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 Due to numerous parameters and calculations, existing safety helmet-

wearing detection models are challenging to deploy on embedded devices. 

Therefore, this paper proposed a you only look once (YOLO) v5n-based 
lightweight detection algorithm called CGDE-YOLOv5n to address the 

shortcomings in the following areas: (i) the YOLOv5n algorithm was 

selected to minimize the model’s parameters and calculations, reducing the 

hardware cost. (ii) The convolutional block attention module (CBAM) was 
integrated into the backbone to enhance the network’s feature extraction 

capability. (iii) The neck was improved using the efficient re-parameterized 

generalized feature pyramid network (efficient RepGFPN) to enhance the 

multi-scale object detection capability. (iv) The C3 module was improved 

using the deformable ConvNets v2 (DCNv2) module to enhance the 

network’s adaptability to geometric changes of objects. (v) The complete 

intersection over union (CIoU) loss was replaced with focal-efficient IoU 

(focal-EIoU) loss to reduce the missed detection rate. Experimental results 
demonstrated that the customized gradient descent estimation (CGDE)-

YOLOv5n achieved a mean average precision (mAP) 50 of 89.5% and recall 

of 84%, which is 1% and 0.8% higher than the YOLOv5n. In particular, the 

recall of workers not wearing safety helmets increased by 1.7%. 
Furthermore, the improved model achieved a detection speed of 68.5 frames 

per second (FPS), meeting the real-time requirements. 
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1. INTRODUCTION 

Wearing safety helmets represents an effective method of protecting workers from casualties. 

Nevertheless, accidents have occurred frequently in recent years due to some workers’ lack of safety 

awareness. The accident rate in the construction industry is markedly higher than that in others [1].  

In particular, the incidence of disability resulting from head injuries is the highest [2].  

In 2022, 549 production safety incidents happened in housing and municipal engineering projects 

across China, resulting in 622 fatalities, including 12 major accidents causing 52 deaths [3]. In 2023, these 

numbers were 584 incidents, 635 fatalities, 8 major accidents, and 28 deaths [4]. From the beginning of 2024 

to now, 188 production safety accidents have happened nationwide, resulting in 204 deaths. Among these, 

two major accidents have happened, resulting in seven deaths [5]. Consequently, the current state of 

https://creativecommons.org/licenses/by-sa/4.0/
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production safety remains severe, necessitating reinforced safety management to ensure the security of 

construction operations. 

Analysis revealed six main types of accidents: falling from heights, collapses, object strikes, injuries 

from construction machinery, vehicle injuries, and electric shocks. A case study in Hunan Province revealed 

that in 2023, 40 production safety accidents occurred, resulting in 42 fatalities. Among these incidents, 26 

were due to falls from heights, representing 65%. Six incidents were collapses: five trench pipe network 

collapses and one wall collapse, accounting for 15%. Three incidents were object strikes and vehicle injuries, 

representing 7.5%. One incident was a construction machinery injury, and one was an electric shock, each 

representing 2.5% [6]. Most safety incidents are due to falls from heights, collapses, and object strikes. 

Therefore, the safety helmet can play a significant protective role in these three types of accidents [7]. 

The use of safety helmets on construction sites is an effective way to reduce damage from accidents 

[8]. Consequently, enhancing the administration of safety helmets for construction workers can more 

effectively guarantee their safety [9]. Currently, the predominant method of monitoring workers’ safety 

helmet-wearing combines manual observation and video surveillance. However, this approach necessitates a 

significant investment of human resources and is inherently inefficient [10]. 

With the development of computer vision, one-stage object detection algorithms such as the you 

only look once (YOLO) series and the single shot multibox detector (SSD) series have been proposed [11], 

[12]. The one-stage object detection algorithm receives the image at the input end and then outputs the 

location and class of the object at the output end. This end-to-end technology markedly enhances the 

detection speed, rendering it well-suited to scenarios where real-time performance is critical. Recently, many 

scholars have proposed deep learning-based helmet-wearing detection methods, mainly including SSD-based, 

YOLOv4-based, and YOLOv5-based categories. These methods have proven effective in detecting workers’ 

compliance with wearing safety helmets. 

In 2022, Feng and Hu [13] proposed a helmet detection method based on the improved SSD 

algorithm. The algorithm used four feature fusion modules to combine high-level with low-level features. 

This enhanced the semantic information of low-level features and improved the algorithm’s detection ability 

for small and medium-sized objects. The algorithm improved mean average precision (mAP) by 2.2 

compared to the original SSD algorithm.  

Zhan and Pei [14] proposed an improved helmet-wearing detection algorithm based on SSD in 

2023. Firstly, the residual network (ResNet)-50 backbone replaced the visual geometry group-16 (VGG-16) 

backbone of the SSD algorithm to enhance the network’s feature extraction capability. Furthermore, the 

coordinate attention (CA) module was integrated into the backbone to improve the capture of object 

localization information. The improved algorithm achieved a mAP of 94.5%. 

Although the SSD algorithm was once a research hotspot, with the continued evolution of the 

YOLO series, especially the commercial success of YOLOv5, only a handful of researchers currently are 

studying the SSD algorithm. Calle Quispe et al. [15] analyzed the performance of scaled-YOLOv4 and 

showed that Scaled-YOLOv4 outperformed previous studies on two public datasets in terms of mAP and F1-

score. The model achieved a mAP50 of 96.7 and F1-score of 95.0%.  

Chen et al. [16] proposed an improved YOLOv4 model for helmet-wearing detection in aerial 

photography in 2022. The model first increased the channel dimension of the convolutional feature layer in 

the backbone to improve the utilization of fine-grained features. Secondly, the cross-stage partial (CSP) 

structure was introduced into the neck to enhance the aggregation efficiency of effective features at different 

scales. The improved model achieved a mAP of 91.03%.  

In 2023, Huang et al. [17] designed an adaptive recalibrated multi-scale feature fusion module 

(ARMFFM) integrated into the original YOLOv4 network to improve the detection accuracy of small targets. 

Second, a soft complete intersection over union-non-maximum suppression (CIoU-NMS) post-processing 

algorithm was developed for overlapping object detection. The improved YOLOv4 algorithm achieved an 

accuracy of 95.1% in indoor helmet-wearing detection. 

