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Abstract 
Time Varying Autoregressive (TVAR) model for the Amplitude and Frequency modulated (AM-

FM) signal is presented in this paper. TVAR parameters of AM-FM signal are estimated using Discrete 
Energy Separation (DESA) Algorithm. The performance of DESA method is shown to be comparable to 
the existing basis function method for AM, FM, AM-FM signal models. The proposed method is simpler to 
execute in hardware and consumes considerably less computational resources compared to the method 
using Adaptive and the Basis function methods. .It is demonstrated that the proposed technique based on 
DESA has certain distinct advantages over the conventional method employing basis functions. Another 
advantage is that the present method works well with quickly varying signals 
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1. Introduction 

Most temporal signals encountered in real applications have time-varying statistics, 
which make them nonstationary [1, 2]. The problem of time dependency in nonstationary is 
bypassed by assuming local stationary over a relatively short time interval, in which stationary 
system identification and analysis techniques are applied. However, this assumption is not 
always valid for real life signals like speech, Electrocardiogram (ECG) and 
Electroencephalogram (EEG), because such signals may have time varying amplitude and 
frequency [3, 4]. Nonstationary signals which are a compound of constituents with time-varying 
amplitude and frequencies can be modeled by amplitude and frequency modulated (AM-FM) 
signals [5]. 

The best frequency resolution for stationary signals is obtained by using parametric 
methods. The signal is fitted in to an Autoregressive (AR) or a moving average (MA) or an 
Autoregressive Moving Average (ARMA) model. It is shown that the parametric method yields 
very high frequency resolution in the spectral estimation for even very small length of the 
stationary signal [6]. Spectral analysis of nonstationary signals, with high frequency-resolution is 
obtained by using the time varying autoregressive (TVAR) process. 

In the modeling of nonstationary signals by a TVAR process, two methods may be used 
for estimating the TVAR parameters: the adaptive algorithm approach and the basis function 
approach. Adaptive Algorithms, such as the least mean square (LMS) and the recursive least 
square (RLS), use a dynamic model for adapting the TVAR parameters and are capable of 
tracking time-varying frequency, provided that the variation is slow. These methods work well 
with slowly varying signals but fail to track rapid variation [5]. If the coefficients change fast 
enough; compared to the algorithm’s Convergence time, the adaptive algorithm will not be able 
track the time varying parameters. 

The basis function method, in which the time-variant parameters are expanded as a 
summation of the weighted time-functions, are capable of tracking both the fast (or) the slow 
time-varying frequencies. In the basis function expansion, two issues need to be resolved. First, 
a general class of basis functions is chosen and then, the significant basis functions need to be 
selected. Several classes of functions have been proposed including polynomial, wavelet and 
prolate spheroidal functions [15, 16]. However, no uniform rule exists to indicate which class 
should be adopted. Moreover, the approach of choosing the significant basis functions is based 
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on trial and error [16]. The selection of the expansion dimension is questionable since there is 
no fundamental theorem on how to choose them. It is ideally expected that when the expansion 
dimension is infinite, the result of the frequencies estimation from any basis function is the 
same, which will exactly equal to the true frequency. But this is impractical, since the 
computation may require infinite memory, and infinite computational time consumption.  

Modeling by a TVAR process is a general approach, and all other nonstationary models 
(AM, FM, AM-FM and more) can be shown to be special cases of the general approach [5]. A 
real AM-FM signal can be modeled using a 2-order TVAR process, and a signal composed of p 
real components will require a 2p- order TVAR process [14]. In the modeling by a TVAR 
process, the estimation of the  TVAR parameters require the inversion of an covariance matrix 
of size [2p (q+1) x 2p (q+1)], where q is the required number of basis functions to represent 
each TVAR parameter. 

In this paper we have established the relation between the parameters of the AM-FM 
signal and the parameters of the TVAR process. We have used the Discrete Energy Separation 
Algorithm (DESA-1) to estimate the TVAR coefficients and the modulating signals of the TVAR 
process [14]. The estimation technique presented here is conceptually simpler and easier to 
implement than the method based on basis functions. 

The paper is organized as follows: In section 2, the TVAR representation of the AM-FM 
signal is presented. In section 3, the complete estimation procedure based DESA is provided. 
The review of estimation using basis functions is presented in Section 4. In section 5 
experimental procedure is discussed. The experimental results for the AM, FM, and AM-FM 
signals with the DESA based technique and basis function technique are presented in section6. 
Finally, in Section 7, conclusion is provided. 
 
