept of an N_Hadamard matrix as follows. 

Definition 2. Given l elements γ0, γ1, … , γk−1,, a matrix A = N_had(γ0, γ1, … , γk−1) = [ai,j] is 

called an N_had matrix if each cell in this matrix is formulated as follows: ai,j = γi⊙j, 0 ≤ i, j ≤ l − 1, where 

the values of A belong to 𝔽2s. 

A 4 × 4 N_had matrix has the following form: 
 

A = 𝑁_ℎ𝑎𝑑(𝛾0, 𝛾1, 𝛾2, 𝛾3) = [

𝛾3 𝛾2 𝛾1 𝛾0

𝛾2 𝛾3 𝛾0 𝛾1

𝛾1 𝛾0 𝛾3 𝛾2

𝛾0 𝛾1 𝛾2 𝛾3

] (2) 

 

where 𝑎𝑖,𝑗 = 𝛾𝑖⊙𝑗. 

 

2.2.2. Definition of the B_had matrix 

We provide a definition for a Hadamard block matrix as follows: 

Definition 3. Given 2d (d ≥ 1) Hadamard matrices denoted as had0, had1, … , had2d−1, a matrix: 

 

𝐻 = 𝐵_ℎ𝑎𝑑(ℎ𝑎𝑑0, ℎ𝑎𝑑1, … , ℎ𝑎𝑑2𝑑−1) =

[
 
 
 
 
 
 

ℎ𝑎𝑑0 ℎ𝑎𝑑1

ℎ𝑎𝑑1 ℎ𝑎𝑑0

ℎ𝑎𝑑2 ⋯
ℎ𝑎𝑑3 ⋯

ℎ𝑎𝑑2𝑑−2 ℎ𝑎𝑑2𝑑−1

ℎ𝑎𝑑2𝑑−1 ℎ𝑎𝑑2𝑑−2

ℎ𝑎𝑑2 ℎ𝑎𝑑3

⋮ ⋮
ℎ𝑎𝑑0 ⋯

⋮ ⋮
ℎ𝑎𝑑2𝑑−4 ℎ𝑎𝑑2𝑑−3

⋮ ⋮
      ℎ𝑎𝑑2𝑑−2 ℎ𝑎𝑑2𝑑−1

     ℎ𝑎𝑑2𝑑−1 ℎ𝑎𝑑2𝑑−2

ℎ𝑎𝑑2𝑑−4 ⋯

ℎ𝑎𝑑2𝑑−3 ⋯
ℎ𝑎𝑑0 ℎ𝑎𝑑1

ℎ𝑎𝑑1 ℎ𝑎𝑑0 ]
 
 
 
 
 
 

  

 

is referred to as a Hadamard block matrix, where the elements of H belong to 𝔽2s. 

A 16 × 16 B_had matrix has the following form. 
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𝐻 = 𝐵_ℎ𝑎𝑑(ℎ𝑎𝑑0, ℎ𝑎𝑑1 , ℎ𝑎𝑑2, ℎ𝑎𝑑3) = [

ℎ𝑎𝑑0 ℎ𝑎𝑑1 ℎ𝑎𝑑2 ℎ𝑎𝑑3

ℎ𝑎𝑑1 ℎ𝑎𝑑0 ℎ𝑎𝑑3 ℎ𝑎𝑑2

ℎ𝑎𝑑2 ℎ𝑎𝑑3 ℎ𝑎𝑑0 ℎ𝑎𝑑1

ℎ𝑎𝑑3 ℎ𝑎𝑑2 ℎ𝑎𝑑1 ℎ𝑎𝑑0

] (3) 

 

where ℎ𝑎𝑑𝑖  (0 ≤ 𝑖 ≤ 3) are 4 × 4 hadamard matrices. 

 

2.2.3. Definition of the NB_had matrix 

Similarly, we provide a definition for an N_Hadamard block matrix as follows. 

Definition 4. Given 2d (d ≥ 1) N_had matrices denoted as N_had0, N_had1, … , N_had2d−1, a 

matrix: H = NB
had(Nhad0,Nhad1,…,Nhad2d−1

)
= 

 

[
 
 
 
 
 
 

𝑁_ℎ𝑎𝑑0 𝑁_ℎ𝑎𝑑1

𝑁_ℎ𝑎𝑑1 𝑁_ℎ𝑎𝑑0

𝑁_ℎ𝑎𝑑2 ⋯
𝑁_ℎ𝑎𝑑3 ⋯

𝑁_ℎ𝑎𝑑2𝑑−2 𝑁_ℎ𝑎𝑑2𝑑−1

𝑁_ℎ𝑎𝑑2𝑑−1 𝑁_ℎ𝑎𝑑2𝑑−2

𝑁_ℎ𝑎𝑑2 𝑁_ℎ𝑎𝑑3

⋮ ⋮
𝑁_ℎ𝑎𝑑0 ⋯

⋮ ⋮
𝑁_ℎ𝑎𝑑2𝑑−4 𝑁_ℎ𝑎𝑑2𝑑−3

⋮ ⋮
      𝑁_ℎ𝑎𝑑2𝑑−2 𝑁_ℎ𝑎𝑑2𝑑−1

     𝑁_ℎ𝑎𝑑2𝑑−1 𝑁_ℎ𝑎𝑑2𝑑−2

𝑁_ℎ𝑎𝑑2𝑑−4 ⋯

𝑁_ℎ𝑎𝑑2𝑑−3 ⋯
𝑁_ℎ𝑎𝑑0 𝑁_ℎ𝑎𝑑1

𝑁_ℎ𝑎𝑑1 𝑁_ℎ𝑎𝑑0 ]
 
