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 Chronic kidney disease (CKD) has emerged as a significant global health 

issue, leading to millions of premature deaths annually. Early prediction of 

CKD is crucial for timely diagnosis and preventive measures. While various 

deep learning (DL) methods have been introduced for CKD prediction, 

achieving robust quantification results remains challenging. To address this, 

we propose the context-dependent bi-directional DL and Bayesian gaussian 

autoencoder (CDBDP-BGA) method for CKD prediction. This approach 

utilizes clinical parameters and symptoms from a structured dataset.  

By incorporating context dependence into the bi-directional long short-term 

memory (Bi-LSTM) model, CDBDP-BGA efficiently redistributes the 

representation of information, enhancing its modeling capabilities. Feature 

selection is optimized using a BGA-based algorithm, which employs the 

Bayesian gaussian function. The SoftMax activation function classifies CKD 

into five distinct stages based on estimated-glomerular filtration-rate 

(eGFR), considering both symptoms (texture and numerical features) and 

clinical parameters (age, sex, and creatinine). Simulation results using two 

datasets demonstrate that CDBDP-BGA outperforms conventional methods, 

achieving 97.4% accuracy without eGFR and 98.7% with eGFR. 
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1. INTRODUCTION 

Chronic kidney disease (CKD) refers to kidney damage resulting from the inability to filter blood 

properly. The kidney’s primary function is to remove excess water and waste from the blood, which are then 

excreted via urine. Due to a lack of early disease diagnosis, the mortality rate associated with CKD has 

recently increased. Various methods have been developed to assist doctors in minimizing mortality by 

employing sophisticated computer-based detection techniques. Early detection of CKD is of utmost 

importance in the field of research, as the disease frequently presents itself only after substantial kidney 

damage has taken place. This early detection has the potential to save numerous lives and greatly decrease 

mortality rates associated with CKD. Saif et al. [1] explained, a deep ensemble method was proposed, 

employing a majority voting function for prediction outcomes, resulting in substantial improvements in 

prediction accuracy. Despite these improvements in precision, recall, and accuracy, the training time for  

early detection was not addressed. To tackle this, a pipeline processing electronic health records (EHRs) 

using recurrent neural network (RNN) was designed to predict CKD progression through distinct stages.  

https://creativecommons.org/licenses/by-sa/4.0/
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This method, called long-short term-memory (LSTM) RNN or kidney disease progression [2], achieved high 

prediction accuracy. However, while improvements were observed in the precision-recall curve, the overall 

performance of binary classification was not analyzed. Due to dataset length and redundancy, many existing 

approaches produce incorrect predictions, diagnosing individuals with mild CKD symptoms as severe cases 

and administering inappropriate therapies. To improve prediction accuracy, data mining with self-tuning 

spectral clustering using K-mode was proposed in [3]. However, real-time deployment challenges arise as 

patient data continuously updates, with no efficient method to incorporate new data [4]. To address this, a 

novel self-correcting mechanism for RNN was introduced, resulting in improved receiver operating 

characteristic (ROC) curve performance. Another study employed an LSTM-RNN focusing on the error 

factor [5]. 

Moreover, a review of ensemble techniques for CKD prediction was conducted in [6], and another 

predictive model for kidney transplant endpoints was presented in [7]. Diabetic kidney disease progression 

using biomarkers and deep learning (DL) was proposed in [8], and a survey of CKD prediction outcomes 

along with patient requirements and preferences was conducted in [9]. Zhu et al. [10] states, a regression 

model analyzed temporal trends to reduce CKD incidence. Another study focused on bone disorders and 

CKD [11], while a prognostic model for CKD and type 2 diabetes was presented in [12]. A review of existing 

methods and future directions was conducted in [13], and an early CKD prediction model was proposed in 

[14], showing improved sensitivity and specificity through regression analysis. Given the increasing global 

significance of CKD as a mortality source, designing a computer-aided diagnostic (CAD) method for 

automatic CKD diagnosis is essential. Raihan et al. [15], the extreme gradient boosting (XGBoost) classifier 

algorithm accurately and precisely predicted CKD presence. New markers like eGFR were used in [16] for 

early CKD prediction, analyzing the relationship between patient data vectors and outcomes. Despite 

improvements in accuracy and precision using deep ensemble and RNN, the training time involving clinical 

parameters and symptoms in kidney disease prediction remains a challenge. Hence, the contribution of the 

work are as follows: 

− To address the issues which the existing approaches failed, this work presents a context dependent  

bi-directional DL and Bayesian gaussian autoencoder (CDBDP-BGA) for robust quantification of 

prediction of kidney disease. 