 

2. TVAR Representation of AM-FM Signal 
The AM-FM signal is given by:  

 
ሺ݊ሻݔ ൌ ܽሺ݊ሻ cosሺ߮ ሺ݊ሻሻ                                                                                      (1) 

 
Where  ߮ሺ݊ሻ and  ܽሺ݊ሻ are the phase and amplitude of the signal respectively. The AM-FM 
signal is given by a 2-order TVAR process [14]. 
 

ሺ݊ሻݔ ൌ െܽଵሺ݊ሻݔሺ݊ െ 1ሻ െ ܽଶሺ݊ሻݔሺ݊ െ 2ሻ ൅  ௡                                                          (2)ݒ
 

Where ݒ௡ is the prediction error. The sequence ݒ௡is assumed to be of zero mean and variance  
  ୴ߪ

ଶ . Let   ݊଴ be the time instant at which the transient response has become insignificant. For  
݊ ≫   ݊଴ (ߪ୵  

ଶ → 0 ), the role of ݒ௡in ݔሺ݊ሻ is insignificant compared to the role of ݔሺ݊ െ 1ሻ and 
ሺ݊ݔ െ 2ሻ. 

Then, the Equation (2) can be written as,        
 

ሺ݊ሻݔ ൌ െܽଵሺ݊ሻݔሺ݊ െ 1ሻ െ ܽଶሺ݊ሻݔሺ݊ െ 2ሻ                                                                (3) 
 

Or, 
 

ሺ݊ሻݔ ൌ െܽଵሺ݊ሻܽሺ݊ െ 1ሻ cosሺ߮ ሺ݊ െ 1ሻ െ ܽଶሺ݊ሻܽሺ݊ െ 2ሻ cosሺ߮ ሺ݊ െ 2ሻሻ                   (4) 
 

Assuming     d߮ሺ݊ሻ ൌ ߮ሺ݊ሻ െ ߮ሺ݊ െ 1ሻ, and d߮ሺ݊ െ 1ሻ ൌ ߮ሺ݊ െ 1ሻ െ ߮ሺ݊ െ 2ሻ, 
We obtain: 
  

 sin߮ሺ݊ െ 1ሻ ൌ
ୡ୭ୱሺఝሺ௡ିଶሻሻ

ୱ୧୬ሺୢఝሺ௡ିଵሻሻ 
  െ   

ୡ୭ୱሺఝሺ௡ିଵሻሻ ୡ୭ୱ൫ௗఝሺ௡ିଵሻ൯

ୱ୧୬ሺୢఝሺ௡ିଵሻ
                   (5) 

 
Then, ݔሺ݊ሻcan be written as:  
 

ሺ݊ሻݔ ൌ ܽሺ݊ሻ cosሺ߮ ሺ݊ െ 1ሻ cos ሺd߮ሺ݊ሻሻ െ ܽሺ݊ሻ sinሺ߮ ሺ݊ െ 1ሻ sin ሺd߮ሺ݊ሻሻ                (6) 
 

From Equation (5) and (6), we write: 
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ሺ݊ሻݔ  ൌ ܽሺ݊ሻ
ୱ୧୬ሺୢఝ൫௡ሻାୢఝሺ௡ିଵሻ൯

ୱ୧୬ሺୢఝሺ௡ିଵሻሻ
cosሺ߮ ሺ݊ െ 1ሻ െ ܽሺ݊ሻ

ୱ୧୬ሺୢఝሺ௡ሻሻ

ୱ୧୬ሺୢఝሺ௡ିଵሻሻ
cosሺ߮ ሺ݊ െ 2ሻ    (7) 

 
Comparing Equation (7) with (4), we get: 
 

ܽଵሺ݊ሻ ൌ െܽሺ݊ሻ
ୱ୧୬ሺୢఝ൫௡ሻାୢఝሺ௡ିଵሻ൯

ୱ୧୬ሺୢఝሺ௡ିଵሻሻ௔ሺ௡ିଵሻ
        (8) 

 

 ܽଶሺ݊ሻ ൌ ܽሺ݊ሻ
ୱ୧୬ሺୢఝሺ௡ሻሻ

ୱ୧୬ሺୢఝሺ௡ିଵሻሻ௔ሺ௡ିଶሻ
                           (9) 

 
Onceܽଵሺ݊ሻܽ݊݀ ܽଶሺ݊ሻ are estimated, the signal ݔሺ݊ሻcan be reconstructed by Equation (3). 
 