Xie et al. [18] proposed an improved helmet detection algorithm small-medium detection (SMD)-

YOLOv4 based on YOLOv4 in 2023. First, the squeeze-and-excitation network (SE-Net) attention module 

was used to improve the ability of the model backbone network to extract effective features. Second, dense 

atrous spatial pyramid pooling (DenseASPP) replaced spatial pyramid pooling (SPP) to optimize the 

extraction of global context information. The mAP of the SMD-YOLOv4 algorithm on the customized 

dataset reached 97.34%. 

In 2024, Li et al. [19] proposed a lightweight helmet detection algorithm YOLO-PL (personalized 

lightweight) based on YOLOv4. First, the enhanced path aggregation network (E-PAN) structure improved 

the detection accuracy. Second, the diluted convolutional cross stage partial (DCSPX) module with X res unit 

was proposed to improve the efficiency. This detector outperformed the current object detector in the 

detection of helmet wearers. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 CGDE-YOLOv5n: a real-time safety helmet-wearing … (Wanbo Luo) 

1767 

Although the performance of the YOLOv4 algorithm exceeds previous versions of the YOLO series, 

its model has numerous parameters and calculations. To illustrate, the YOLOv5s model exhibits a similar 

degree of accuracy to that observed in the YOLOv4 model, yet its size is only one-tenth of that of the 

YOLOv4 [20]. Consequently, deploying the YOLOv4-based safety helmet-wearing detection model on 

embedded devices with limited resources is challenging. 

In 2023, An et al. [21] proposed an improved version of the YOLOv5s network. The network 

initially integrated the global attention mechanism (GAM) and CBAM into the backbone and neck to 

enhance the network’s ability to extract features. Furthermore, the SCYLLA-IoU loss function was employed 

instead of the CIoU loss function to accelerate the convergence speed and accuracy of the prediction boxes. 

The improved network achieved a mAP50 of 92.4%. 

Deng et al. [22] proposed an enhanced helmet-wearing detection network, YOLOv5-SN in 2023. 

The network initially employed the ShuffleNet backbone instead of the YOLOv5s backbone, thereby 

reducing parameters. Secondly, the model was optimized through quantization and layer fusion operations, 

which resulted in a reduction in computing power and an acceleration of reasoning. The enhanced network 

exhibited a notable superiority in terms of reasoning speed in comparison to the existing YOLOv5 model. 

In 2024, Dong et al. [23] employed an enhanced object detection algorithm based on YOLOv5 to 

identify helmet usage. The algorithm initially incorporated a smaller detection head, which enhanced the 

algorithm’s capability to detect small objects. Secondly, the coordinate attention (CA) module was 

incorporated to improve the object localization capability. Finally, the normalized wasserstein distance 

(NWD) was employed instead of the IoU method to quantify the similarity between bounding boxes. The 

enhanced model achieved a mAP50 of 95.09% in the context of helmet-wearing detection. 

In the same year, Hou et al. [24] introduced an enhanced object detection algorithm, YOLOv5-

GBCW. The algorithm initially employed ghost convolution to transform the backbone network, thereby 

significantly reducing the complexity of the model. Secondly, a bidirectional feature pyramid network 

(BiFPN) was utilized to enhance feature fusion, thereby improving the ability to detect small objects. Finally, 

the Beta wise-IoU loss function is proposed to improve the model’s generalizability. The improved algorithm 

achieved a mAP50 of 94.5%. 

Iparraguirre-Villanueva et al. [25] implemented a personal protective equipment (PPE) detection 

system based on the YOLOv5x object detection algorithm in 2024. The system initially converted the video 

into frames and performed resolution adjustments during the data collection phase. Next, the dataset was 

subjected to labelling and cleansing, and the labels and bounding boxes were revised. Finally, the detection 

model was trained on a customized dataset. The model achieved an accuracy of 91% and a recall of 74% for 

helmets. The accuracy of goggles reached 85% and a recall of 87%. The accuracy of not wearing a mask 

reached 92% and a recall of 89%. 

In 2023, Kisaezehra et al. [26] described a system strategy based on a deep learning model of the 

YOLOV5 architecture for real-time monitoring of workers’ helmets. The proposed system employed five 

distinct models of YOLOV5, namely YOLOV5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, to train 

the models on a bespoke dataset comprising 7,063 images. The YOLOV5x model exhibited the highest 

performance, achieving a mAP50 of 95.8%. In contrast, the YOLOV5n model demonstrated the fastest 

detection speed of FPS 70.4. 

Kwak and Kim [27] proposed a method for the automated identification of personal protective 

equipment, namely helmets and masks, worn by workers in indoor settings. Firstly, the detection algorithm 

was generated by transfer learning the YOLOv5s and YOLOv5m models. Secondly, the two models were 

trained by adjusting the learning rate, batch size, and epoch. Ultimately, the model with the optimal 

performance was selected as the model for detecting masks and helmets. The YOLOv5s model exhibited the 

most optimal performance, with a mAP50 of 0.954. 

Although YOLOv5-based methodologies demonstrated high accuracy in safety helmet-wearing 

detection, the trained models had numerous parameters and calculations, leading to high hardware costs. 

Some methods used lightweight techniques, like the ghost convolution module or ShuffleNet backbone, to 

reduce parameters and computations. However, these models still had significant parameters and 

calculations. Considering cost-effectiveness, a lightweight model is a viable solution, despite a slight 

compromise in accuracy. The YOLOv5n model with 1.9 million parameters meets this requirement but has 

insufficient feature fusion capability, leading to suboptimal detection accuracy. 

Most datasets in the above studies are labeled into two classes: ‘helmet’ and ‘person’, representing 

workers wearing and not wearing helmets. However, the label “helmet” is inappropriate for workers wearing 

safety helmets. Many workers’ bodies are obscured in the images, and these should be labeled as 

“head_with_helmet” instead of “helmet”. Consequently, models trained with these datasets lack robustness. 

Additionally, samples of workers not wearing helmets are insufficient, which leads to missed detections for 

these objects. Furthermore, since images are captured at construction sites, workers occluded by steel bars 

and bricks are prone to missed detection. 
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Balancing cost, speed, and accuracy is crucial for deploying a safety helmet-wearing detector in 

real-world applications. Therefore, the lightweight nature of the detection model, with minimal parameters 

and computations, is a significant feature of this paper. The detection model must achieve an optimal balance 

between accuracy and speed to facilitate the implementation of the safety helmet-wearing detection system. 