 
 
 
 
 

  

 

is referred to as a N_Hadamard block matrix, where the elements of H belong to 𝔽2s. 

A 16 × 16 NB_had matrix has the following form. 

 

𝐻 = 𝑁𝐵ℎ𝑎𝑑(𝑁ℎ𝑎𝑑0,𝑁ℎ𝑎𝑑1,𝑁ℎ𝑎𝑑2,𝑁ℎ𝑎𝑑3) = [

𝑁_ℎ𝑎𝑑0 𝑁_ℎ𝑎𝑑1 𝑁_ℎ𝑎𝑑2 𝑁_ℎ𝑎𝑑3

𝑁_ℎ𝑎𝑑1 𝑁_ℎ𝑎𝑑0 𝑁_ℎ𝑎𝑑3 𝑁_ℎ𝑎𝑑2

𝑁_ℎ𝑎𝑑2 𝑁_ℎ𝑎𝑑3 𝑁_ℎ𝑎𝑑0 𝑁_ℎ𝑎𝑑1

𝑁_ℎ𝑎𝑑3 𝑁_ℎ𝑎𝑑2 𝑁_ℎ𝑎𝑑1 𝑁_ℎ𝑎𝑑0

] (4) 

 

where 𝑁_ℎ𝑎𝑑𝑖  (0 ≤ 𝑖 ≤ 3) are 4 × 4 N_Hadamard matrices. 

 

 

3. CONSTRUCTING A KEY-DEPENDENT ADDROUNDKEY OPERATION BASED ON 

HADAMARD MATRICES, B_HAD, N_HAD, AND NB_HAD 

First, based on a predefined secret key and leveraging the elegant structure of Hadamard matrices, 

we introduce the following algorithm to build a new XOR chart with multiple choices from Hadamard 

matrices, B_had, N_had, and NB_had matrices as defined in Section 2. 

Let’s consider a block cipher denoted as CipherA with a block length of 𝑛 (𝑛 ≥ 128) bits and a key 

length of 𝑙 (𝑙 ≥ 128) bits. Algorithm 1 is generating key-dependent XOR chart based on hadamard matrices. 

The diagram for Algorithm 1 is showed in Figure 1. 

 

Algorithm 1. Generating key-dependent XOR chart based on hadamard matrices, B_had, N_had, and NB_had  
INPUT: A random key 𝐾 with a length of 𝑙 (𝑙 ≥ 128) bits. 

OUTPUT: A new XOR chart. 

Step 1: Extract the initial 16 bits from the key 𝐾, if all 16 key bits are zero, then 
shift right one bit until we get a sequence of 16 key bits with non-zero bits. Let the 

obtained key bits be: 𝐾1 = 𝑘0𝑘1𝑘2𝑘3𝑘4𝑘5𝑘6𝑘7𝑘8𝑘9𝑘10𝑘11𝑘12𝑘13𝑘14𝑘15 

Step 2: Build a 16 × 16 Hadamard matrix from 𝐾1. Let this matrix be matrix 𝐴, then: 
𝐴 = 𝐻𝑎𝑑(𝑘0𝑘1𝑘2𝑘3𝑘4𝑘5𝑘6𝑘7𝑘8𝑘9𝑘10𝑘11𝑘12𝑘13𝑘14𝑘15) 

Step 3: Let 𝐴𝑟𝑜𝑤_𝑖  (0 ≤ 𝑖 ≤ 15) be row 𝑖 of matrix 𝐴; Let 𝑏𝑖  (0 ≤ 𝑖 ≤ 15) be the decimal value 

corresponding to row 𝑖 of matrix 𝐴. Due to the nature of Hadamard matrix, all 16 of these 
values will be different. We get set 𝐵 = {𝑏0, 𝑏1 … , 𝑏15}. 

Step 4: Arrange the set 𝐵 = {𝑏0, 𝑏1 … , 𝑏15} in sequential arrangement of the values of its 

elements . Take the indices 𝑖 of the elements 𝑏𝑖 in the set 𝐵 from left to right, obtaining 
16 distinct indices. Then, create a new set from these 16 distinct indices, denoted as ℛ =
{𝑟0, 𝑟1 … , 𝑟15} where 0 ≤ 𝑟𝑖 ≤ 15. 

Step 5: Select the first 2 bits of the key 𝐾 and denote them as 𝐾2. 

