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ABSTRACT

Despite their widespread development, the Fourier transform and wavelet trans-
form are still unsuitable for analyzing non-stationary and non-linear signals. To
address this limitation, bidimensional empirical mode decomposition (BEMD)
has emerged as a promising technique. BEMD effectively extracts structures at
various scales and frequencies but faces significant computational complexity,
primarily during the extremum interpolation phase. To mitigate this, different
interpolation functions were presented and suggested, with BEMD using com-
pactly supported radial basis functions (BEMD-CSRBF) showing promising re-
sults in reducing computational cost while maintaining decomposition quality.
However, the choice of support size for CSRBF functions significantly impacts
the quality of BEMD. This article presents an enhancement to the BEMD-
CSRBF algorithm by adjusting the CSRBF support size based on the extrema
distribution of the image. Our method’s results show a significant improvement
in the BEMD-CSRBF algorithm’s quality. Furthermore, when compared to the
other two approaches to BEMD, it shows higher accuracy in terms of both in-
trinsic mode function (IMF) quality and computational efficiency.
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1. INTRODUCTION
Huang et al. [1] introduced empirical mode decomposition (EMD) as an effective method for analyz-

ing non-stationary and non-linear signals in one-dimensional (1D). It has been shown to be efficient for signal
denoising [2]. The EMD approach has prompted researchers to develop the technique for bidimensional sig-
nals. The 2D extension of EMD was created by Nunes et al. [3], it is known as bidimensional empirical mode
decomposition (BEMD), and it keeps the same concept as EMD via decomposition of an image to a set of
intrinsic modal functions (IMFs) using an iterative process. This technique has made it possible to develop new
methods in the analysis and processing of images that can be applied to any image, especially textured images,
the results of which show better performance compared to existing decomposition techniques [3]. BEMD has
been applied in different imaging areas such as texture analysis [4], [5], image indexing [6], image classifica-
tion [7]–[10], image watermarking [11], [12], image segmentation [13], and fractal analysis [14]. The quality
or performance of an IMF depends on the quality of preceding IMFs. The choice of the stopping criterion for
the sifting process is therefore very important and is based on the following two conditions [3]:
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- For each IMF, there are an equal number of zero crossings and extrema.
- Each IMF is symmetrical with respect to the local mean. In addition, the signal is assumed to have at least
two extrema.

These conditions are by definition the properties of an IMF. The principle of the BEMD requires the
following phases [3]:

1. Initialize r0 = m (the residual) and k = 1 (the index number of IMF).
2. Extract the kth IMF (sifting process):

a. Initialize h0 = rk−1 and j = 1.
b. j=1 Extract the local minima and maxima of hj−1.
c. Compute the upper envelope and lower envelope functions xj−1 and yj−1 by interpolating, respec-

tively, the local minima and local maxima of hj−1.
d. Compute the mean envelope: mj−1 = (xj−1 + yj−1)/2

e. Update hj = hj−1 −mj−1 and j = j + 1.

f. Calculate the stopping criterion: SD(j) = 1
M×N

∑M
m=1

∑T
t=0

(hj−1−hj)
2

h2
j−1+ϵ

where ϵ is a (weak) term eliminating any divisions by zero.
g. Decision: repeat steps (b) through (f) until SDj < SDmax and then put dk = hj (kth IMF).

3. Update the residue rk = rk−1 − dk.
4. Repeat steps 1–3 with k = k + 1 until the number of extrema in rk is less than 2.

When the decomposition is achieved, we can write the signal in the following form:

I =
∑P

k=1 IMFk + rP+1

The stopping criterion is valid if SD does not exceed SDmax (certain predefined threshold), we use SDmax

between 0.2 and 0.5 because this value gives satisfactory results in practice.
Figure 1 presents an example of the BEMD decomposition of the original texture image as

Figure 1(a), this image is decomposed into three IMFs in Figures 1(b) to 1(d) and the residue in Figure 1(e),
which illustrate a multiscale decomposition from high frequencies to low frequencies of the original image.
However, a real obstacle to the implementation of this method is the computational complexity, most of which
is consumed in creating the upper and lower envelopes by interpolated functions, like the radial basis functions
(RBF) [2]. To solve this problem, some works have been proposed with a less expensive technique, such as
using Delaunay triangulation [15], finite elements [16] or by utilizing a filter to obtain the upper and lower
envelopes [17]. In the same context, Bhuiyan et al. [18] suggested using the statistical filters Max and Min
accompanied by a smoothing operator repeated several times when generating the upper and lower envelopes,
but there are several limitations such as: determining the correct filter size and the number of iterations of the
smoothing operator.

(a) (b) (c) (d) (e)

Figure 1. Exemple of BEMD decomposition of texture image: (a) original image, (b) IMF 1, (c) IMF 2, (d)
IMF 3, and (e) residue

The BEMD using compactly supported radial basis functions (BEMD-CSRBF) [19] produces good
results in terms of computational complexity and BEMD decomposition quality, particularly for the first IMFs.
However, using a fixed support size for CSRBF functions in BEMD makes extracting low frequencies (last
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IMFs) difficult. Especially since this decomposition is iterative, and each iteration produces a different number
of extrema and a different distribution in space. Also, the number of extrema decreases after each IMF is
extracted. Which makes using a fixed support size to extract all IMFs inefficient.