The main contributions of this paper are: 

i) Integrating CBAMs into the YOLOv5n network enhances feature extraction capability, compensating for 

the decrease in detection accuracy of a lightweight network. 

ii) Refining and fusing high-level semantic and low-level spatial features using efficient RepGFPN to 

enhance the YOLOv5n neck, thereby improving detection accuracy. 

iii) Introducing the DCNv2 into the C3 module of YOLOv5n enhances the network’s adaptability to 

geometric changes of objects and improves its focus on relevant image areas, reducing the missed 

detection rate. 

iv) Replacing the CIoU loss of YOLOv5n with focal-EIoU loss further reduces the missed detection rate. 

Compared with previous studies, this paper adjusts the dataset annotation strategy to improve the 

model’s robustness, which is beneficial for real-world detection. Moreover, previous studies utilize models 

with numerous parameters to achieve high accuracy. However, this study improves the lightweight 

YOLOv5n model to reduce parameters significantly and achieve the same high-level accuracy. 

 

 

2. THE PROPOSED ALGORITHMS 

2.1.  YOLOv5n 

The YOLO series models are classified into five categories: YOLOv5x, YOLOv5l, YOLOv5m, 

YOLOv5s, and YOLOv5n, based on their sizes. YOLOv5n has the lowest latency on the Tesla V100 b1, at 

only 0.6 milliseconds. The overall architecture of the YOLO series is similar, differing in network depth and 

width. The YOLOv5n architecture comprises the backbone, neck, and head. The backbone extracts features 

from the input image. The neck includes the FPN and path aggregation network (PANet). The FPN fuses 

feature maps from the backbone and the PANet further extracts the feature. The head predicts objects. Figure 1 

displays the YOLOv5n architecture.  

 

 

 
 

Figure 1. YOLOv5n architecture 

 

 

The Conv module consists of a convolutional layer, a batch normalization (BN) layer, and the 

sigmoid linear unit (SiLU) activation function. The C3 module includes Conv and Bottleneck structures, 

improving the receptive field and reducing computational complexity. The C3 module is repeated two and 
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three times when generating P4 and P5 feature maps, respectively, and is only performed once at other 

locations. The Concat module merges two feature maps of the same size. The Upsample module doubles the 

feature map size while retaining the number of channels. The spatial pyramid pooling fast (SPPF) module 

enhances model speed and accuracy when processing input images of various sizes. 

The backbone generates five feature maps: 320×320 (P1), 160×160 (P2), 80×80 (P3), 40×40 (P4), 

and 20×20 (P5) through a series of downsampling operations. The neck’s FPN uses concatenation to fuse 

three feature maps from the backbone: P3, P4, and P5. The PANet further extracts features through three 

downsamplings to generate semantically richer feature maps and fuses them with FPN feature maps. The 

head uses the fused P3, P4, and P5 feature maps to predict objects.  

 

2.2.  CBAM 

CBAM was proposed to enhance the representation capability of convolutional neural networks 

(CNNs) [28]. It helps the network focus on significant features while attenuating inconsequential ones. Thus, 

CBAM enhances the network’s feature extraction capability, improving the model’s accuracy. Given an 

intermediate feature map, CBAM employs a sequential approach to infer the attention maps. This process 

occurs along two distinct dimensions: channel and spatial. Then, the attention maps are multiplied by the 

input feature map, resulting in an adaptive refinement of the features. The CBAM module consists of two 

sub-modules, namely the channel attention module and the spatial attention module. Figure 2 shows the 

CBAM structure. 

 

 

 
 

Figure 2. CBAM structure 

 

 

The spatial dimension of the input feature map is squeezed to compute the channel attention 

efficiently. Both average-pooling and max-pooling are employed to aggregate spatial information, generating 

two distinct spatial descriptors: 𝐹𝑎𝑣𝑔
𝑐  and 𝐹𝑚𝑎𝑥

𝑐 . After applying a two-dimensional convolution layer with a 

kernel size of 1 to each descriptor, the output feature vectors are merged using element-wise summation, and 

a sigmoid function is subsequently performed to obtain a one-dimensional channel attention map 𝑀𝑐. The 𝑀𝑐 

is multiplied element-wise with the original feature map to generate the channel-refined feature 𝐹′.  

A reduction ratio of 16 is used to reduce parameter overhead.  

Furthermore, the channel-refined feature map 𝐹′ is aggregated using two pooling operations, 

generating two-dimensional maps: 𝐹𝑎𝑣𝑔
𝑠  and 𝐹𝑚𝑎𝑥

𝑠 . Those are then concatenated and convolved by a two-

dimensional convolution layer, producing a two-dimensional spatial attention map 𝑀𝑠. The 𝑀𝑠 is multiplied 

element-wise with channel-refined feature 𝐹′ to obtain the final output 𝐹′′. 
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2.3.  Efficient RepGFPN 

The GFPN aims to enhance the fusion and expression capability of the multi-scale feature by 

improving upon the traditional FPN [29]. It allows the network to establish more direct connections between 

feature maps of different scales, further enhancing the expressiveness of features. However, the latency of the 

GFPN-based model is much higher than the FPN-based model. Therefore, the efficient RepGFPN was 

proposed to address this issue [30]. 

Concerning topological structure optimization, the efficient RepGFPN uses different numbers of 

channels under different scale features, which can flexibly control the expressive power of high-level features 

and low-level features under the constraint of lightweight computation. Concurrently, it removes inefficient 

upsampling connections in feature fusion. Concerning fusion methods, the efficient RepGFPN uses the 

fusion block (FB) to perform feature fusion. The FB introduces technologies such as cross-stage-partial 

(CSP) connection, reparameterization mechanism, and multi-layer aggregation connection to improve the 

fusion effect further. Figure 3 displays the architecture of the efficient RepGFPN. Given three feature maps 

with different sizes, the Efficient RepGFPN effectively fused these multi-scale feature maps. 

 

 

 
 

Figure 3. Efficient RepGFPN structure 

 

 

2.4.  DCNv2 
The deformable ConvNets (DCN) extends the classic CNN architecture and introduces a deformable 

convolution operation [31]. This can capture local geometric deformations in the input image to improve the 

model’s adaptability and accuracy to different scenarios, especially object deformation and occlusion. The 

DCN uses deformable convolution to allow the location of the filter to shift relative to the regular grid to 

adapt to the local deformation of the image. Concurrently, it uses multi-level pyramid pooling to combine 

information at multiple scales, enabling the model to handle deformations of different ranges.  