 
3. TVAR Parameter Estimation Using Discrete Energy Separation Algorithm 

For both continuous and discrete time signals, Kaiser has defined a nonlinear energy 
tracking operator ߰ [7].For the discrete time case, the energy operator for ݔሺ݊ሻis defined as, 

 
ૐሾݔሺ݊ሻሿ ≜ ଶሺ݊ሻݔ െ ሺ݊ݔ െ 1ሻݔሺ݊ ൅ 1ሻ                                                    (10) 
 

For the signal, 
   

ሺ݊ሻݔ ൌ ܽሺ݊ሻ cosሺ߮ ሺ݊ሻሻ,                                                                                           (11) 
 
We have: 
  

ૐሾݔሺ݊ሻሿ ൎ ሺܽሺ݊ሻߗሺ݊ሻሻଶ                                                                                 (12)                              
 
And, 

 

ඥૐሾݔሺ݊ሻሿ ൎ |ܽሺ݊ሻߗሺ݊ሻ|                                                                                    (13) 
 
Where, 
 

ሺ݊ሻߗ ൌ
ୢఝሺ௡ሻ

ௗ௡
 .                                                                                                           (14) 

 
When one of the variables ܽሺ݊ሻ (or) ߗሺ݊ሻ is constant, we can get the other variable with a 
scaling of ඥૐሾݔሺ݊ሻሿ. So, the energy operator can estimate the modulating signal, or more 
precisely its scaled version, when either AM(or)FM is present [7]. When both AM and FM are 
present simultaneously, three algorithms are described in [7] to estimate ܽሺ݊ሻ and ߗሺ݊ሻ 
separately. The best among the three algorithms according to performance is the discrete 
energy separation algorithm1(DESA-1).The DESA-1 is defined as follows: 
 

S (n) = ݔ(n)− ݔ(n−1).                                                                                             (15) 
           

ሺ݊ሻߗ ≃ cosିଵ ቂ1 െ
ሾ௦ሺ௡ାଵሻሿ࣒ሾ௦ሺ௡ሻሿା࣒

ସ࣒ሾ௫ሺ௡ሻሿ
ቃ                                                                           (16) 

 

 |ܽሺ݊ሻ| ≃ ඨ
ૐሾ௫ሺ୬ሻሿ

ଵିቀଵି  
ૐሾ౩ሺ౤ሻሿశૐሾ౩ሺ౤శభሻሿ

రૐሾ౮ሺ౤ሻሿ
ቁ
మ                   (17) 

 
Thus, ߗሺ݊ሻܽ݊݀ ܽሺ݊ሻcan be estimated using the Equation (16) and (17), and the TVAR 
coefficients are estimated with the following equation. 
 

 ܽଵሺ݊ሻ ൌ െܽሺ݊ሻ
ୱ୧୬ሺఆሺ௡ሻାఆሺ௡ିଵሻሻ

ୱ୧୬ሺఆሺ௡ିଵሻሻ௔ሺ௡ିଵሻ
                               (18) 
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 ܽଶሺ݊ሻ ൌ ܽሺ݊ሻ
ୱ୧୬ሺఆሺ௡ሻሻ

ୱ୧୬ሺఆሺ௡ିଵሻሻ௔ሺ௡ିଶሻ
                   (19) 

 
           The coefficients thus estimated exhibit ripples and therefore require smoothing using a 
filter [8]. Ripples can be reduced by using the smoothing. Smoothing can be done using 
binomial filter with filter coefficients (1,6,15,20,15,6,1).The signal ݔሺ݊ሻ can be reconstructed by 
equation(3)using the estimated values of ܽଵሺ݊ሻܽ݊݀ ܽଶሺ݊ሻ. 
 
 
4. TVAR Parameters Estimation Using Basis Functions 

The coefficients ܽ௞(n) of TVAR model in Equation (2) are assumed to be smooth in the 
sense that if the first derivative of each coefficient may be arbitrarily large, the higher order 
derivatives necessarily vanish. So, the coefficients ܽ௞(n) can be approximated by a set of basis 
functions. 

The non stationary discrete-time stochastic process ݔ௡ is represented by pth order 
TVAR model as: 

 
௡ݔ  ൌ െ∑ ܽ௞,௡

௣
௞ୀଵ ௡ି௞ݔ ൅  ௡                 (20)ݒ

 
Here ܽ௞,௡ are time-varying coefficients and  ݒ௡ is a stationary white noise process and 

whose mean is zero and variance is ߪ௩
ଶ. According to the time-varying coefficients evolution, 

TVAR is likely to be categorized in to two group’s i.e. adaptive method and basis function 
approach. 