Step 5.1. If they are 𝐾2 = 00, then construct the Hadamard matrix as follows 
ℋ = ℎ𝑎𝑑(𝑟0, 𝑟1,… , 𝑟15) 

Step 5.2. If they are 𝐾2 = 01, then construct the N_Hadamard matrix as follows 
ℋ = 𝑁_ℎ𝑎𝑑(𝑟0, 𝑟1, … , 𝑟15) 

Step 5.3. If they are 𝐾2 = 10, then construct the Hadamard block matrix as follows 

ℋ = 𝐵_ℎ𝑎𝑑(𝐻1, 𝐻0, 𝐻3, 𝐻2) 
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where 𝐻0 = ℎ𝑎𝑑(𝑟0, 𝑟1, 𝑟2, 𝑟3), 𝐻1 = ℎ𝑎𝑑(𝑟4, 𝑟5, 𝑟6, 𝑟7), 𝐻2 = ℎ𝑎𝑑(𝑟8, 𝑟9, 𝑟10, 𝑟11), 𝐻3 = ℎ𝑎𝑑(𝑟12, 𝑟13, 𝑟14, 𝑟15) 

Step 5.4. If they are 𝐾2 = 11, then construct the N_Hadamard block matrix as follows 
ℋ = 𝑁𝐵_ℎ𝑎𝑑(𝑁_𝐻1,𝑁_𝐻0,𝑁_𝐻3, 𝑁_𝐻2) 

where 𝑁_𝐻0 = 𝑁_ℎ𝑎𝑑(𝑟0, 𝑟1, 𝑟2, 𝑟3), 𝑁_𝐻1 = 𝑁_ℎ𝑎𝑑(𝑟4, 𝑟5, 𝑟6, 𝑟7), 𝑁_𝐻2 = 𝑁_ℎ𝑎𝑑(𝑟8, 𝑟9, 𝑟10, 𝑟11), 𝑁𝐻3
=

𝑁_ℎ𝑎𝑑(𝑟12, 𝑟13, 𝑟14, 𝑟15) 
Step 6: Create a new XOR chart using the ℋ matrix derived in step 5 with the 

following approach: 

+ The first row and first column of the XOR chart (labeled as row 0 and column 0) 

contain entries that match those in the initial row of the ℋ matrix.   

+ The remaining cells within the XOR chart are populated with the corresponding 

elements from the ℋ matrix. 

Step 7: Perform permutations of the columns and rows of the XOR chart in step 6 so that 

column 0 and row 0 of this XOR chart have elements in progressive order 0, 1, 2, ..., 15. 

 

 

TrueTrue

START

K

END

K1=k0k1k2k3k4k5k6k7 k8k9k10k11k12k13k14k15

K1≠0000000000000000

Right shift 1 bit

Flase

True

A=Had(k0k1k2k3k4k5k6k7 k8k9k10k11k12k13k14k15 )

bi = HEX(Arow_i); (0≤ i ≤15) 

B=Sort up ascending ({b0, b1…,b15}) 

K2=k0k1

K1=00 K1=01 K1=10 K1=11

H=had(r0,…,r15 )R={r0,r1…, r15};ri = Index(bi );0 ≤ i ≤  15 H=B_had(H1,H0,H3,H2 )H=N_had(r0,…,r15 )

H0=had(r0, r1,r2,r3 )
H1=had(r4, r5,r6,r7 )
H2=had(r8, r8,r10,r11 )
H3=had(r12, r13,r14,r15 )

True True

N_H0=N_had(r0, r1,r2,r3 )
N_H1=N_had(r4, r5,r6,r7 )
N_H2=N_had(r8, r8,r10,r11 )
N_H3=N_had(r12, r13,r14,r15 )

H=NB_had(N_H1,N_H0,N_H3,N_H2 )

Permute the rows and columns of the XOR chart in step 
6 so that row0 and column0 of this XOR chart have the 
order of 0,1,2,…,15

 
 

Figure 1. The flowchart of Algorithm 1 

 

 

Remark 1. Since the construction of the binary Hadamard matrix in step 2 will determine the 

number of binary Hadamard matrices used to generate the 16 values of the XOR chart. Therefore, with 16 

input key bits, it is possible to generate 216 states and correspondingly 216 matrices 𝐴 and generate 216 sets 

ℛ. On the other hand, with four cases of constructing the Hadamard matrix from the set ℛ in step 5 to create 

the XOR chart, it is possible to generate: 4 × 216 = 218 different XOR charts from only 16 key bits. Prove 

the validity of the XOR chart. 

Derived from the initial XOR chart in AES (as depicted in Table 1), we can make an observation 

concerning three fundamental Characteristics that an XOR chart should possess. 

Three fundamental Characteristics of an 4-bit XOR chart 

Characteristic 1: In the case of any u, v, and w elements in the XOR chart satisfying u XOR v = w, the 

following assertion is true: u XOR w = v and v XOR w = u. 
Characteristic 2: The XOR chart should manifest reflection along the primary diagonal, signifying that  

u XOR v =  v XOR u. 