However, the visualization results of DCN show that the corresponding position of its receptive 

field exceeds the object range, resulting in the feature being unaffected by the image content. Therefore, the 

DCNv2 was proposed to address this issue [32]. The DCNv2 enhances the modelling power for learning 

deformable convolutions and introduces the modulation mechanism that expands the scope of deformation 

modelling. 

 

2.5.  CIoU 

Concerning the evaluation metric for bounding box regression, the most prevalent metric is the IoU. 

Due to the inherent deficiencies of IoU, the bounding box regression loss function usually aggregates some 

geometric indicators based on IoU, including the distance, overlapping area, and aspect ratio between the 

predicted and ground truth boxes. The CIoU loss is employed in the YOLOv5 network, which considers three 

important geometric factors: the overlap area, the central point distance, and the aspect ratio. Given a 

predicted box 𝐵𝑝 and a ground truth box 𝐵𝑔𝑡, the CIoU loss calculation formula is given in (1). 

 

𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +  
𝜌2(𝐵𝑝,𝐵𝑔𝑡)

(𝑤𝑐)2+(ℎ𝑐)2 +  𝛼𝑣 (1) 

 

Where 𝑤𝑐 and ℎ𝑐 denote the width and height of the smallest enclosing box that covers two boxes. 𝜌(∙) 

denotes the Euclidean distance between the center point of the predicted and ground truth boxes. 𝛼 is a 

positive trade-off parameter, its calculation formula is given in (2). 
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𝛼 =  
𝑣

(1−𝐼𝑜𝑈) + 𝑣
 (2) 

 

Where 𝑣 is used to measure the consistency of aspect ratio, its calculation formula is given in (3). 

 

𝑣 =  
4

𝜋2 (𝑡𝑎𝑛−1 𝑤𝑔𝑡

ℎ𝑔𝑡
−  𝑡𝑎𝑛−1 𝑤𝑝

ℎ𝑝
)

2

 (3) 

 

Where 𝑤𝑔𝑡 and ℎ𝑔𝑡 denote the width and height of the ground truth box, while 𝑤𝑝 and ℎ𝑝 denote the width 

and height of the predicted box. 

The CIoU is subject to the following limitations. If the aspect ratios of the predicted boxes and the 

ground truth box are identical, the penalty term associated with the aspect ratio is always zero. Consequently, 

it is unable to ascertain which prediction box is more accurate. Furthermore, the CIoU enhances the precision 

of object localization. However, this may result in the missed detection of some objects. 

 

 

3. METHOD 

This paper improved the YOLOv5n network in four components. The first was the integration of 

three CBAMs into the YOLOv5n backbone network to enhance accuracy. The second improvement was to 

optimize the YOLOv5n neck using the efficient RepGFPN, which enabled the effective fusion of multi-scale 

feature maps, thus further improving accuracy. Subsequently, the DCNv2 module was introduced as an 

improvement for the C3 module of YOLOv5n. This modification enhanced the feature extraction capability 

of the deformable and occluded objects to decrease the missed detection rate. Finally, focal-EIoU was 

introduced as a replacement for CIoU to reduce the missed detection rate further. Therefore, the improved 

algorithm was called CGDE-YOLOv5n. 

 

3.1.  Integration of CBAM 

Although CBAM can be integrated anywhere in the YOLOv5n network, the different numbers and 

locations of integrating CBAMs will result in different outcomes. The number of integrating CBAMs directly 

affects the number of network parameters, particularly when the intermediate feature map contains numerous 

channels. Through the investigation of the YOLOv5n network, it was found that the YOLOv5n backbone 

generated feature maps of 80×80, 40×40, and 20×20 sizes and fused the feature maps with the same size 

obtained by upsampling in the neck. These three fused feature maps predicted small, medium, and large 

objects. Therefore, this paper integrated CBAMs after the three feature maps in the backbone or neck to 

extract features efficiently. Figure 4 shows the integration of CBAMs in the backbone.  

Three CBAMs are integrated after the P3, P4, and P5 layers, as shown in the yellow area. The 

methodology employed for the integration of CBAM into the neck was analogous. Three ablation 

experiments were conducted to identify the most effective method of integrating CBAM.  

 

 

 
 

Figure 4. Integrating CBAMs in the backbone 

 

 

3.2.  Improving the YOLOv5n neck 

This paper employed the efficient RepGFPN as the YOLOv5 neck to refine and fuse high-level 

semantic and low-level spatial features. Figure 5 displays the improvement of the YOLOv5n neck using the 

efficient RepGFPN. The FB includes the concatenation and CSPStage modules, enclosed by a purple line. 

The concatenation module fuses feature maps from different layers, highlighted in green areas. The 

CSPStage module performs excellently in deep networks, highlighted in yellow areas. The first FB fuses the 

feature maps of P5 and P4 from the backbone. Similarly, the second FB fuses the feature maps of P4 and P3. 
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The third FB fuses only the feature map of P3. The fourth FB further fuses the feature map of P4. The fifth 

FB further fuses the feature maps of P5 and P4. Figure 6 shows the CSPSatge structure. 

 

 

 
 

Figure 5. Improvement of the YOLOv5n neck 

 

 

 
 

Figure 6. CSPStage structure 

 

 

BN denotes the batch normalization layer. The N symbol indicates the number of repetitions of the 

module. The C symbol represents the concatenation module. The CSPStage module receives the 

concatenated feature map. The feature map splits into two distinct branches to obtain refined feature maps. 

Then, these feature maps are concatenated and passed through a 1×1 convolution layer to generate the final 

output. 

 

3.3.  Improving the C3 module 

The DCNv2 module was introduced into the original C3 module of YOLOv5n to enhance the 

adaptability to deformed and occluded objects, thereby reducing the missed detection rate of the model. 

Structures of the C3_DCNv2, Bottleneck, and Bottleneck_DCNv2 modules are shown in Figure 7.  

The improved C3 module, C3_DCNv2, is shown in Figure 7(a). The input feature map was subjected to two 

refinement processes. In the left branch, the input feature map passed through a ConvBNSiLU structure to 

reduce the number of channels to half. In the right branch, the input feature map sequentially passed through 

a ConvBNSiLU structure and a Bottleneck_DCNv2 structure. After that, the two refined feature maps were 

concatenated. The concatenated feature map was passed through a ConvBNSiLU structure to generate the 

final output. 