− Context-dependent Bi-LSTM (CD-Bi-LSTM) network is introduced with context dependency factor for 

textual feature extraction, demonstrating consistent performance improvements against multiple existing 

methods and lowering training time. CD-Bi-LSTM network is capable of trading off between detection 

accuracy and training time than deep ensemble method and LSTM-RNN. 

− To select optimal numerical features among the essential features of CKD, BGA-based numerical feature 

selection algorithm is presented. 

− The performance of prediction was assessed using various metrics i.e., precision, recall, F-measure, 

accuracy and training time. Results are discussed by evaluating CDBDP-BGA and comparing state-of-

the-art work and using the same datasets. 

 

 

2. LITERATURE SURVEY 

CKD is a crucial and comprehensive public health concern. Over the past few years, its high 

occurrence rate, rate of hospitalization, cost associated with medication and its poor prognosis, has had an 

extensive influence on patient’s quality of life. A deep ensemble method was proposed, employing a majority 

voting function for prediction outcomes, resulting in substantial improvements in prediction accuracy [1]. 

Despite these improvements in precision, recall, and accuracy, the training time for early detection was not 

addressed. To tackle this, a pipeline processing EHRs using RNN was designed to predict CKD progression 

through distinct stages. This method, called LSTM-RNN or kidney disease progression [2], achieved high 

prediction accuracy. However, while improvements were observed in the precision-recall curve, the overall 

performance of binary classification was not analyzed. Kidney prediction was evaluated by utilizing Berden 

classification to predict the risk of end stage [17]. Employing this classification model resulted in the 

improvement of ROC. Hybrid technique called Pearson correlation for feature selection and hybrid classifiers 

was employed in [18] by the improvement of accuracy score in an extensive manner. A review on presence 

and onset of CKD was presented in [19] with DL. The study [20] and [21], a systematic review for detection 

and prediction methods in CKD progression was analyzed in detail. A prediction method with quantitative 

risk representatives for detecting CKD at the earliest stage was presented in [22].  

Ensemble learning using boosting techniques was proposed in [23] taking into considerations the 

clinical parameters for CKD prediction. ensemble learning resulted in the improvement of accuracy and 

minimized the run time in a significant manner. An in-depth analysis of clinical outcomes in patients with 

CKD and eGFR was presented in [24]. Yet another time-varying cox model was applied in [25] for analyzing 
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the occurrence of CKD. Early CKD detection was presented in [26] by combination of parallel categorization 

algorithm. An in-depth validation of eGFR for CKD is employed using the progression mechanism in [27]. 

An elaboration review on unsupervised learning of CKD was investigated in [28]. A systematic review on 

mortality prediction among kidney patient was presented in [29]. Yet another intelligence diagnosis 

mechanism employing DL classifier was proposed in [30] to focus on the precision and recall aspects.  

In [31], presented an approach for filling null values in missing data using different machine learning (ML) 

approaches, wher XGBoost provided better results achieving F-score of 97%. Jayashree and Anitha [32], 

presented an approach for kidney disease detection where various ML approaches were applied. The findings 

show that the XGBoost provided better results achieving 9833% accuracy. Motivated by above mentioned 

works in literature, though the review on CKD detection accuracy aspects were considered, however focus on 

the training time aspects were limited. Certain reviews despite making a thorough study on considering the 

training time for disease detection, the precision and accuracy aspects were not measured. To address on 

these aspects CDBDP-BGA was applied considering clinical parameters. Elaborate description of CDBDP-

BGA method is provided in following sections. 

 

 

3. METHOD 

The given methodology, presented in Figure 1 depicts the design which was utilized to carry out the 

experiments. It incorporated data collection made from structured CKD training and unstructured Twitter 

testing dataset, textual feature extraction, numerical feature selection and finally, classification using clinical 

parameters relative to the symptoms for prediction of kidney disease and performance evaluation. 

As illustrated in Figure 1, the structured CKD training and unstructured Twitter testing datasets 

were considered as input. the CDBDP-BGA method underwent three stages: first, textual feature extraction 

was performed employing CD-Bi-LSTM. Second, numerical feature selection was done using BGA. Finally, 

for prediction of kidney disease, both the textual feature and numerical features were combined and the 

SoftMax function was applied for the obtained clinical parameters along with the symptoms to measure 

eGFR for classifying different stages. 

