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Abstract 
A traditional assumption underlying most data converters is that the signal should be sampled at 

a rate exceeding twice the highest frequency. In this paper, we employ a method for low-rate sampling of 
multi- band signals via applying periodic nonuniform sampling in shift-invariant spaces generated by m 
kernels with period T. So, the sampling and reconstruction of signals were transformed into matrix and 
vector operations, the generalized inverse can be use to find the answer and an interpolator is used to 
insure that complete reconstruction will be achieved. Finally, we validate the method in MATLAB; the 
conclusion of simulation shows the frame-work presented here is feasible.   
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1. Introduction 

One goal in designing a software defined radio (SDR) receiver is to move the analog-to-
digital converter (ADC) as close as possible to the antenna [1]. To achieve this goal, one can 
manage to use a wideband high-speed ADC to convert the RF signals to digital signals. With 
the development of wireless technology, this enables the modulation of narrow-band signals by 
high carrier frequencies. To demodulate the desired signals, the required sampling rate for the 
ADC could often be too high to be attained if the Nyquist sampling theorem is to be satisfied [2]. 
The uniform bandpass sampling method has been proposed to figure out the problem [3-5], and 
this is a promising way for multi-band radio communication. The uniform bandpass sampling is 
the intentional aliasing of the information bandwidth of the signal [6, 7]. The sampling frequency 
requirement is no longer based on the frequency of the RF carrier, but rather on the information 
bandwidth of the signal. Thus, the resulting processing rate can be significantly reduced. 
However, the uniform sampling still suffers from many constraints such problem of timing jitter in 
A/D conversion process [8]. For nonuniform samples, there are both iterative methods and 
noniterative methods to recreate the signals; these methods presuppose exact knowledge of 
the sample locations. This is not always the case, and there may occur situations where the 
location data is unavailable or partially available [9].  

A signal class that plays an important role in sampling theory is signals in shift-invariant 
(SI) spaces [10]. A sample in shift-invariant spaces was proposed to overcome these problems. 
The reconstruction of sampled signals is achieved by forming linear combinations of a set of 
reconstruction function that span a subspace; such functions can be expressed as linear 
combinations of shifts of a set of generators with period T. This model encompasses many 
signals used in communication and signal processing. Any signal x(t) in a SI space generated 
by m functions shifted with period T can be perfectly recovered from m sampling sequences, 
obtained by filtering x(t) with a bank of m filters and uniformly sampling their outputs at times nT. 

This paper is organized as followed. Section II sets up the sampling model. In Section 
III, we use generalized inverse to recover sampled signals. In section IV, we analyze the 
reconstruction error. Finally, section V shows simulation results. 

 
 

2. Proposed Scheme 
The architecture of parallel sampling system is shown in Figure 1.   



TELKOMNIKA  ISSN: 2302-4046  

Direct Radio Frequency Sampling System on Software-defined Radio (Luo Junyi) 

7825

 
 

Figure 1. The Mode of the Periodic Nonuniform Sampling 
 
  

The nonuniform sampling process converts a continuous analogue signal x(t)∈L2-
space into its discrete representation, the architecture of periodic nonuniform sampling system 
is shown in Figure 1.  

Let ai(t) as one of s nonuniform sample sequences,  
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Where, T is the sampling period,  is sequence separation. 

One of s sampled functions, 
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Where, 0 1i s   . 
And the corresponding spectra is given by: 
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In order to reconstruct x(t) from these samples y[n]( y[n]=[ y0[n], y1[n],…,ys-1[n]]), it is 

assumed that x(t) lies in a subspace V(φ)of L2. In this paper, we define that the V(φ) are 
generated by m space functions φ(t). 
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We can represent any x(t)∈V(φ) as follow: 
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The only restriction on the choice of the function train{φp(t)} is for guaranteeing a unique 

stable representation of any signal in V(φ) by  sequence {rp[n]}, so the generators φ(t) must form 
a Riesz basis of L2. In other words, there exist two constants 0  and    , such that: 
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Where, 
1

0
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2

 is L2 norm. 

Proposition: if and only if ( ) II W    , the generator φp(t-nT) form a Riesz basis.  

Where, I is the identity matrix: 
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Here, ψ(ω) is the Fourier transform of φ(t)              

Proof: (5) can be rewritten as follow:  
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From the theory of Parseval: 
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Where, ( )R  is the discrete-time Fourier transform of [ ]r n , and ( )R   is 2π-periodic.  