Figure 7(b) shows the Bottleneck structure of the original C3 module. In the left branch, the 

Shortcut represented the residual connection, which was used to accelerate the convergence of the model and 

improve the model’s accuracy. In the right branch, the input feature map sequentially passed through two 

ConvBNSiLU structures with kernel sizes of 1 and 3. Finally, the two refined feature maps were added 

element-wise to generate the output feature map. 

Figure 7(c) shows the Bottleneck_DCNv2 structure of the C3_DCNv2 module. The DCNv2 

structure superseded the ConvBNSiLU structure to enhance the capacity for feature extraction. Figure 8 

displays the improved architecture of the YOLOv5n backbone with C3_DCNv2 modules. Since the backbone 

comprised four C3 modules, four ablation experiments were conducted to ascertain the influence of the 

number of C3_DCNv2 modules and the configuration of these modules on the model performance. 
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(a) (b) (c) 

 

Figure 7. Three modules’ structures: (a) C3_DCNv2, (b) Bottleneck, and (c) Bottleneck_DCNv2 

 

 

 
 

Figure 8. YOLOv5n backbone with C3_DCNv2 modules 

 

 

3.4. Replacing the CIoU with Focal-EIoU 

Compared to the CIoU loss, the EIoU loss directly minimized the discrepancies in width and height 

between the ground truth box and the predicted box by splitting the aspect ratio. This may reduce the 

localization precision to increase the recall, thereby reducing the missed detection ratio. The EIoU loss 

calculation formula is given in (4). 

 

𝐿𝐸𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +  
𝜌2(𝐵𝑝,𝐵𝑔𝑡)

(𝑤𝑐)2+(ℎ𝑐)2 +
𝜌2(𝑤𝑝,𝑤𝑔𝑡)

(𝑤𝑐)2 +
𝜌2(ℎ𝑝,ℎ𝑔𝑡)

(ℎ𝑐)2  (4) 

 

Furthermore, inspired by the focal loss’s idea, a reweighted EIoU loss, Focal-EIoU, was designed to 

enhance the contributions of high-quality predicted boxes in model optimization, while simultaneously 

suppressing the contributions of low-quality ones. The Focal-EIoU loss calculation formula is given in (5). 

 

𝐿𝐹𝑜𝑐𝑎𝑙−𝐸𝐼𝑜𝑈 = 𝐼𝑜𝑈𝛾 ∙ 𝐿𝐸𝐼𝑜𝑈 (5) 

 

Where 𝑟 = 0.5 denotes the degree of inhibition of outliers. 

To ensure a fair comparison, ablation experiments were conducted to evaluate the performance of CIoU, 

focal-CIoU, EIoU, and focal-EIoU losses. 

 

 

4. RESULTS AND DISCUSSION 

Since the detection rate of workers not wearing helmets in the construction industry takes priority 

over the precision of locating the object, the precision can be appropriately reduced to increase the recall. 

Accordingly, the mAP50 and recall metrics of the YOLOv5n and improved models are primarily subjected to 

comparison. This paper used the YOLOv5n model as the baseline for performance comparison. 

Subsequently, the final improved model was deployed on the Jetson Orin Nano terminal for real-time 

detection of safety helmet usage. 

 

4.1.  Experimental dataset and environment 

The dataset employed in this paper was derived from the open-source dataset SHEL5K [33].  

The dataset comprised six classes: “helmet”, “head-with-helmet”, “person-with-helmet”, “head”, “person-no-

helmet”, and “face”. However, an increase in the number of categories results in a notable reduction in the 
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accuracy of the trained model. Therefore, the “helmet”, “head”, and “face” categories of the original 

SHEL5K dataset were unlabeled. Furthermore, this labelling strategy addressed the issue of the unreasonable 

labelling of some datasets. A total of 5,000 images were collected, comprising three classes. The categories 

were as follows: “person-with-helmet”, “head-with-helmet”, and “person-no-helmet”. Finally, the dataset 

was randomly divided into a training set and a validation set in a ratio of 9:1. 

The experimental environment for training described in this paper was configured with the 

following hardware and software: the CPU processor was an Intel i7-13400KF, and the graphics card was an 

NVIDIA GeForce RTX 3060 with 12G graphic memory. The software system was Windows 11, with CUDA 

version 11.8, Pytorch version 2.0.1, torchvision 0.15.2 and Python version 3.8.17. The training settings were 

batch size 32, input image size 640 × 640, and 200 epochs. The deployment environment was configured 

with the following hardware and software: the Jetson Orin Nano had 20 TOPs AI performance, a 1.5 GHz 

CPU, and a 4G memory. The software system was Ubuntu 20.04, with CUDA version 11.4, Jetpack 5.1.1, 

TensorRT 8.5.2.2, torch version 1.11.0, torchvision 0.12.0 and Python version 3.8.13. 

 

4.2.  Experimental results of improving YOLOv5n 

4.2.1. Integration of CBAMs 

Three ablation experiments are conducted to verify the effectiveness of the integrated CBAMs. 

Table 1 presents the performance comparison of the YOLOv5n model and models integrated CBAMs. 

CBAM-1 indicates that CBAMs are solely incorporated into the backbone of YOLOv5n. CBAM-2 presents 

that CBAMs are only integrated into the neck of YOLOv5n. CBAM-3 indicates that CBAMs are integrated 

into both the backbone and neck of YOLOv5n. 

The experimental results demonstrated that integrating CBAMs improved the model’s accuracy. 

Compared to the YOLOv5n model, the CBAM-1 model achieved the highest mAP50 of 89.1%, representing 

a 0.6% increase and a slight rise of 11,049 in parameters. Furthermore, precision and recall were increased by 

0.4% and 0.3%, respectively. Therefore, the CGDE-YOLOv5n algorithm selected the first method for 

integrating CBAMs. 

 

 

Table 1. Performance comparison of four models 
Model Precision (%) Recall (%) mAP50 (%) Parameters 

YOLOv5n 89.2 83.2 88.5 1,763,224 

+ CBAM-1 89.6 83.5 89.1 (+0.6) 1,774,273 (+11,049) 

+ CBAM-2 88.5 82.8 89.0 (+0.5) 1,774,273 (+11,049) 

+ CBAM-3 87.7 83.1 88.6 (+0.1) 1,785,322 (+22,098) 

 

 

4.2.2. Improving the YOLOv5n neck 

Following the integration of CBAMs, the Efficient RepGFPN was chosen to improve the YOLOv5 

neck to refine and fuse high-level semantic and low-level spatial features. Table 2 shows the performance 

comparison of three models. The third model incorporating the CBAM and efficient RepGFPN achieved a 

mAP50 of 89.3%, representing an improvement of 0.2% compared to other models. Compared to the first 

model with CBAM, the third model reduced the recall by 0.5% to increase the precision by 0.6% with an 

increase of 557,312 parameters. Overall, the third model with the CBAM and Efficient RepGFPN slightly 

outperformed the YOLOv5n model with CBAM. 