 

 

 
 

Figure 1. CDBDP-BGA for prediction of kidney disease 

 

 

3.1.  Dataset 

The structured training dataset used in our work for prediction of kidney disease at an early stage 

considering both clinical parameters and set of critical symptoms was taken from 

https://archive.ics.uci.edu/dataset/336/chronic+kidney+disease. CKD dataset was obtained over a year of 

two-month consisting of 400 different sample instances. From the overall 400 different sample instances, 250 

different sample instances were identified to be CKD patients and on the other hand, 150 different sample 

instances were identified to be healthy participants. Also, each sample instance consisted of 25 attributes 

based on the measured data via blood test. Here, the first 24 attributes were independent whereas the last one 

attribute ws a dependent attribute and among the overall 24 attributes, 11 attributes are numeric whereas 

other remaining 14 attributes are categorical. The unstructured data was acquired from health-news Twitter 
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dataset from https://archive.ics.uci.edu/dataset/438/health+news+in+twitter. This health news in Twitter 

dataset consisted of health news acquired from 15 different major health news agencies. The dataset 

consisted of 58,000 instances. The structured CKD dataset was used for training and unstructured health-

news dataset was used for testing. By employing structured CKD training dataset and an unstructured health 

news testing dataset, the proposed CDBDP-BGA for the prediction of kidney disease method is designed in 

the following sections.  

 

3.2.  Context dependent bi-directional long short-term memory-based keyword extraction 

In society, people suffer from a variety of diseases, including diabetes and kidney disease. Among 

these, kidney disease is considered a global health issue. Risk analysis for kidney disease has been discussed 

using several methods. Moreover, unstructured health news testing datasets, often extracted from Twitter, 

typically contain two main types of information: textual explanations and various physical rules. Keyword or 

feature extraction from these unstructured datasets is crucial for improving the quality of kidney datasets, 

ensuring that DL models can efficiently learn patterns and make accurate predictions. RNN [1], with their 

feedback loops, are particularly suitable for processing sequential data, such as news from 15 major health 

agencies, and can be trained using back-propagation. However, they face issues like gradient problem when 

modeling long information sequences. To address these challenges, a model called CD-Bi-LSTM network 

has been designed to process unstructured health news from Twitter datasets, as presented in Figure 2. This 

model aims to enhance the accuracy and efficiency of kidney disease risk analysis by effectively handling 

and extracting relevant information from these unstructured data sources. 

 

 

 
 

Figure 2. Block diagram of CD-Bi-LSTM-based feature extraction model 

 

 

In the proposed work of CD-Bi-LSTM network (hidden state), the Twitter information in this 

hidden state can be updated by gate structure in a constant manner via context dependency. The proposed 

CD-Bi-LSTM network is used for processing a sequence of tweet data obtained from 15 major health new 

agencies. It contains two LSTM layers, one for processing input (i.e., input vector) in the forward direction 

and the other for processing tweet information (i.e., context information) in the backward direction. The 

intuition behind this model is that by processing data in both forward and backward directions via context 

dependency, the model is proficient in comprehending the correlation between sequences (i.e., knowing the 

previous and succeeding tweets in a Twitter account). With the unstructured health news testing dataset 

extracted using Twitter dataset, the sample instances comprises of health news obtained from more than 15 

major health news agencies, to name a few being BBC and CNN. The sample instances are formulated within 

input vector matrix as (1). 

 

𝐼𝑉 =       [

𝑆1𝑇1 𝑆1𝑇2 … 𝑆1𝑇𝑀

𝑆2𝑇1 𝑆2𝑇2 … 𝑆2𝑇𝑀

… … … …
𝑆𝑁𝑇1 𝑆𝑁𝑇2 … 𝑆𝑁𝑇𝑀

] (1) 

 

From (1) the input vector matrix ‘𝐼𝑉’ is formulated by taking into considerations the sample 

instances ‘𝑆𝑁’ for the corresponding tweets ‘𝑇𝑀’ obtained from 15 major health news agencies of differing 
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size and varied news. Under the definite rules, three gate structures decides what the corresponding tweet 

information is stored, updated or forgotten in the corresponding internal state. The mathematical formula for 

updating these three gate structures is given in (2) to (6). 