TVAR model based on the basis function technique is able to trace a strong non-
stationary signal. In this technique, each of its time-varying coefficients are modeled as linear 
combination of a set of basis functions [15]. 

The purpose of the basis is to permit fast and smooth time variation of the coefficients. 
If we denote ݑ௠,௡as the basis function and consider a set of (q + 1) function for a given model, 
we can state the TVAR coefficients in general as: 

  
 ܽ௞,௡ ൌ ∑ ܽ௞௠ݑ௠,௡

௤
௠ୀ଴               (21) 

 
From (21) we examine that, we have to calculate the set of parameters ܽ௞௠ for 

{k=1,2,........,p; m=0,1,2,............,q; ܽ଴௠=1} in order to compute the TVAR coefficients ܽ௞,௡,and 
the TVAR model is absolutely specified by this set. 

The TVAR coefficients are designed as follows, we consider single realization of the 
process ݔ௡.For a given realization of ݔ௡ we can analyze (20) as a time-varying linear prediction 
error filter and consider ݒ௡ to be the prediction error. 

 
 ො௡                                                                                                      (22)ݔ-௡ݔ=௡ݒ
              

Where, 
  

ො௡ݔ  ≜ െ∑ ܽ௞,௡
௣
௞ୀଵ  ௡ି௞              (23)ݔ

 
The total squared prediction error, which is as well as the error in modeling ݔ௡, is now specified 
by: 
 

  ߳௣ ൌ ∑ |௡ݒ|
ଶ

ఛ    
 

Substitute (21) in (23) and the prediction error ݒ௡  can be written as: 
 

௡ݒ  ൌ ௡ݔ ൅ ∑ ∑ ܽ௞௠ݑ௠,௡ݔ௡ି௞
௤
௠ୀ଴

௣
௞ୀଵ                 (24) 

 
The total squared prediction error can be formulated as: 
 

 ߳௣ ൌ ∑ หݔ௡ ൅ ∑ ∑ ܽ௞௠ݑ௠,௡ݔ௡ି௞
௤
௠ୀ଴

௣
௞ୀଵ ห

ଶ
ఛ          (25) 
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For modeling the non stationary stochastic process ݔ௡ ,  covariance technique, we ݃݊݅ݏݑ
make no assumptions on the data outside [0, N-1]. In equation (25) ߬ is the interval over which 
the summation is performed and set ߬ ൌ ሾ݌, ܰ െ 1ሿ. By minimizing the mean squared prediction 
error in (25) we can estimate the time-varying parameters ܽ௞௠ [16]. We can minimize the mean 
squared prediction error in (25) by means of setting the gradient of  ߳௣  with respect to ܽ௟௚

∗  zero. 
 
డఢ೛

డ௔೗೒
∗ ൌ ∑

డ௩೙௩೙
∗

డ௔೗೒
∗ ൌఛ ∑ ௡ݒ

డ௩೙
∗

డ௔೗೒
∗ ൌ 0                                                                                                   ఛ   (26) 

 ሼ݈ ൌ 1,2,⋯ , ;݌ ݃ ൌ 0,1,⋯ ,  ሽݍ
 

Where, 
 

௡ݒ              
∗ ൌ ௡ݔ

∗ ൅ ∑ ∑ ܽ௟௚
∗ ௚,௡ݑ

∗ ௡ି௟ݔ
∗௤

௚ୀ଴
௣
௟ୀଵ        

 
And the derivative of ݒ௡

∗ with respect to ܽ௟௚
∗    

 

 
డ௩೙

∗

డ௔೗೒
∗ ൌ ௚,௡ݑ

∗ ௡ି௟ݔ
∗                 

 
Consequently (26) becomes, 

 
 ∑ ௚,௡ݑ௡ݒ

∗
ఛ ௡ି௟ݔ

∗ ൌ 0                (27) 
 

The above mentioned condition is similar to the orthogonality law encountered in stationary 
signal modeling. Substitute ሺ24ሻ in (27) we have: 
 

 ∑ ൫ݔ௡ ൅ ∑ ∑ ܽ௞௠ݑ௠,௡ݔ௡ି௞
௤
௠ୀ଴

௣
௞ୀଵ ൯ఛ ௚,௡ݑ

∗ ௡ି௟ݔ
∗ ൌ 0          (28) 