       Characteristic 3: Every row and column in the XOR chart includes unique values spanning from 0 to 15. 

Based on the three characteristics for an XOR chart, we can establish the validity of the newly created XOR 

chart by Algorithm 1 through Proposition 1.  
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Proposition 1. The XOR chart recently produced through Algorithm 1 conforms to the fundamental 

characteristics of an XOR chart. 

Proof. From (2), it can be seen that the matrix N_had has the form of a Hadamard matrix, therefore, from 

(4), it follows that the matrix NB_had is also a Hadamard matrix. From (3), we can see that the matrix B_had is 

also a Hadamard matrix. Therefore, the matrix ℋ generated in Step 5 of Algorithm 1 is a Hadamard matrix. 

From the construction of the XOR chart in step 6 of Algorithm 1 and the form (1) of the Hadamard 

matrix, we have: 

− The updated XOR chart exhibits symmetry along its main diagonal, so characteristic 2 of the updated 

XOR diagram is fulfilled. 

− The elements in matrix ℋ consist of distinct elements 𝑟𝑖 satisfying 0 ≤ 𝑟𝑖 ≤  15. Therefore, 

characteristic 3 of the new XOR chart is satisfied. 

− Because column 0 and row 0 of the new XOR chart consist of elements identical to those in the first 

row of matrix ℋ, while the elements inside the XOR chart are elements of the Hadamard matrix ℋ, 

essentially, the new XOR chart is created by replacing elements from the original XOR chart (Table 1) 

with elements from matrix ℋ. 

Assuming ℋ = ℎ𝑎𝑑(ℎ0, ℎ1, … , ℎ15), the new XOR chart is created by replacing 0 with ℎ0, 1 with 

ℎ1, ..., and 15 with ℎ15 for the entire original XOR chart, including both column 0 and row 0 of the original 

XOR chart. Therefore, for the original XOR chart, we have: 

If 𝑢 𝑋𝑂𝑅 𝑣 = 𝑤 then 𝑢 𝑋𝑂𝑅 𝑤 = 𝑣 and 𝑣 𝑋𝑂𝑅 𝑤 = 𝑢. 
In that case, we also have: 

If ℎ𝑢 𝑋𝑂𝑅 ℎ𝑣 = ℎ𝑤 then ℎ𝑢 𝑋𝑂𝑅 ℎ𝑤 = ℎ𝑣 and ℎ𝑣 𝑋𝑂𝑅 ℎ𝑤 = ℎ𝑢. 
Thus, the updated XOR chart maintains the essential properties required for an XOR chart. 

On the other hand, rearranging the columns and rows of the XOR chart in step 7 has no impact on 

the values within the XOR chart. As a result, the XOR chart produced by Algorithm 1 adheres to all three 

characteristics of an XOR chart. Example: assuming the confidential key 𝐾 is 128 bits long in hexadecimal 

format as follows : 
 

𝐾 = 0𝑥2𝐵7𝐸151628𝐴𝐸𝐷2𝐴6𝐴𝐵𝐹7158809𝐶𝐹4𝐹3𝐶 
 

Performing Algorithm 1 with the key 𝐾, we derive the new key-dependent XOR chart, as illustrated in Figure 1.  

Based on the results of Algorithm 1, we integrate it into the AES to dynamically modify the 

AddRoundKey operation by utilizing the new XOR chart created by Algorithm 1. This procedure is detailed in 

Algorithm 2. In practical use, the sending and receiving parties must share a confidential key, 𝐾, beforehand. 

Table 2 shows the newly generated key-dependent XOR chart produced by Algorithm 1. 
 

Algorithm 2. Generating key-dependent AES with dynamic AddRoundKey transformation 
INPUT: A random key 𝐾 with a length of 𝑙 (𝑙 ≥ 128) bits, AES block cipher with the 

original XOR chart 𝐴 (Figure 1). 
OUTPUT: A key-dependent AES block cipher (AESHD). 

Step 1: Apply Algorithm 1 to obtain a new XOR chart 𝐴́. 

Step 2: Substitute the original XOR chart 𝐴 in AES with the updated XOR chart 𝐴́. 
Step 3: Replace the original AddRoundKey operation of AES with the key-dependent 

AddRoundKey using the new XOR chart 𝐴́. All other operations in AES remain unchanged. 
Return AESHD; 

 

 

Table 1. The original XOR chart of AES 
XOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13 

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11 
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10 

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9 
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6 
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5 

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4 

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2 

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
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Table 2. The newly generated key-dependent XOR chart produced by Algorithm 1 
New XOR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 0 4 5 2 3 12 13 15 14 11 10 6 7 9 8 
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2 4 2 1 8 0 15 14 10 3 12 7 13 9 11 6 5 