 

𝐹𝑜𝑟𝑡= 𝜎(𝑊𝐹𝑜𝑟[𝐼𝑉𝑡 , 𝐻𝑡−1]𝐵𝐹𝑜𝑟) (2) 

 

𝐼𝑛𝑝𝑡 = 𝜎(𝑊𝐼𝑛𝑝[𝐼𝑉𝑡 , 𝐻𝑡−1]+𝐵𝐼𝑛𝑝) (3) 

 

𝑂𝑢𝑡𝑡 = 𝜎(𝑊𝑂𝑢𝑡[𝐼𝑉𝑡 , 𝐻𝑡−1]+𝐵𝑂𝑢𝑡) (4) 

 

𝐶𝑡 = 𝐹𝑜𝑟𝑡 . 𝐶𝑡−1 + 𝐼𝑛𝑝𝑡 . tanh(𝑊𝐶[𝐼𝑉𝑡 , 𝐻𝑡−1] + 𝐵𝐶) (5) 

 

𝐻𝑡 = 𝑂𝑢𝑡𝑡 . tanh(𝐶𝑡) (6) 

 

From the (2) to (6) ‘𝐼𝑉𝑡’, ‘𝐻𝑡’, and ‘𝐶𝑡’ represents the input state, hidden state and cell state at time 

instance ‘𝑡’ with trainable weight matrices denoted by ‘𝑊𝐹𝑜𝑟’, ‘𝑊𝐼𝑛𝑝’, ‘𝑊𝑂𝑢𝑡’, and ‘𝑊𝐶’ forget gate, input 

gate, output gate and cell state in addition to biases for corresponding gates denoted as ‘𝐵𝐹𝑜𝑟’, ‘𝐵𝐼𝑛𝑝’, ‘𝐵𝑂𝑢𝑡’, 

and ‘𝐵𝐶’ activated by sigmoid function ‘𝜎’ respectively. Moreover, the structure of CD-Bi-LSTM network is 

designed to model the context dependency from the preceding text and the succeeding text. Context-

dependent memory results in the improved recall when the context during storage or encoding is similar as 

the context during retrieval or decoding. To model this, the CD-Bi-LSTM network employing two parallel 

layers both in forward and backward layers, the hidden unit is formulated as (7) and (8). In (7) and (8), ‘𝐻𝑡
⃗⃗⃗⃗ ’ 

and ‘𝐻𝑡
⃖⃗ ⃗⃗⃗’ represents the output of LSTM in the forward layer and backward layer respectively. Finally, these 

two outputs of LSTM in the forward layer and backward layer are combined to formulate the overall output (9). 

 

𝐻𝑡
⃗⃗⃗⃗ = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝐼𝑉𝑡 , 𝐻𝑡−1) (7) 

 

𝐻𝑡
⃖⃗ ⃗⃗⃗ = 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝐼𝑉𝑡 , 𝐻𝑡+1) (8) 

 

𝑇𝑂𝑉𝑡 = 𝐻𝑡
⃗⃗⃗⃗ + 𝐻𝑡

⃖⃗ ⃗⃗⃗ (9) 

 

In (9), the textural feature representations are extracted according to context dependency both from 

the preceding text and the succeeding text. In this manner, by employing context dependency in Bi-LSTM 

assists in describing the basis disease symptoms which in turn aids in obtaining useful information behind the 

texts in an accurate manner. The Algorithm 1 is used for feature extraction. As given in Algorithm 1, using 

the unstructured tweet dataset, the input vector is subjected to textual feature extraction by contextual 

dependency in the Bi-LSTM network model.  

 

Algorithm 1. CD-Bi-LSTM-based textual feature extraction 
Input Unstructured dataset ‘DS’, Samples instances ‘DSS={𝑆1, 𝑆2, … , 𝑆𝑁}’, Tweets ‘𝑇 =
{𝑇1, 𝑇2, … , 𝑇𝑀}’ 
 

Output Convergent-Efficient Context-Dependent Feature Extraction ‘𝑇𝑂𝑉𝑡’ 
Step 1 Initialize ‘N’, ‘M’ 

Step 2 Begin 

Step 3 For each Unstructured dataset ‘DS’ with Samples instances ‘DSS’ 

Step 4 Formulate input vector matrix as given in (1) 

Step 5 Formulate forget gate, input gate and output gate as given in (2), (3) and (4). 