 

 

Table 2. Performance comparison of three models 
Model Precision (%) Recall (%) mAP50 (%) Parameters 

YOLOv5n + CBAM 89.6 83.5 89.1 1,774,273 

YOLOv5n + RepGFPN 90.1 83.0 89.1 2,320,536 (+546,263) 

YOLOv5n + CBAM + RepGFPN 90.2 83.0 89.3 (+0.2) 2,331,585 (+557,312) 

 

 

4.2.3. Improving the C3 module 

Four ablation experiments were conducted to ascertain the efficacy of the C3_DCNv2 module and 

to determine the influence of its number on the model performance. Table 3 shows the performance 

comparison of the YOLOv5n model and the models that improved the C3 module for all classes. 

C3_DCNv2-1 indicates that the last C3 module within the YOLOv5n backbone is replaced with the 

C3_DCNv2 module. C3_DCNv2-2 indicates that the later two C3 modules within the YOLOv5n backbone 

are replaced with the C3_DCNv2 modules. Similarly, C3_DCNv2-3 and C3_DCNv2-4 adhere Table 3. 
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Table 3. Performance comparison of five models 
Model Precision (%) Recall (%) mAP50 (%) Parameters 

YOLOv5n + CBAM + RepGFPN 90.2 83.0 89.3 2,331,585 

YOLOv5n + CBAM + RepGFPN + C3_DCNv2-1 90.2 82.8 89.2 (-0.1) 2,362,972 (+31,387) 

YOLOv5n + CBAM + RepGFPN + C3_DCNv2-2 88.7 83.2 88.8 (-0.5) 2,410,093 (+78,508) 

YOLOv5n + CBAM + RepGFPN + C3_DCNv2-3 90.0 83.2 89.3 2,425,827 (+94,242) 

YOLOv5n + CBAM + RepGFPN + C3_DCNv2-4 90.2 83.0 88.9 (-0.4) 2,429,774 (+98,189) 

 

 

The experimental results demonstrated that the model with three C3_DCNv2 modules achieved a 

mAP50 of 89.3% with an increase of 94,242 parameters. The mAP50s of the other methods were found to be 

inferior. Despite the absence of an improvement in the mAP50 relative to the baseline model, the enhanced 

model, comprising three C3_DCNv2 modules, exhibited a notable enhancement in the recall for the 

“person_no_helmet” class. Table 4 shows the validation results of three models for each class. 

 

 

Table 4. Validation results of three models for each class 
Model YOLOv5n + CBAM + RepGFPN + CBAM + RepGFPN + C3_DCNv2 

Class Precision 

(%) 

Recall 

(%) 

mAP50 

(%) 

Precision 

(%) 

Recall (%) mAP50 (%) Precision 

(%) 

Recall (%) mAP50 

(%) 

All 89.2 83.2 88.5 90.2 (+1.0) 83.0 (-0.2) 89.3 90.0 (+0.8) 83.2 89.3 

Head_with_

helmet 

92.3 89.5 93.5 92.6 89.5 94.2 93.0 89.5 94.0 

Person_with

_helmet 

89.6 86.4 90.8 91.7 (+1.1) 85.1 (-0.7) 91.1 91.3 (+1.7) 84.6 (-1.8) 91.3 

Person_no_

helmet 

85.7 74.8 81.8 86.3 (+0.6) 74.5 (-0.3) 82.6 85.7 75.6 

(+0.8) 

82.6 

 

 

Compared to the YOLOv5n model, the second model reduced the recall to a slight degree to 

increase the precision, resulting in an increase of 0.8% from 88.5% to 89.3% in mAP50. The third method 

also increased the mAP50 to 89.3% with an increase of 0.8% in precision. For the “head_with_helmet” class, 

the three models achieved comparable precision, recall, and mAP50. For the “person_with_helmet” class, the 

second and third models reduced recalls to increase precisions compared to the YOLOv5n model. For the 

“person_no_helmet” class, compared to the YOLOv5n model, the second model also reduced the recall to 

increase the precision, while the third model increased the recall by 0.8% from 74.8% to 75.6%. Overall, the 

enhanced model incorporating three C3_DCNv2 modules demonstrated a reduction in recall for the 

“person_with_helmet” class and an increase in recall for the “person_no_helmet” class. 

 

4.2.4. Introducing the focal-EIoU 

The focal-EIoU loss function replaced the CIoU loss function of YOLOv5n to split the aspect ratio 

penalty into the width and height penalties. Table 5 shows the performance comparison of the models using 

different loss functions for all classes. As the replacement of the loss function did not result in a modification 

of the network structure, the parameters remained unaltered. The EIoU model had the lowest mAP50 of 

88.7%. The reweighted CIoU, focal-CIoU, did not outperform compared to the CIoU model, with a mAP50 

of 89.3%. The focal-EIoU model reduced the precision by 0.8% (from 90% to 89.2%) to increase the recall 

by 0.8% (from 83.2% to 84%), finally achieving the highest mAP50 of 89.5%. Table 6 shows the validation 

results of three models for each class. 
 

 

Table 5. Performance comparison of four models 
Model Precision (%) Recall (%) mAP50 (%) Parameters 

YOLOv5n + CBAM + RepGFPN + C3_DCNv2 (CIoU) 90.0 83.2 89.3 2,425,827 

YOLOv5n + CBAM + RepGFPN + C3_DCNv2 (EIoU) 88.5 83.2 88.7(-0.6) 2,425,827 

YOLOv5n + CBAM + RepGFPN + C3_DCNv2 (Focal-CIoU) 89.0 83.3 89.3 2,425,827 

YOLOv5n + CBAM + RepGFPN + C3_DCNv2 (Focal-EIoU) 89.2 84.0 89.5(+0.2) 2,425,827 

 

 

Table 6. Validation results of two models for each class 
Model Precision (%) 

(head_with_ 

helmet) 

Recall (%) 

(head_with_

helmet) 

Precision (%) 

(person_with

_helmet) 

Recall (%) 

(person_with

_helmet) 

Precision (%) 