 
Now we define a function ܿ௠௚ሺ݈, ݇ሻ as shown below, 
 

ܿ௠௚ሺ݈, ݇ሻ ≜ ∑ ௚,௡ݑ௡ି௞ݔ௠,௡ݑ
∗ ௡ି௟ݔ

∗
ఛ                                                                                                  (29) 

 
Using the above definition in (28) we have, 
 

 ∑ ∑ ܽ௞௠ܿ௠௚ሺ݈, ݇ሻ
௤
௠ୀ଴ ൌ െܿ଴௚ሺ݈, 0ሻ

௣
௞ୀଵ              (30) 

 
The above equation represents a system of p(q+1) linear equations. The above system 

of linear equations can be efficiently represented in matrix form as follows. 
Define a column vector ܽ௠  as follows: 
 

 ܽ௠ ൌ ൣܽଵ௠  ܽଶ௠   ⋯  ܽ௣௠൧
்
,            (31) 

݉ ݁ݎ݄݁ݓ  ൌ 0,1,⋯ ,  ݍ
 

We can use the function (10) to find the following matrix for   0 ൑ ሺ݉, ݃ሻ ൑  ݍ
 

௠௚ܥ  ൌ

ۏ
ێ
ێ
ێ
ۍ
ܿ௠௚ሺ1,1ሻ  ܿ௠௚ሺ1,2ሻ  ⋯ ܿ௠௚ሺ1,  ሻ݌

ܿ௠௚ሺ2,1ሻ ܿ௠௚ሺ2,2ሻ … ܿ௠௚ሺ2, ሻ݌

⋮ ⋱ ⋮
ܿ௠௚ሺ݌, 1ሻ   ܿ௠௚ሺ݌, 2ሻ   ⋯ ܿ௠௚ሺ݌, ے ሻ݌

ۑ
ۑ
ۑ
ې

          (32) 

 
The above matrix is of size pxp and all the different values for m and g resulting in 

(q+1)x(q+1) such matrices, by means of these matrices, we can now describe a block matrix as 
shown below,   
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ܥ  ൌ

ۏ
ێ
ێ
ێ
ۍ
 ଴଴ܥ ଴ଵܥ ⋯ ଴௤ܥ
ଵ଴ܥ ଵଵܥ ⋱ ଵ௤ܥ
: : : :
. . . .
௤଴ܥ ௤ଵܥ ⋯ ے௤௤ܥ

ۑ
ۑ
ۑ
ې

                     (33) 

 
The above Block matrix C has (q+1)x(q+1) elements and each element is a matrix of 

size pxp, which implies the Block matrix C of size p(q+1)x p(q+1). 
Now we describe a column vector ݀௠ as shown below: 

  
 ݀௠ ൌ ሾܿ଴௠ሺ1,0ሻ     ܿ଴௠ሺ2,0ሻ   ⋯ ܿ଴௠ሺ݌, 0ሻሿ

்          (34) 
݉ ݁ݎ݄݁ݓ  ൌ 0,1,⋯ ,  ݍ
 
By using the definitions from (31)-(34) we can represent the system of linear equations 

in (30) in a compact matrix form as follows: 
 

቎

଴଴ܥ ⋯ ଴௤ܥ
⋮ ⋱ ⋮
௤଴ܥ ⋯ ௤௤ܥ

቏

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
஼

 ൥

ܽ଴
⋮
ܽ௤
൩

ถ
௔

ൌ െ൥

݀଴
⋮
݀௤

൩

ถ
ௗ

                               (35) 

ܽܥ  ൌ െ݀    
 
By solving the above matrix equation, we can obtain the set of TVAR parameters ܽ௞௠ 

(elements of ܽ), the predictor coefficients ܽ௞,௡ can now be calculated using (21).The matrix C is 
of size p(q+1)xp(q+1),to solve the above system of linear equations we requires O(݌ଷ ሺݍ ൅
1ሻ3ሻcomputations. 

In the basis function expansion, two issues need to be resolved. First a general class of 
basis functions is to be chosen, which can suitably capture the time variation, and then, the 
significant number of basis functions need to be selected. Several classes of functions have 
been proposed in the literature such as time basis functions, Legendre polynomial, Chebyshev 
polynomial, Discrete prolate spheroidal (DPSS) sequence, Fourier basis, discrete cosine basis, 
Walsh basis, Multi wavelet basis functions. However, no uniform rule exists to indicate which 
class should be adopted. The approach of choosing the significant number of basis functions 
(order selection) is based on trial and error [15]: Moreover, the expansion of the TVAR 
parameters into the basis sequences substantially increases the number of model parameters 
that is to be estimated. To compare the performance of DESA with Basis function method we 
use discrete cosine basis function. 