Step 6 Mathematically formulate cell state and hidden state as given in (5) and (6) 

Step 7 Mathematically formulate two parallel layers both in forward and backward layers 

as given in (7) and (8) 

Step 8 Combine the two outputs of LSTM in the forward layer and backward layer to 

generate context dependent textual feature extraction (i.e., representation) as 

given in (9) 

Step 9 Return textual feature extraction (i.e., representation) ‘𝑇𝑂𝑉𝑡’ 

Step 10 End for 

Step 11 End 

 

3.3.  Bayesian gaussian autoencoder-based numerical feature selection 

Clinical data often contain numerical features where some values are highly correlated while others 

are not. Using these values directly can negatively impact task performance. Previous work has demonstrated 

that using RNN for kidney disease progression [2] can achieve high prediction accuracy. However, this study 

https://www.verywellmind.com/what-is-memory-2795006
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did not address dimensionality reduction or the handling of highly correlated numerical features. By learning 

low-dimensional representations of high-dimensional data, feature selection can retain useful numerical 

features for predicting kidney disease. Yet, selecting useful numerical features from high-dimensional data 

remains a challenging task. To address this issue, we employ BGA in this work. The Bayesian gaussian 

function is introduced in a specialized hidden layer, enhancing precision in selecting non-redundant features. 

Therefore, we use this BGA-based numerical feature selection model to identify numerical features with 

highly correlated values. Figure 3 illustrates the structure of the BGA-based numerical feature selection 

model. 

 

 

 
 

Figure 3. Structure of BGA-based numerical feature selection model 
 

 

As illustrated in the Figure 3, an autoencoder comprises of two parts, an encoder function ‘𝑓𝜑(𝐼𝑉)’ 

and decoder function ‘𝑓𝜓(𝑅𝐹)’ respectively, where ‘𝐼𝑉’is the input vector that represents the set of features 

and ‘𝑅𝐹’ denotes the set of reduced features. In addition, an input layer where the input vector ‘𝐼𝑉’ forms as 

the input and in the hidden layer (i.e., two hidden layers employed in our work) the process of encoding and 

decoding is performed to generate reduced features set (i.e., reduced features selected). Finally, in the 

decoder side reconstruction is performed with minimal reconstruction loss. To start with the autoencoder is 

evaluated by how well the decoder reconstructs the data from encoder by means of a loss function using (10). 

 

𝑅𝑒𝑐𝑙𝑜𝑠𝑠 = arg min
𝜑,𝜓

|𝐼𝑉 − (𝑓𝜓 (𝑓𝜑(𝐼𝑉)))|
2

  (10) 

 

From (10), initially the reconstruction loss function ‘𝑅𝑒𝑐𝑙𝑜𝑠𝑠’, is modeled based on ‘𝜑’ biases of 

encoder as well as decoder and the weights ‘𝜓’ respectively for each tweet in the corresponding Twitter 

account. Autoencoder in our work maps the numerical values vector ‘𝑉𝑒𝑐’ into a hidden representation by 

means of an encoder function using (11). Followed by which the reconstruction performed by the decoder is 

mathematically formulated using (12). In (11) and (12), ‘ℎ’ denotes the rectified linear unit (ReLU) 

activation function which selects the most non-redundant numerical features. The challenge now remains in 

ascertaining the optimal ‘𝜃 = (𝜓, 𝜑)’, hence, Bayesian gaussian function is used to minimize reconstruction 

loss ‘𝑅𝑒𝑐𝑙𝑜𝑠𝑠’ using (13). 

 

ℎ = ℎ(𝑒𝑛𝑐)𝑓𝜑(𝐼𝑉)ℎ(𝜑(𝑒𝑛𝑐).𝑉𝑒𝑐+1) (11) 

 

𝑁𝑂𝑉𝑡 = ℎ(𝑑𝑒𝑐)𝑓𝜓(𝑅𝐹)ℎ (𝜓(𝑑𝑒𝑐).ℎ(𝑒𝑛𝑐)𝑓𝜑(𝐼𝑉)) (12) 

 

𝑃𝑟𝑜𝑏(𝐼𝑉|Θ) =
1

2𝜋
exp [−

1

2𝜋
∑ (𝑁𝑂𝑉𝑖 − 𝐸𝑥𝑝(𝐼𝑉𝑡 − 𝐼𝑉𝑡

′))𝑁
𝑖=1 ] (13) 

 

In (13), the probability of minimizing reconstruction loss ‘𝑅𝑒𝑐𝑙𝑜𝑠𝑠’ is evaluated by means of output 

of tweets from specified Twitter account ‘𝐸𝑥𝑝(𝐼𝑉𝑡 − 𝐼𝑉𝑡
′)’ for ‘𝐼𝑉𝑡’ input vector features represented by ‘𝑡’ 

sample instances. Finally, we obtain a fine-tuned representation ‘ℎ(𝑑𝑒𝑐)𝑓𝜓(𝑅𝐹)’ of discrete numerical values 
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or reduced numerical features selection with minimal reconstruction loss. The Algorithm 2 is used for 

improving the precision and accuracy rate of prediction of kidney disease, also, a feature selection algorithm 

employing BGA is used. 