3 5 3 8 1 15 0 11 9 2 7 12 6 10 14 13 4 
4 2 4 0 15 1 8 9 11 5 6 13 7 14 10 12 3 

5 3 5 15 0 8 1 10 14 4 13 6 11 12 9 7 2 

6 12 6 14 11 9 10 1 15 13 4 5 3 0 8 2 7 
7 13 7 10 9 11 14 15 1 12 3 2 4 8 0 5 6 

8 15 8 3 2 5 4 13 12 1 10 9 14 7 6 11 0 

9 14 9 12 7 6 13 4 3 10 1 8 15 2 5 0 11 
10 11 10 7 12 13 6 5 2 9 8 1 0 3 4 15 14 

11 10 11 13 6 7 12 3 4 14 15 0 1 5 2 8 9 

12 6 12 9 10 14 11 0 8 7 2 3 5 1 15 4 13 
13 7 13 11 14 10 9 8 0 6 5 4 2 15 1 3 12 

14 9 14 6 13 12 7 2 5 11 0 15 8 4 3 1 10 

15 8 15 5 4 3 2 7 6 0 11 14 9 13 12 10 1 

 

 

4. IMPLEMENTING THE DYNAMIC AESHD BLOCK CIPHER AND CONDUCTING A SECURITY 

ANALYSIS 

We implement the dynamic AESHD algorithm using the newly generated key-dependent XOR 

chart, following the steps outlined in Algorithm 1 and Algorithm 2. Following this, we analyze the safety 

considerations of the AESHD algorithm and examine the statistical benchmarks of this adaptive block cipher. 

We execute the AESHD algorithm on a Windows 10 64-bit system equipped with an Intel Core i5 2430M 

CPU (Operating at 2500MHz, 2x2.4GHz), Intel HD Graphics 3000, 2GB DDR3 1333MHz RAM. 

 

4.1.  Security analysis 

At present, there exist various categories of assaults against block ciphers, with the twin formidable 

assaults being differential and linear cryptanalysis. As for the differential cryptanalysis [1], [4] it falls within 

the category of preferred plaintext attacks, necessitating the procurement of an extensive assemblage of 

cipher text results originating from specifically chosen input data. The linear assault is a breed of offensive 

strategy unveiled by Matsui [6]. The linear cryptanalysis [1], [5], [6] is a recognized entry maneuver, 

demanding the acquisition of an extensive assortment of plaintext-ciphertext pairings, aligning with a 

concealed key under investigation.  

We observe that, with the AddRoundKey operation using the regular XOR chart of AES, this XOR 

operation is simply a bitwise XOR of 4-bit groups in the binary field. Since the AddRoundKey operation 

with this XOR chart is public, and all components of AES are public, when attackers can collect a substantial 

number of plaintext/ciphertext pairs (for instance, as seen in the DES algorithm, where at least 247 pairs are 

needed), they can perform linear cryptanalysis and differential cryptanalysis attacks on the AES block cipher. 

However, when we make the AddRoundKey transformation dynamic based on a secret key using Algorithm 

1, cryptanalysts will not be able to discern how we perform the XOR operations within the AESHD 

algorithm. This is because the new XOR chart depends on the given secret key. For the AESHD block cipher, 

if cryptanalysts aim to carry out differential or linear cryptanalysis, they are compelled to identify the 

dynamic XOR chart in use. As per Remark 1, the number of new XOR charts created by Algorithm 1 can be 

as high as 218, which means that cryptanalysts would have to try any one of these XOR charts. With a 

candidate XOR chart, attackers must have a substantial number of plaintext/ciphertext pairs before 

proceeding to uncover differential or linear patterns to find the secret key. 

Hence, by introducing dynamism into the AddRoundKey operation and the XOR charts, we have 

notably augmented the challenge faced by cryptanalysts in their analytical endeavors when compared to the 

conventional AES method. To illustrate, when cryptanalysts engage in linear/differential cryptanalysis on the 

AES block cipher, they require 295 pairs of plaintext-ciphertext. On the other hand, conducting cryptanalysis 

on AESHD necessitates an astounding 295 × 218 pairs of plaintext-ciphertext. This vast number is 

undeniably insurmountable, rendering it virtually unattainable for cryptanalysts to amass such an extensive 

dataset. Consequently, AESHD substantially escalates both the temporal and data complexities in 

cryptographic analysis relative to the standard AES. Hence, the integration of the key-dependent 

AddRoundKey transformation can notably fortify the strength of the AES. 

Thus, it is evident that by integrating the key-reliant dynamic AddRoundKey layer, the AESHD 

block cipher gains a higher level of unpredictability, significantly strengthening the resilience of the AES. 

Compare our results with those in [21], [22]. In Table 3, we provide some comparisons of our key-dependent 

XOR chart construction method with the approaches presented in [21], [22]. 
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Table 3. Comparison of our proposal and results in [21], [22] 
Criterion Our method Methods in [21], [22]. 