Then (7) can be rewritten as: 
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We can have (9) from Parseval: 
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It is easy to know ( )W   is a positive self-adjoint which has real nonnegative eigenvalues. Let 

  is the minimal eigenvalues and   is the maximal eigenvalues. We can have: 

 
* * *( ) ( ) ( ) ( ) ( ) ( ) ( )R R R R R RBIAI W        

 
The conclusion can be obtained that φp(t-nT) form a Riesz basis if and only if  ( ) II W    . 

The above-mentioned subspace V(φ) is a single space, the more interesting aspect we 

are considering is that x(t) lies in a union of subspaces ( )pV  (0≤p≤m-1). 
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( ) ( )pVx t                  

In Fourier domain, (4) can be represented as follow: 
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Where, RP(ω) is the discrete-time Fourier transform of rp[n], ψp(ω) is the Fourier transform of 
φp(t). 

We can obtain the DTFT of the i-th channel samples [ ]
i

y n  by (3) and (5): 
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Where, the fact that the ( )

p
R   is 2 -periodic. 

An appropriate matrix represent of (11) is given by:\ 
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Our aim is to obtain values of R(ω). The method of reconstruction is to solve Equation (10). 
 
 
3. Reconstruction Mode  

The approach in this paper is to recovery sampled signals in two steps. First, we use 
the generalized inverse ( )H  to find ri[n] (0≤i≤m-1); second, an interpolator is employed to 

achieve the complete reconstruction of sampled signal. The fundamental stages for the 
recovery of sampled signals are shown in Figure 2. 

 
 

 
 

Figure 2. The Block of Reconstruction Bank 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 11, November 2014:  7824 – 7831 

7828

We define the function as follow: 
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Where, ˆ [ ]iy n  is coefficient that is obtained via sampling the reconstructed continuous time 

signal.  
  Again by Parseval we have: 
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Where, ( )iY  and ˆ ( )iY   is the DTFT of [ ]iy n  and ˆ [ ]iy n  respectively. ( )H
 denotes the 

Hermitian conjugate. 
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Where, , ( )p jH   is the pjth element of matrix ( )H  . 

A matrix represent of (8) is given by: 
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When the value of the equation (17) is minimum, the generalized inverse can be attained by: 
  

( ) ( ) / ( ( ) ( ))H HH Q Q Q              (18) 

 
As soon as the r[n] is obtained, we can have the recovered x(t) through an interpolator. 
TN is defined as the oversampling periodic that satisfy /NT T M , we can rewrite (3) as 

follow: 



TELKOMNIKA  ISSN: 2302-4046  

Direct Radio Frequency Sampling System on Software-defined Radio (Luo Junyi) 

7829

  
1

0

[ ] [ ] ( )N N

m

p p
p c z

x nMT c nT cTr 


 

              (19) 

 
Upsampling the sequence (x[nTN]:n∈Z) by factor of M, the dth sub-sequence is given 

by: 
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The DTFT of (14) is: 
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Finally, we can have the reconstructed signals in Fourier domain: 
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4. Error analysis  
We will define an angle between two closed subspaces A and B of a Hilbert space 

V[11]: 
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When the reconstructed signal ( )x t V

, we can conclude the sampling error ( ( ))e x t  as 

follow: 
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From (25), we can have: 
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When ( )x t V W   (W is the sampling space), we can have the Equation (27): 
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Where, ( ( ))
VW

E x t  is the oblique projection onto V along W  . 

Further, the infimum and the Supremum of sampling error can be given by Equation 
(28). 
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4. Simulation 
In the section, we will validate the reconstruction algorithm in MATLAB. We design a 

sampling system that the sampling channels are s=2. The corresponding nonuniform sample 

sequences in Figure 1 are  0 ( ) ( )a t t nT   and 1( ) ( )a t t nT    , we define / 3T   that 

is the sequence separation between two interleaved uniform sample sequences.  The generate 

functions 0 ( )t and 1 ( )t  are given as follow: 
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Where, T is the sampling period. 

We suppose that the input multi-band signal: 
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Figure 3. The Sampling System Simulation 
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5. Conclusion  
In this paper, we use a general framework to treat sampling of multi-band signal. Our 

interest is that focused on how to reconstruct signal completely. The approach we chosen are 
that project the signal over basis functions and then sample the basis coefficients. The latter 
focuses on using generalized inverse to obtain ri[n] (0≤i≤m-1). We showed that by using a 
interpolator to gain the complete multi-band signal x(t) from r[n]. Finally, the simulation proved 
the method we proposed is feasible. 
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