 

Algorithm 2. BGA-based numerical feature selection 
Input Unstructured dataset ‘DS’, Samples instances ‘𝐷𝑆𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑁}’, Tweets ‘𝑇 =

{𝑇1, 𝑇2, … , 𝑇𝑀}’ 
 

Output Reconstruction Loss Minimized Reduced Features Selected 

Step 1 Initialize ‘N’, ‘M’, textual feature extraction (i.e., representation) results 

‘𝑇𝑂𝑉𝑡’ 

Step 2 Begin 

Step 3 For each Unstructured dataset ‘DS’ with Samples instances ‘DSS’ and textual feature 

extraction (i.e., representation) results ‘𝑇𝑂𝑉𝑡’ 

Step 4  //Input layer 

  Define number of input nodes i.e., from the input vector matrix 

Step 5  //Hidden layer 1 – encoder  

  Formulate reconstruction loss function as given in (10) 

Step 6 Formulate encoder function as given in (11) 

Step 7  //Hidden layer 2 – decoder  

  Formulate decoder function as given in (12) 

Step 8  Determine optimal ‘θ’ as given in (13) 

Step 9  //Output layer 

  Return features selected ‘𝑁𝑂𝑉𝑡’ (i.e., reduced features) 

Step 10 End for 

Step 11 End 

 

3.4.  SoftMax activated prediction of kidney disease 

Finally, in this section prediction of kidney disease at an early stage by means of clinical parameters 

with symptoms based on eGFR using SoftMax activation function is designed. To start with the textual 

feature extraction (i.e., representation) results ‘𝑇𝑂𝑉𝑡’ and numerical features selected ‘𝑁𝑂𝑉𝑡’ (i.e., reduced 

features) is combined and mathematically represented using (14). 

 

ℎ = [
𝑇𝑂𝑉𝑡

𝑁𝑂𝑉𝑡
] (14) 

 

From (14), using ReLU, the combined results is obtained for further prediction of kidney disease. 

Finally, employing the SoftMax activation function along with the clinical parameters and with the 

symptoms arrived based on the three distinct features, i.e., age, sex and creatinine, the equations for obtaining 

five stages based on the eGFR is mathematically formulated (15). From (15), by using numerical features and 

textural feature symptoms, results along with the clinical parameter values obtained, eGFR prediction of 

kidney disease at an early stage are said to be made both precisely and accurately. The Algorithm 3 is used 

for prediction of kidney disease at an early stage, where the textual features and numerical features are 

combined for classification. 

 

𝜎(𝑒𝐺𝐹𝑅)𝑖 =
𝑒𝑒𝐺𝐹𝑅𝑖

∑ 𝑒
𝑒𝐺𝐹𝑅𝑗𝐾

𝑗=1

, 𝑓𝑜𝑟 (𝑖 = 1,2, . . , 𝐾) (15) 

 

Algorithm 3. SoftMax activated prediction for kidney disease 
Input Unstructured dataset ‘DS’, Samples instances ‘𝐷𝑆𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑁}’, Tweets ‘𝑇 =

{𝑇1, 𝑇2, … , 𝑇𝑀}’ 
 

Output Robust Quantification 

Step 1 Initialize ‘N’, ‘M’, textual feature extraction (i.e., representation) results 

‘𝑇𝑂𝑉𝑡’, numerical features selected ‘𝑁𝑂𝑉𝑡’ (i.e., reduced features) 

Step 2 Begin 

Step 3 For each Unstructured dataset ‘DS’ with Samples instances ‘DSS’, textual feature 

extraction (i.e., representation) results ‘𝑇𝑂𝑉𝑡’ and numerical features selected 

‘𝑁𝑂𝑉𝑡’ 

Step 4  Formulate rectifier activation function by combining the textual feature 

extraction and numerical features selected results as given in (13) 

Step 5  Formulate SoftMax activation function along with the clinical parameters and 

with the symptoms as given in (14) 

Step 6  For female with ‘creatinine <62 μmol/L’, eGFR (mL/min/1.73m2) = 

‘144*(Cr/61.6)^(-0.329)* (0.993)^Age’ 
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Step 7  For female with ‘creatinine >62 μmol/L’, eGFR (mL/min/1.73m2) = ‘144 ∗ (
𝐶𝑟