 
4.1. Discrete Cosine Basis Function 

 ௠,௡=α (m) cosݑ   ቀ
π୫ሺଶ୬ାଵሻ

ଶ୒
ቁ 

 
Where, 
  

α(m)=

ە
۔

ටۓ
ଵ

ே
         ݉ ൌ 0

ට
ଶ

ே
         ݉ ൌ 0,1,2…… . ݍ

                                                                (36) 

n=1,2.....N   
 
For all the above mentioned problems, the TVAR model parameter estimation using 

basis function approach requires high computational complexity. In this paper we have 
established the relation between the parameters of the AM-FM signal and the parameters of the 
TVAR process. We have used the Discrete Energy Separation Algorithm1(DESA-1) to estimate 
the TVAR coefficients and the modulating signals of the TVAR process [11]. The DESA-1 based 
TVAR parameter estimation is conceptually simpler and easier to implement than the method 
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based on basis functions. TVAR parameter estimation using DESA requires O (p (q+1)2) 
computations whereas Basis function method requires O(݌ଷ ሺݍ ൅ 1ሻଷሻ computations. 
 
 
5. Experimental Procedure 

Step 1: Calculate the TVAR parameters ܽ௞௠ using Equations (18), (19) and form the 
coefficients  ܽ௞,௡ using (21). 

Step 2: Solve the roots of the time-varying auto regressive polynomial formed by TVAR 
linear prediction filter A(z; n)ൌ 1൅ ∑ ܽ௞,௡ݖ

ି௞௣
௞ୀ1  at each instant n to find the time-varying   

poles:  ௜ܲ,௡, i=1, 2.....p. 
Step 3: The instantaneous frequency of the non stationary signal for each sample 

instant n can be estimated from the instantaneous angles of the poles using the formula      ௜݂,௡= 
argሾ௉೔,೙ሿ

2గ
  for ห ௜ܲ,௡หെ෥1. 

 Step 4: From time varying parameters ܽ௞,௡we can predict non stationary signal using 
(23) with initial   

Conditions ݔ௡; n=0,1,...p  where p is the TVAR model order 
Step 5: The time varying power spectral density can be estimated from time varying 

parameter  ܽ௞,௡ as follows: 
 

P (f; n) = 
ఙ2 

   ቚ1ା ∑ ௔ೖ,೙௘
షೕ2ഏ೑ೖ೛

ೖస1 ቚ
2                     (36)  

                        
Where ܽ௞,௡are TVAR coefficients and ߪଶ   is: 

  

   ଶߪ    ൌ
ଵ

ேି௣
∑ หݔ௡ ൅ ∑ ܽ௞,௡ݔ௡ି௞

௣
௞ୀଵ ห

ଶேିଵ
௡ୀ௣ାଵ               (37) 

 
 

6. Simulation Results 
For simulation, we have considered three modulated signal models, the Discrete 

Amplitude Modulated (AM) signal, Discrete Frequency Modulated (FM) signal and Discrete 
Amplitude and Frequency modulated (AM-FM) signals. 
  
6.1. Discrete AM Signal 

Consider the discrete Amplitude modulated (AM) signal, 
 
ሺ݊ሻݕ ൌ ሺ1൅ ݇ cosሺ߱௔݊ሻሻ cosሺ݊ߠሻ                                                                   (38) 
 

 For n=1,2…..N, where k=0.8, ߱௔= 
గ

128
 = ߠ   ,  

గ

6
  and  N = 512. 

The IF law of the above signal is given by: 
 

௜݂௡ ൌ
ఏ

2గ
                                                                                  (39) 

 
The coefficients of the TVAR process ܽ1ሺ݊ሻ and ܽ2ሺ݊ሻ of the discrete AM Signal are 

estimated using (18), (19) and Equation (21) and shown in Figure 1. When the TVAR 
coefficients are estimated using basis functions, p=2 and q=8 discrete cosine  basis functions 
are found to give best results. Figure 1 shows the TVAR  parameters estimated by the DESA-1 
and using basis method. TVAR parameter estimation using basis function approach requires O 
(p3 (q+1)3) computations, where as DESA based approach requires O (p (q+1)2) computations. 