Dynamic method Secret key dependence Secret parameter dependence 
Process for designing a key-reliant XOR 

representation 

- Derived from permutation and the form of the 

Hadamard matrix, Present clearly 

- Based on Chaotic mappings 

- Unclear presentation, still 

many gaps. 
The number of XOR chart 218

 1 or 2 

Demonstration of the correctness of the 

XOR chart 

Yes No 

Security Analysis Yes No 
Evaluate statistical randomness criteria Yes Yes 

 

 

4.2.  Randomness evaluation according to NIST statistical standards 

In this section, we assess the NIST statistical benchmarks [25] for the two AES and the adaptive 

AESHD cipher. The results for AESHD are presented in Tables 3. Where Table 3 represents the P-value 

according to the NIST standards, and Table 4 shows the percentage of sequences meeting the requirements of 

the tests of NIST. 

 

 

Table 4. Evaluation outcomes of Level-2 p-values for the AESHD using examinations for brief sequences 
Number 

of 

Rounds 

Frequency 
Test 

Runs 
Test 

Evaluation 
of the 

maximum 

run of ones 

Serial 
Test 

AppEn. 
Test 

CuSum. 
Test 

Bit 
AutoCorr. 

Test 

Byte 
Autocor.Test 

AV1 Input Data 

1 0.000000 0.000002 0.000000 0.000167 0.002642 0.000000 0.000000 0.000000 

2 0.839118 0.516543 0.000000 0.010751 0.041082 0.000000 0.000000 0.005369 
3 0.380491 0.177322 0.215230 0.894644 0.788543 0.069959 0.138532 0.546674 

4 0.892658 0.990783 0.966658 0.739805 0.716736 0.195910 0.474348 0.609771 

5 0.698068 0.662030 0.323675 0.678460 0.734859 0.072978 0.700746 0.637956 
6 0.119203 0.445908 0.154656 0.834388 0.250477 0.403447 0.285786 0.733883 

7 0.813397 0.727084 0.273645 0.968229 0.846125 0.486678 0.727771 0.883852 

8 0.821386 0.663897 0.714845 0.130298 0.632307 0.794124 0.092452 0.894300 
9 0.698068 0.662030 0.323675 0.678460 0.734859 0.072978 0.700746 0.637956 

10 0.646300 0.629920 0.107248 0.061537 0.175298 0.577306 0.738451 0.224640 

HW Input Data 
1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

3 0.178163 0.688721 0.807376 0.203180 0.371836 0.440107 0.065749 0.836290 

4 0.581894 0.011147 0.604585 0.681054 0.590476 0.679676 0.007101 0.881369 

5 0.535947 0.179983 0.867622 0.446410 0.294630 0.384835 0.337331 0.328601 

6 0.923017 0.253842 0.455873 0.585449 0.918323 0.787686 0.224398 0.373549 
7 0.547715 0.215657 0.468932 0.657826 0.379454 0.618625 0.010979 0.958272 

8 0.626316 0.545824 0.008063 0.902931 0.723317 0.216293 0.750984 0.838468 

9 0.762578 0.344255 0.292304 0.261295 0.424222 0.847349 0.403913 0.545831 
10 0.857050 0.144153 0.037715 0.197433 0.445099 0.700560 0.596591 0.484707 

LW Input Data 

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

3 0.706153 0.809753 0.832735 0.371203 0.280577 0.989641 0.283016 0.771438 

4 0.376333 0.940666 0.178621 0.634937 0.610670 0.421563 0.341414 0.694258 
5 0.917682 0.970431 0.989177 0.881099 0.995119 0.966098 0.906470 0.986374 

6 0.958790 0.795450 0.822314 0.790310 0.664333 0.134939 0.670924 0.775430 

7 0.152501 0.760392 0.105816 0.924372 0.909478 0.990341 0.916565 0.753758 
8 0.703553 0.088458 0.070614 0.162333 0.145893 0.135520 0.204071 0.997179 

9 0.194626 0.339262 0.302658 0.054058 0.075663 0.040609 0.894864 0.301139 

10 0.332898 0.360915 0.574232 0.598514 0.361494 0.650666 0.109974 0.586361 
Rot Input Data 

1 0.000000 0.000003 0.007434 0.000000 0.000000 0.000002 0.000932 0.493142 

2 0.141308 0.694600 0.999034 0.407917 0.598432 0.991088 0.242368 0.181808 

3 0.013409 0.832160 0.719537 0.857320 0.697085 0.335150 0.836450 0.450856 

4 0.136200 0.484708 0.497188 0.328082 0.239615 0.010704 0.800716 0.429596 

5 0.251520 0.894110 0.995275 0.947471 0.945356 0.934738 0.581689 0.016082 
6 0.968448 0.351803 0.837870 0.774738 0.558743 0.288553 0.684007 0.198765 

7 0.821181 0.462576 0.529957 0.893864 0.694646 0.723061 0.715656 0.216957 
8 0.037583 0.053786 0.924451 0.088295 0.231525 0.580492 0.076205 0.195261 

9 0.052261 0.677056 0.236238 0.479375 0.387537 0.249608 0.317436 0.754972 

10 0.111908 0.364044 0.848878 0.040609 0.019562 0.032572 0.816783 0.039949 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 3, September 2025: 1642-1651 

1650 

Through Table 4, we observe that when using a random key with four input datasets : AV1, HW, 

LW, ROT, which are non-random datasets, after 3 rounds of encryption with the dynamic AESHD algorithm, 

all achieve the randomness standards. Specifically, for the ROT dataset, it only requires 2 rounds to meet the 

NIST randomness standards. In general, to achieve randomness when using a key created randomly, the 

AESHD block cipher demands a minimum of three rounds, similar to AES, as observed in our analysis. 