61.6
)
−1.209

∗

 (0.993)𝐴𝑔𝑒’ Formulate decoder function as given in (12) 

Step 8  For female with ‘creatinine <80 μmol/L’, eGFR (mL/min/1.73m2) = ‘144 ∗ (
𝐶𝑟

79.2
)
−0.411

∗

 (0.993)𝐴𝑔𝑒’ 

Step 9  For female with ‘creatinine >80 μmol/L’, eGFR (mL/min/1.73m2) = ‘144 ∗ (
𝐶𝑟

79.2
)
−1.209

∗

 (0.993)𝐴𝑔𝑒’ 

Step 10  If ‘eGFR≥90’ 

Step 11   Then patient is in Stage 1 (i.e., kidney damaged with normal) 

Step 12  End if 

Step 13  If ‘eGFR is between 60 and 89’ 

Step 14   Then patient is in Stage 2 (i.e., kidney damaged with mildly decreased) 

Step 15  End if 

Step 16  If ‘eGFR is between 30 and 59’ 

Step 17   Then patient is in Stage 3 (i.e., moderately decreased) 

Step 18  End if 

Step 19  If ‘eGFR is between 15 and 29’ 

Step 20   Then patient is in Stage 4 (i.e., severely decreased) 

Step 21  End if 

Step 22  If ‘eGFR <15’ 

Step 23   Then patient is in Stage 5 (i.e., kidney failure) 

Step 24  End if 

Step 25 End for 

Step 26 End 

 

 

4. RESULTS AND DISCUSSION 

For the experimentation of CDBDP-BGA, experimentation was conducted in an Intel Core i5- 

6200U CPU @ 2.30GHz 4 cores with 4 Gigabytes of DDR4 RAM. Also, the existing deep-ensemble 

approach [1] and RNN [2] were also experimented on the same platform. All the codes were written in 

Python. The structured CKD dataset and unstructured health-news Twitter dataset were used for evaluation. 

Experimental evaluations were conducted considering five performance metrics, precision, recall, F-measure, 

accuracy and training time. To ensure fair comparisons same structured and unstructured dataset was applied 

to the three methods, CDBDP-BGA (with and without eGFR), [1], [2] and evaluated for an average of 10 

simulation runs. 

 

4.1.  Performance analysis of training time 

Training time or time consumed in training the samples for prediction of kidney disease with both 

clinical parameters and symptoms were evaluated using (16). In (16) the training time ‘𝑇𝑇’ is measured 

based on the samples ‘𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖’ and the time consumed in performing overall prediction of kidney disease 

is ‘𝑇𝑖𝑚𝑒 (𝐶𝐾𝐷 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠)’. It is measured in terms of milliseconds (ms). 

 

𝑇𝑇 = ∑ 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖
𝑁
𝑖=1 ∗ 𝑇𝑖𝑚𝑒 (𝐶𝐾𝐷 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠) (16) 

 

Table 1 lists the tabulation results of training time by substituting the values in (16) for two existing methods, 

deep ensemble [1] RNN [2] and proposed CDBDP-BGA. 𝑇𝑇 was reduced using the proposed CDBDP-BGA 

method by 29% compared to [1] and 38% compared to [2]. 

 

 

Table 1. Tabulation of training time using proposed CDBDP-BGA method, deep ensemble [1] and RNN [2] 

Samples 
Training time (ms) 

CDBDP-BGA Deep ensemble RNN 

500 125 165 240 
1,000 145 200 255 

1,500 155 215 270 

2,000 168 245 285 
2,500 185 280 315 

3,000 205 315 330 

3,500 225 338 345 
4,000 240 355 375 

4,500 285 380 390 

5,000 315 405 415 
500 125 165 240 
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4.2.  Performance analysis of precision, recall, accuracy and F-measure 

The performance metrics such as precision and recall were applied to the unstructured sample 

instances from a sample space. Precision and recall are formulated using (17) and (18) respectively. From the 

(17) and (18) precision ‘𝑃𝑟𝑒’ and recall ‘𝑅𝑒𝑐’ are evaluated based on the true positive rate (i.e., diseased 

patients identified as diseased) ‘𝑇𝑃’, false positive rate (i.e., diseased patients identified as normal samples) 