Using step 2 in experimental procedure we can compute time varying poles, the time 
varying poles are plotted in Figure (2). From Figure (2) we observe that the poles are close to 
the unit circle. For every sample instant n, we now come across the angles of the poles and 
divide by 2ߨ to find the IF estimate of the AM component. The true IF & estimated IF of the AM 
component are shown in Figure (3). From Figure (3) we observe that the TVAR based 
technique has resulted in really nice IF estimation. The mean square error (MSE) among the 
true IF  ௜݂,௡and estimated IF መ݂௜,௡ for n=2, 3… 512 is calculated to be -86.4847dB.  
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The TVAR coefficients ܽ௞,௡ can also be used to predict the non stationary process ݔ௡ by 
means of Equation (23). The discrete AM Signal ݔ௡ in addition to the TVAR prediction are 
shown in Figure (4), and we observe that the TVAR model has effectively predicted ݔ௡.The 
average squared prediction error is calculated to be 0.1753. 

The time-varying power spectral density of discrete AM is computed using (36), A plot 
of the time-frequency distribution (TFD) of discrete AM for the TVAR model is obtained in Figure 
(5). At every sample instant, the TFD is projected to comprise peaks at the IF estimates at that 
instant. To demonstrate this, we also illustrate the analogous flat time-frequency view of the 
TFD in Figure (6). 

 
 

 
 

 

Figure 1. The estimate of the TVAR 
coefficients ܽଵ,௡, ܽଶ,௡ for the AM signal 

Figure 2. Trajectory of Time-Varying poles 
used for discrete AM Signal 

 

 
 

Figure 3. True and Estimated IF of Discrete 
AM Signal 

Figure 4. Original AM Signal and Predicted 
AM Signal 

 

 
 

 

Figure 5. Time Varying Power Spectrum of the 
Discrete AM Signal 

Figure 6. Time-Frequency View of the TFD of 
Discrete AM Signal 
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6.2. Discrete  FM  Signal 
Consider the discrete FM signal: 
 
ሺ݊ሻݕ  ൌ cos൫݊ߠ൅ ߱௠ ∑   ௡

௜ୀ1 cos൫߱௙݅൯൯       (40) 
 

For n=1, 2…..N, where  ߱௠=0.2ߠ, ߱௙= 
గ

128
  = ߠ ,

గ

6
 and N=512. 

The IF law of the above signal is given by: 
 

௜݂௡ ൌ
ఏାሺఠ೘∗ఠ೑ ሻcos ሺఠ೑௡ሻ

2గ
                                 (41) 

 
The coefficients of the TVAR process ܽ1ሺ݊ሻ and ܽ2ሺ݊ሻ  of the discrete FM signal are 

estimated using (18), (19) and Equation (21) and shown in Figure 7. When the TVAR 
coefficients are estimated using basis functions, p=2 and q=14 discrete cosine  basis functions 
are found to give best results. Figure 7 shows the TVAR  parameters estimated by the DESA-
1and using basis method.TVAR parameter estimation using basis function approach requires O 
(p3 (q+1)3) computations, where as DESA based approach requires O (p (q+1)2) computations. 

Using step 2 in experimental procedure we can compute time varying poles, Trajectory 
of Time-varying Poles used for discrete FM Signal are plotted in Figure (8). From Figure (8) we 
observe that the poles are close to the unit circle as anticipated. For every sample instant n, we 
now come across the angles of the poles and divide by 2ߨ to find the IF estimate of the FM 
component. The true IF & estimated IF of the FM component are shown in Figure (9). From 
Figure (9) we observe that the TVAR based technique has resulted in really nice IF estimation. 
The mean square error (MSE) among the true IF  ௜݂,௡and estimated IF መ݂௜,௡ for n=2, 3… 512 is 
calculated to be -96. 87dB.  

The TVAR coefficients ܽ௞,௡ can also be used to predict the non stationary process ݔ௡ by 
means of equation (23). The discrete FM Signal  ݔ௡ in addition to the TVAR prediction are 
shown  in Figure (10), and we observe that the TVAR model has effectively predicted ݔ௡. The 
average squared prediction error is calculated to be 0.1065. 

The time-varying power spectral density of discrete FM Signal is computed using (36), 
A plot of the time-frequency distribution (TFD) of discrete FM signal for the TVAR model is 
obtained in Figure (11). At every sample instant, the TFD is projected to comprise peaks at the 
IF estimates at that instant. To demonstrate this, we also illustrate the analogous flat time-
frequency view of the TFD in Figure (12). 
 