(person_no_ 

helmet) 

Recall (%) 

(person_no_ 

helmet) 

YOLOv5n 92.3 89.5 89.6 86.4 85.7 74.8 

CIoU 93.0 (+0.7) 89.5 91.3 (+1.7) 84.6 (-1.8) 85.7 75.6 (+0.8) 

Focal-EIoU 91.2 (-1.1) 89.7 (+0.2) 90.2 (+0.6) 85.9 (-0.5) 86.1 (+0.4) 76.5 (+1.7) 
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Compared to the YOLOv5n model, for the “head_with_helmet” class, the CIoU model achieved the 

highest precision of 93%, increasing by 0.7%, while the focal-EIoU model reduced the precision by 1.1% 

(from 92.3% to 91.2%) to increase the recall by 0.2% slightly. For the “person_with_helmet” class, the CIoU 

and focal-EIoU models reduced the recall to improve the precision. For the “person_no_helmet” class, the 

CIoU model increased the recall by 0.8%. In particular, the focal-EIoU model increased the precision and 

recall by 0.4% and 1.7%, respectively. Overall, the focal-EIoU model achieved the highest recall of 76.5% 

and precision of 86.1% for the “person_no_helmet” class. 

 

4.2.5. Summary 

The YOLOv5n model was improved in four areas to develop the CGDE-YOLOv5n model. Table 7 

presents a summary of the comparative performance of each model. The CBAM and efficient RepGFPN 

enhanced the accuracy of the original YOLOv5n model. The C3_DCNv2 exhibited an enhanced recall rate 

for the “person_no_helmet” class. The focal-EIoU further improved accuracy and recall. Finally, the CGDE-

YOLOv5n model achieved the highest mAP50 of 89.5% and recall of 84% compared to other models. 

Compared to the YOLOv5n model, the mAP50 and recall increased by 1% and 0.8% respectively. In 

particular, the recall of the “person_no_helmet” class increased by 1.7%, reaching 76.5%. Figure 9 shows the 

experimental curves of five models. 

 

 

Table 7. Performance comparison of five models 
Model Precision (%) 

(all classes) 

Recall (%) 

(all classes) 

mAP50 (%) 

(all classes) 

Parameters Recall (%) 

(person_no_helmet) 

YOLOv5n (baseline) 89.2 83.2 88.5 1,763,224 74.8% 

+ CBAM 89.6 83.5 89.1 (+0.6) 1,774,273 (+11,049) 74.9% 

+ CBAM + RepGFPN 90.2 83.0 89.3 (+0.8) 2,331,585 (+568,361) 74.5 (-0.3) 

+ CBAM + RepGFPN + 

C3_DCNv2 

90.0 83.2 89.3 (+0.8) 2,425,827 (+662,603) 75.6 (+0.8) 

+ CBAM + RepGFPN + 

C3_DCNv2 + Focal-EIoU 

(CGDE-YOLOv5n) 

89.2 84.0 89.5 (+1.0) 2,425,827 (+662,603) 76.5 (+1.7) 

 

 

Figure 9(a) displays the precision-recall curves of five models. The value of mAP50 is the area 

enclosed by the precision-recall curve and the two coordinate axes. The CGDE-YOLOv5n model with the 

purple precision-recall curve had the largest area. Figure 9(b) shows the mAP50 curves of five models in 200 

training epochs. Before the 75th epoch, the mAP50 of the YOLOv5n model increased faster than other 

models. After that, the CGDE-YOLOv5n model outperformed other models in most epochs, achieving the 

highest mAP50 of 89.5%. 

Figure 9(c) shows the precision curves of five models in 200 training epochs. In the early stage of 

training, the YOLOv5n model achieved better precision. In the middle of training, the CGDE-YOLOv5n 

model performed better. In the later stage of training, the YOLOv5n model with CBAM and efficient 

RepGFPN outperformed other models, achieving the highest precision of 90.2%. Figure 9(d) shows the recall 

curves of five models in 200 training epochs. Before the 100th epoch, the YOLOv5n model achieved better 

recall. After that, the CGDE-YOLOv5n model and the YOLOv5n model with CBAM, efficient RepGFPN, 

and DCNv2 outperformed other models. 

 

4.3.  Comparative experiments with other common models 

To facilitate a comparison with the CGDE-YOLOv5n model, several lightweight backbones, 

including MobileNetv3, ShuffleNetv2, and GhostNetv2, were replaced with the YOLOv5n backbone. 

Furthermore, the YOLOv5s model with numerous parameters was employed to compare performance. Table 8 

compares the performance of five models. 

Compared to three lightweight backbones, the CGDE-YOLOv5n model exhibited superior 

performance, as evidenced by higher precision, recall, and mAP50. In particular, the CGDE-YOLOv5n 

model achieved the same mAP50 of 89.5% compared to the YOLOv5s model. However, the parameters of 

the CGDE-YOLOv5n model were significantly reduced. Despite the YOLOv5s model demonstrating the 

highest precision of 91.3%, the CGDE-YOLOv5n model exhibited the highest recall of 84%. 

 

4.4.  Deployment on the Jetson Orin Nano 

The trained model was unsuitable for direct deployment on embedded devices. TensorRT was 

employed to accelerate the model’s inference speed to address this issue. Additionally, the data precision of 

the inference model was reduced from 32-bit floating point numbers (FP32) to FP16, further enhancing 
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inference speed. Generally, the model’s detection speed is measured in FPS. Accordingly, the validation 

dataset comprising 500 images was employed to evaluate the model’s average detection speed. Table 9 

compares the detection speed between the YOLOv5n and CGDE-YOLOv5n models. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 9. Experimental curves of five models in 200 epochs: (a) precision-recall curves, (b) mAP50 curves, 

(c) precision curves, and (d) recall curves 

 

 

Table 8. Performance comparison of five models 
Model Precision (%) Recall (%) mAP50 (%) Parameters 

YOLOv5n-MobileNetv3 87.8 79.5 85.8 2,095,048 

YOLOv5n-ShuffleNetv2 87.8 82.1 87.2 1,858,260 

YOLOv5n-GhostNetv2 88.7 81.4 88.0 2,057,916 

YOLOv5s 91.3 83.7 89.5 7,018,216 

CGDE-YOLOv5n 89.2 84.0 89.5 2,425,827 

 

 

Table 9. Detection speed comparison of two models on the Jetson Orin Nano 
Model Pre-process (millisecond) Inference (millisecond) NMS (millisecond) FPS 

YOLOv5n 1.4 8.1 4.3 72.5 

CGDE-YOLOv5n 1.4 9.4 3.8 68.5 

 

 

The model’s detection time is divided into three phases: preprocessing, inference, and NMS. FPS is 

the inverse of the detection time. The YOLOv5n model achieved a faster FPS of 72.5 compared to the 

CGDE-YOLOv5n model with 68.5 FPS. Figure 10 shows the detection results of the CGDE-YOLOv5n 

model for sample images containing single or multiple workers. 