Subsequent to the evaluation, it is evident that the AESHD block accomplishes an output randomness 

equivalent to AES, with the added benefit of heightened security compared to AES. 
 
 

5. CONCLUSION 

In this paper, we provide the definitions for B_had, N_had, and NB_had matrices. Following that, 

we describe an approach to generate key-dependent XOR charts to establish a key-dependent AddRoundKey 

operation utilizing these matrices. Subsequently, we devise the dynamic AESHD block cipher by integrating 

the suggested key-dependent AddRoundKey operation into AES. We execute the AESHD algorithm, 

appraise its security, and gauge AES alongside the novel dynamic AESHD block cipher against the statistical 

benchmarks outlined by NIST. The dynamic AESHD algorithm demonstrates enhanced resilience against 

formidable block cipher attacks in comparison to traditional AES. For future research, we will persist in 

exploring diverse dynamic approaches and novel amalgamations to fortify the strength of block ciphers.  
 
 

FUNDING INFORMATION  

Authors state no funding involved. 
 

 

AUTHOR CONTRIBUTIONS STATEMENT  

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  
 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Truong Minh Phuong ✓ ✓ ✓   ✓   ✓      

Tran Thi Luong  ✓   ✓ ✓  ✓  ✓ ✓    
 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 
 

 

CONFLICT OF INTEREST STATEMENT  

Authors state no conflict of interest. 
 
 

ETHICAL APPROVAL  

The research related to human use has been complied with all the relevant national regulations and 

institutional policies in accordance with the tenets of the Helsinki Declaration and has been approved by the 

authors' institutional review board or equivalent committee 
 

 

DATA AVAILABILITY  

Data availability is not applicable to this paper as no new data were created or analyzed in this 

study. 
 

 

REFERENCES 
[1] H. M. Keys and S. E. Tavares, “Substitution-permutation networks resistant to differential and linear cryptanalysis,” Journal of 

Cryptology, vol. 9, no. 1, pp. 1–19, Mar. 1996, doi: 10.1007/bf02254789. 

[2] J. Daemen and V. Rijmen, “Rijndael/AES,” in Encyclopedia of Cryptography and Security, Springer US, 2006, pp. 520–524. 
[3] J. Daemen and V. Rijmen, The design of Rijndael: {AES}-the Advanced Encryption Standard. Springer Berlin Heidelberg, 2002. 

[4] E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” Journal of Cryptology, vol. 4, no. 1, pp. 3–72, 

Jan. 1991, doi: 10.1007/BF00630563. 
[5] S. Mister and C. Adams, “Practical S-box design, in workshop on selected areas in cryptography (SAC),” pp. 61–76, 1996. 

[6] M. Matsui, “Linear cryptanalysis method for DES cipher,” in Lecture Notes in Computer Science (including subseries Lecture 

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 765 LNCS, 1994, pp. 386–397. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Constructing dynamic XOR charts for block ciphers using hadamard matrices (Truong Minh Phuong) 

1651 

[7] L. R. Knudsen and C. V. Miolane, “Counting equations in algebraic attacks on block ciphers,” International Journal of 
Information Security, vol. 9, no. 2, pp. 127–135, Dec. 2010, doi: 10.1007/s10207-009-0099-9. 

[8] M. Bros, “Algebraic cryptanalysis and contributions to post-quantum cryptography based on error-correcting codes in the rank-

metric,” Doctoral dissertation, Université de Limoges, 2022. 
[9] D. James and T. L. Priya, “An innovative approach for dynamic key dependent S-Box to enhance security of IoT systems,” 

Measurement: Sensors, vol. 30, p. 100923, Dec. 2023, doi: 10.1016/j.measen.2023.100923. 

[10] A. Y. Al-Dweik, I. Hussain, M. Saleh, and M. T. Mustafa, “A novel method to generate key-dependent s-boxes with identical 
algebraic properties,” Journal of Information Security and Applications, vol. 64, p. 103065, Feb. 2022, doi: 

10.1016/j.jisa.2021.103065. 

[11] H. T. Assafli and I. A. Hashim, “Generation and evaluation of a new time-dependent dynamic S-Box algorithm for AES block 
cipher cryptosystems,” IOP Conference Series: Materials Science and Engineering, vol. 978, no. 1, p. 12042, Dec. 2020, doi: 

10.1088/1757-899X/978/1/012042. 