‘𝐹𝑃’ and the false negative rate (i.e., normal samples identified as diseased patients) ‘𝐹𝑁’ respectively. The 

efficiency of classifier was measured employing the F-measure. The F-measure was mathematically 

formulated and is presented using (19). In (19) F-measure ‘𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒’, is evaluated by considering the 

precision ‘𝑃𝑟𝑒’ and recall ‘𝑅𝑒𝑐’ rate. Finally, accuracy or prediction kidney disease accuracy is evaluated 

using (20). In (20), accuracy ‘𝐴𝑐𝑐’ is measured using the true positive rate (i.e., i.e., diseased patients 

identified as diseased) ‘𝑇𝑃’, ‘𝐹𝑃’ indicates false positive (i.e., diseased patients identified as normal samples) 

and the false negative rate (i.e., normal samples identified as diseased patients) ‘𝐹𝑁’ and true negative rate 

(i.e., diseased patients identified as normal samples) ‘𝑇𝑁’ respectively. 

 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100 (17) 

 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100 (18) 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒∗𝑅𝑒𝑐

𝑃𝑟𝑒+𝑅𝑒𝑐
 (19) 

 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (20) 

 

Figure 4 given above shows the graphical representations of precision, recall, accuracy and  

F-measure with eGFR by substituting the values in (17) to (20). From the Figure 4 it is inferred that the four-

performance metrics, precision, recall, accuracy and F-measure with eGFR using the proposed CDBDP-BGA 

method is found to be comparatively better than [1] and [2]. Also, with 500 samples provided as input, the 

true positive rate using the three methods was observed to be 485, 470, and 455. In a similar manner, the 

false positive rate using the three methods with eGFR was found to be 15, 30, and 45. As a result the overall 

precision with eGFR was found to be 97%, 94%, and 91%. In a similar manner, the false negative rate using 

the three methods was found to be 50, 65, and 100, therefore hypothesizing the recall rate to be 97%, 87.5%, 

and 81.98% respectively. Finally, the accuracy and F-measure with eGFR was found to be 97.4%, 96.8%, 

96.4% and 97%, 90.82%, 86.25% respectively. Figure 5 shows pictorial representations of precision, recall, 

accuracy and F-measure without eGFR by substituting the values in (17) to (20). In figure, four parameters of 

CDBDP-BGA method are better without eGFR better than [1] and [2]. In a similar manner without eGFR, 

the precision using the three methods were observed to be 94%, 92%, 90%, the recall rate using the proposed 

CDBDP-BGA method and existing methods [1] and [2] were found to be 82.45%, 79.31%, and 77.58%. 

Finally, the prediction kidney disease accuracy without eGFR for the three methods were found to be 98.7%, 

98%, 97.1% with an F-measure of 87.84%, 85.18%, and 83.32%. 

 

 

  
 

Figure 4. Graphical representations of precision, 

recall, accuracy and F-measure with eGFR 

 

Figure 5. Graphical representations of precision, 

recall, accuracy and F-measure without eGFR 
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From the above Figure 4 and Figure 5 two inferences are made. First, four performance evaluation 

metrics, precision, recall, F-measure and accuracy with eGFR are found to be better than without application 

of eGFR. Second, four performance evaluation metrics, precision, recall, f-measure and accuracy for 

prediction of kidney disease are found to be comparatively better using proposed CDBDP-BGA method than 

[1] and [2]. The reason behind the improvement was due to the application of identifying the textual feature 

representation and numerical feature selection separately using contextual dependent Bi-LSTM and BGA. 

Also, both the textual feature representation and numerical feature selected results were applied finally for 

prediction of kidney disease. In the classification stage, SoftMax activation function along with eGFR and 

the clinical parameters (i.e., the numerical features selected) were employed for prediction of kidney disease. 

This in turn finally resulted in the improvement of precision, recall, F-measure and accuracy in a significant 

manner. 

 

 

5. CONCLUSION 

Prediction of kidney disease with both clinical parameters and symptoms pave way for efficiency 

diagnosis. Hence, desirable work is considered that may assist in analyzing the prediction of kidney illness, 

therefore reducing the mortality to a greater extent. Past research works underscore prediction of kidney 

disease employing different conventional and non-conventional methods, to name a few being, ML, DL, and 

so on. In this work, a CDBDP-BGA for prediction of kidney disease is proposed. The experimentation results 

validated that the CDBDP-BGA method imparts better results in performance metrics like, precision, recall, 

f-measure, accuracy and training time compared to the conventional methods. In future, the different 

preprocessing is utilized to estimate missing data for prediction of kidney disease in early stage with 

minimum time. 
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