Where the bounding boxes with red, pink, and orange colors denote the detection results  

of the “head_with_helmet” class, the “person_with_helmet” class, and the “person_no_helmet” class.  

Figures 10(a) to 10(d) show the detection results of workers wearing safety helmets. All “head_with_helmet” 
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and “person_with_helmet” objects in sample images were correctly detected. Figures 10(e) and 10(f) show 

the detection results of multiple workers wearing safety helmets. All “head_with_helmet” and 

“person_with_helmet” objects were correctly detected. It is noteworthy that several occluded 

“person_with_helmet” objects were correctly detected. Figures 10(g) and 10(h) show the detection results of 

multiple workers not wearing safety helmets. All “person_no_helmet” objects were correctly detected. 

Although both models satisfied the requisite for real-time detection, the CGDE-YOLOv5n model 

achieved superior performance in terms of accuracy and recall compared to the YOLOv5n model, as 

evidenced in practical applications. Table 10 shows a cost-benefit comparison analysis of five terminals. 

Where the data comes from the Amazon website. The Jetson Orin Nano terminal used in this study 

outperforms other terminals in function, price, and power consumption. Therefore, the CGDE-YOLOv5n 

algorithm has good potential application value in the industrial field. 

 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 

Figure 10. Detection results of the CGDE-YOLOv5n model: (a)–(d) single worker wearing safety helmets, 

(e)–(f) multiple workers wearing safety helmets, and (g) – (h) multiple workers not wearing safety helmets 

 

 

Table 10. Cost-benefit comparison of five terminals 
Brand Model Function Price (USD) Power 

consumption 

YAHBOOM Jetson Orin Nano 4G 

camera kit 

Robotics, edge computing and AI, and vision AI 280 7-10 watts 

HIKVISION  DS-2DE4425IW-DE(T5) Intrusion, line crossing, area entry and exit detections 415 25-30 watts 

318NETECH iDS-2CD7A46G0/P-

IZHS 

License plate recognition based on deep learning 690 11 watts 

AMCREST 4MP AI PTZ POE IP Human and vehicle detection, face detection, tripwire, 

intrusion, abandoned object, missing object 

560 6.5-12 watts 

REKOR Edge Pro License plate recognition 999 26 watts 

 

 

4.5.  Discussion 
It is acknowledged that deploying the detection model on embedded devices with limited resources 

is a challenge. Previous models achieved high accuracy but suffered from slow detection speed. Therefore, 

YOLOv5n is a suitable choice due to its fewer parameters and calculations. However, the lightweight 

YOLOv5n model has shortcomings in feature extraction and recall improvement. Consequently, the 

YOLOv5n model was improved through four approaches to obtain the CGDE-YOLOv5n model.  

First, it was found that CBAM can adjust the intermediate feature map’s channel and pixel weights 

to improve CNN performance. After integrating CBAMs, accuracy increased by 0.6%. Second, Efficient 

RepGFPN could better refine and fuse high-level semantic and low-level spatial features to enhance 

accuracy. After improving the neck, accuracy increased by 0.2%. Third, it was also found that object shape 

and size in the helmet dataset varied greatly, DCNv2 was used to enhance feature extraction for deformable 
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and occluded objects. Although accuracy remained unchanged after improving the C3 module, recall for the 

“person_no_helmet” class increased by 0.8%. Fourth, focal-EIoU split the aspect ratio penalty into width and 

height penalties to decrease localization precision and improve recall. After replacing CIoU with focal-EIoU, 

accuracy increased by 0.2%. Furthermore, recall increased by 0.8%, and recall of the “person_no_helmet” 

class increased by 1.7%. 

With 89.5% accuracy and 68.5 FPS, the CGDE-YOLOv5n model achieved an optimized balance 

between accuracy and speed. Compared with previous studies, it achieved the same high level of accuracy 

but with significantly improved detection speed. Therefore, experimental findings will serve as a reference 

point for researchers seeking to enhance the precision and recall of detection models. Furthermore, they also 

support the hypotheses of this study. 

Experimental findings also indicate that the recall of the “person_no_helmet” class is relatively low. 

The possible reasons are the insufficient number of images in this category and the insufficient feature 

extraction capability of the algorithm for this category. Therefore, future research will conduct experiments 

from two perspectives: dataset diversity and algorithm optimization. Finally, a real-time safety helmet-

wearing compliance detection system will be developed for real-world construction sites. 

In conclusion, improvement methods integrating CBAM and efficient RepGFPN are beneficial for 

improving accuracy in this paper. Furthermore, improvement methods using DCNv2 and focal-EIoU 

facilitate an enhancement in the recall and a reduction in the missed detection rate. Furthermore, the 

YOLOv5n-based improved model fully meets the requirements of real-time detection. 

 

 

5. CONCLUSION 

This paper has addressed the challenge of deploying a real-time safety helmet-wearing compliance 

detection model on embedded devices. The lightweight algorithm, YOLOv5n, was selected to minimize the 

model’s parameters and calculations. To address the problem of decreased accuracy in the lightweight 

network, CBAMs were incorporated into the YOLOv5n backbone. Additionally, Efficient RepGFPN was 

employed to enhance the YOLOv5n neck to improve accuracy further. Furthermore, DCNv2 was used to 

improve the C3 module of YOLOv5n to reduce the missed detection rate. Then, focal-EIoU replaced CIoU to 

increase recall further. Finally, CGDE-YOLOv5n increased accuracy by 1.0% and recall by 0.8% compared 

to YOLOv5n. Furthermore, it achieved the same accuracy of 89.5% as YOLOv5s with significantly fewer 

parameters and computational overhead. When deployed on the Jetson Orin Nano, the CGDE-YOLOv5n 

model achieved a real-time detection speed of 68.5 FPS. The experimental results demonstrated that the 

CGDE-YOLOv5n algorithm is effective in real-time detection of safety helmet-wearing compliance. 
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