[12] A. Ejaz, I. A. Shoukat, U. Iqbal, A. Rauf, and A. Kanwal, “A secure key dependent dynamic substitution method for symmetric 
cryptosystems,” PeerJ Computer Science, vol. 7, pp. 1–29, Jul. 2021, doi: 10.7717/PEERJ-CS.587. 

[13] M. R. M. Shamsabad and S. M. Dehnavi, “Dynamic MDS diffusion layers with efficient software implementation,” International 

Journal of Applied Cryptography, vol. 4, no. 1, p. 36, 2020, doi: 10.1504/ijact.2020.10029198. 
[14] A. H.Al-Wattar, R. Mahmod, Z. A. Zukarnain, and N. Udzir, “A New DNA Based Approach of Generating Key Dependent Mix 

Columns Transformation,” International journal of Computer Networks and Communications, vol. 7, no. 2, pp. 93–102, Mar. 

2015, doi: 10.5121/ijcnc.2015.7208. 
[15]  and M. M. I. Ismail, G. Galal-Edeen, S. Khattab, “Performance examination of AES encryption algorithm with constant and 

dynamic rotation,” International Journal of Reviews in Computing, vol. 12, 2012. 

[16] W. Chen, L. Li, and Y. Guo, “DABC: A dynamic ARX-based lightweight block cipher with high diffusion,” KSII Transactions 
on Internet and Information Systems, vol. 17, no. 1, pp. 165–184, Jan. 2023, doi: 10.3837/tiis.2023.01.009. 

[17] T. M. Kumar and P. Karthigaikumar, “A novel method of improvement in advanced encryption standard algorithm with dynamic 

shift rows, sub byte and mixcolumn operations for the secure communication,” International Journal of Information Technology 
(Singapore), vol. 12, no. 3, pp. 825–830, May 2020, doi: 10.1007/s41870-020-00465-1. 

[18] T. Xu, F. Liu, and C. Wu, “A white-box AES-like implementation based on key-dependent substitution-linear transformations,” 

Multimedia Tools and Applications, vol. 77, no. 14, pp. 18117–18137, Mar. 2018, doi: 10.1007/s11042-017-4562-8. 
[19] A. A. Hambouz, “DLL-AES: dynamic layers lightweight AES Algorithm,” Doctoral dissertation, Princess Sumaya University for 

Technology (Jordan), 2022. 

[20] A. A. Hambouz, DLL-AES: Dynamic Layers Lightweight AES Algorithm (Doctoral dissertation, Princess Sumaya University for 
Technology (Jordan)), 2022. 

[21] A. I. Salih, A. Alabaichi, and A. S. Abbas, “A novel approach for enhancing security of advanced encryption standard using 

private XOR table and 3D chaotic regarding to software quality factor,” International Journal of Research and Surveys, vol. 10, 
no. 9, pp. 823–832, 2019. 

[22] A. I. Salih, A. Alabaich, and A. Y. Tuama, “Enhancing advance encryption standard security based on dual dynamic XOR table 

and mixcolumns transformation,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, no. 3, pp. 1574–
1581, Sep. 2020, doi: 10.11591/ijeecs.v19.i3.pp1574-1581. 

[23] R. Elumalai and A. R. Reddy, “Improving diffusion power of AES Rijndael with 8x8 MDS matrix,” International Journal of 

Scientific and Engineering Research, vol. 2, no. 3, 2011. 
[24] M. Sajadieh, M. Dakhilalian, H. Mala, and B. Omoomi, “On construction of involutory MDS matrices from Vandermonde Matrices 

in GF(2 q),” Designs, Codes, and Cryptography, vol. 64, no. 3, pp. 287–308, Nov. 2012, doi: 10.1007/s10623-011-9578-x. 

[25] A. Rukhin, J. Soto, and J. Nechvatal, A statistical test suite for random and pseudorandom number generators for cryptographic 
applications, vol. 22, no. April. 2010. 

 

 

BIOGRAPHIES OF AUTHORS 
 

 

Truong Minh Phuong     has master’s degree in cryptography technique since 2018 and 

is currently a PhD student in this major at the Academy of Cryptography Techniques, Ha Noi, Viet 

Nam. His research direction is secret key cryptography, in which dynamic block ciphers are 

currently an important component to build his thesis. He can be contacted at email: 

minhphuongh19@gmail.com. 

  

 

Tran Thi Luong    received her Bachelor's degree from Hanoi University of Science in 

2006, and Master's (2012) and Ph.D. (2019) degrees in cryptographic techniques from the 

Academy of Cryptography Techniques, Hanoi, Vietnam. She has led and contributed to multiple 

research projects on cryptographic primitives and block cipher design. She served as a co-chair for 

KSE 2023 and a reviewer for PeerJ Computer Science. Her research interests include 

cryptography, coding theory, and information security. She can be contacted at email: 

luongtran@actvn.edu.vn. 

 

https://orcid.org/0009-0001-4166-7755
https://orcid.org/0000-0001-9080-6048
https://scholar.google.com/citations?hl=en&user=5RmSTxIAAAAJ