 

 
 

Figure 7. The Estimate of the TVAR Coefficients ܽ1,௡, ܽ2,௡ for the FM Signal 
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Figure 8. Trajectory of Time-varying Poles 
used for discrete FM Signal 

Figure 9. True and Estimated IF of discrete 
FM Signal 

 
 

 
 

Figure 10. Original FM signal, and predicted 
FM signal 

Figure 11. Time Varying Power Spectrum of 
the discrete FM Signal 

 
 

 
 

Figure 12. Time-Frequency View of the TFD of Discrete FM Signal 
 
 
6.3. Discrete  AM-FM  Signal 

Consider the discrete AM-FM signal, 
 
ሺ݊ሻݕ  ൌ ሺ1൅ ݇ cosሺ߱௔݊ሻሻ cos൫݊ߠ൅ ߱௠ ∑   ௡

௜ୀ1 cos൫߱௙݅൯൯         (42) 
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For n=1,….N where k=0.5, ߱௠=0.5ߠ,  ߱௔ ൌ ߱௙= 
గ

128
  = ߠ 

గ

6
  and  N=512.   

The IF law of the above signal is given by: 
  

  ௜݂௡ ൌ
ఏାሺఠ೘∗ఠ೑ ሻcos ሺఠ೑௡ሻ

2గ
                                                                                       (43) 

 
The coefficients of the TVAR process ܽ1ሺ݊ሻ and ܽ2ሺ݊ሻ of the discrete AM-FM Signal are 

estimated using (18), (19) and Equation (21) and shown in Figure 13. When the TVAR 
coefficients are estimated using basis functions, p=2 and q=23 discrete cosine basis functions 
are found to give best results. Figure 13 shows the TVAR  parameters estimated by the DESA-
1and using basis method.TVAR parameter estimation using basis function approach requires O 
(p3 (q+1)3) computations, where as DESA based approach requires O (p (q+1)2) computations. 

Using step 2 in experimental procedure we can compute time varying poles, Trajectory 
of Time-varying Poles used for discrete AM-FM Signal are plotted in Figure (14). From Figure 
(14) we observe that the poles are close to the unit circle as anticipated. For every sample 
instant n, we now come across the angles of the poles and divide by 2ߨ to find the IF estimate 
of the discrete AM-FM component. The true IF & estimated IF of the AM-FM component are 
shown in Figure (15). From Figure (15) we observe that the TVAR based technique has resulted 
in really nice IF estimation. The mean square error (MSE) among the true IF  ௜݂,௡and estimated 
IF መ݂௜,௡ for n=2, 3… 512 is calculated to be -76.1437dB.  

The TVAR coefficients ܽ௞,௡ can also be used to predict the non stationary process ݔ௡ by 
means of Equation (23). The original discrete AM-FM Signal ݔ௡ in addition to the TVAR 
prediction are shown in Figure (16), and we observe that the TVAR model has effectively 
predicted ݔ௡.The average squared prediction error is calculated to be 0.0503. 

The time-varying power spectral density of discrete AM-FM Signal is computed using 
(36), A plot of the time-frequency distribution (TFD) of discrete AM-FM signal for the TVAR 
model is obtained in Figure (17). At every sample instant, the TFD is projected to comprise 
peaks at the IF estimates at that instant. To demonstrate this, we also illustrate the analogous 
flat time-frequency view of the TFD in Figure (18). 
 
 

 
 

Figure 13. The Estimate of the TVAR coefficients ܽ1,௡, ܽ2,௡ for the AM- FM signal 
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Figure 14. Trajectory of Time-varying Poles 
used for discrete AM-FM Signal 

Figure 15. True and Estimated IF of discrete 
AM-FM Signal 

 
 

 
 

 

Figure 16. Original AM- FM signal, and 
predicted discrete AM-FM signal 

Figure 17. Time Varying Power Spectrum of 
the discrete AM-FM Signal 

 
 

 
 

Figure 18. Time-Frequency View of the TFD of discrete AM-FM Signal 
 
 

7. Conclusion 
In this paper, we have shown a method for estimating the TVAR coefficients of various 

AM-FM signals using the Discrete Energy Separation Algorithm. The performance of the 
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method based on DESA is shown to comparable to the existing method using basis functions 
for discrete AM, discrete FM,and discrete AM-FM signal models. However, the proposed 
method is simpler to implement in hardware and consumes considerably less computational 
resources compared to Basis function method. Another advantage is that the present method 
works well with quickly varying signals. The time varying poles can be estimated using this 
method and have application in model identification. 
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