In this paper, we suggested an approach to adjust the support size during the BEMD algorithm. To
extract the first IMF, we determine the CSRBF function support size (initial support) based on one of the
distances in [18], because it is derived based on the distribution of the extrema. Considering that the extrema
continuously reduce during the decomposition process, we just double the size of the initial support after
extracting each IMF without the need to recalculate previous distances, thus avoiding increasing the complexity
of the computation. This approach demonstrates enhanced quality in the BEMD-CSRBF decomposition and
proves its efficacy when compared to other BEMD decomposition methods, both in terms of the quality of
IMFs and the complexity of computations.

2. METHOD
2.1. Compactly supported radial basis functions

As our research is founded on the employment of the CSRBFs in the BEMD algorithm, the present
study aims to explicate the characteristics of CSRBF functions belonging to this specific category. Notably, a
family of radial basis functions with compact support was first introduced in the mid-1990s, as evidenced by
the works of Wu in 1995 [20], and Wendland in 1999 [21]. It should be noted that there are other types of
CSRBF functions [22], [23].

Generally, a basis radial function with compact support is given by the expression [24]:

ϕl,k(r) = (1− r)n+p(r) k ≥ 1 (1)

with

(1− r)n+ =

{
(1− r)n r ∈ [0, 1]

0 r > 1
(2)

where p(r) is one of the polynomials prescribed by Wu or Wendland, the indices l and 2k represent respectively
the space dimension and smoothness of the function.

The Table 1 contains some functions of Wu and Wendland. The difficulty with using CSRBFs is the
size of the support. In the following, we look at the influence of the support size on the BEMD decomposition,
especially since the extrema to be interpolated are reduced during the BEMD. We used the Wendland function
φ3,1 used in [19] as the CSRBF function.

Table 1. CSRBF functions of Wu and Wendland
Smoothness SPD

Wu functions
ψ1,3(r) = (1− r)6+(5r5 + 30r4 + 72r3 + 82r2 + 36r + 6) C4 R3

ψ2,3(r) = (1− r)5+(5r4 + 25r3 + 48r2 + 40r + 8) C2 R3

ψ3,3(r) = (1− r)4+(5r3 + 20r2 + 29r + 16) C0 R3

Wendland functions
φ3,1(r) = (1− r)4+(4r + 1) C2 R3

φ3,2(r) = (1− r)6+(35r2 + 18r + 3) C4 R3

φ3,3(r) = (1− r)8+(32r3 + 25r2 + 8r + 1) C6 R3

2.2. BEMD-CSRBF with adjusting the support size
To determine the size of support for the CSRBF function for the first IMF, we chose one of the

distances used in [18] as the support size to ensure that each extrema center of the image’s support contains
other extrema points. As mentioned in [18], in order to determine the 4 distances, we must first extract the
local maximal and the local minimal from the image, we calculate the Euclidean distance between each local
maximal element and its nearest maximal element. Subsequently, we generate a table of distances called
adjacent maximal distance array (TdmaxA). Likewise, we calculate the table of adjacent minimal distance
array (TdminA). finally, the size of the support is chosen from these distances.

w = d1 = min {min {TdmaxA} ,min {TdminA}} (3)
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w = d2 = max {min {TdmaxA} ,min {TdminA}} (4)

w = d3 = min {max {TdmaxA} ,max {TdminA}} (5)

w = d4 = max {max {TdmaxA} ,max {TdminA}} (6)

Knowing that the extrema decrease progressively during the decomposition, we just multiply the initial
support size by 2 after extracting each IMF. Then, from the second IMF, the support size is estimated without
recalculating the prior distances or using a data partitioning approach, thus avoiding increasing the complexity
of the computation. Then our methode follows the following steps:
i) Identify the extrema (both the maximal and the minimal) of our image I, using the neighborhood window

approach to extract extrema points from 2D.
ii) Determine the support size initial θ using one of distances in [18].
iii) Generate the first IMF with a CSRBF function using the initial support size θ.
iv) Generate the k-ieme IMF (k ≥ 2) with support size equal to 2k−1 ∗ θ.

Our research focuses on the interpolation procedure, specifically on adjusting the support size of the
CSRBF function. To do this, we kept the same CSRBF function (Wendland function φ3,1) that was used in
[19]. In our BEMD approach, the distance d4 was used as the initial support size for the CSRBF function.
This decision was based on this distance’s improved performance in comparison to other distances mentioned
in [18], and limiting the maximal number of allowed iterations (MNAI) to 5 for each IMF in order to prevent
overfitting. Finally, the standard deviation (SD) is used as the basic stopping criterion, with a limit of 0.5.

2.3. Evaluation
To evaluate the efficacy of our method, we first decomposed cameraman image using BEMD-CSRBF

with an adjustable support size and compared it with traditional BEMD-CSRBF decomposition. This was
done to see the impact of the adjusted support size on the number of extrema during the proposed BEMD and
the power of extraction of low frequencies. In addition, to thoroughly evaluate our approach, we conducted a
comparative analysis between the IMFs generated by the new BEMD method and those produced by alternative
methods such as : FABEMD [18] and BEMD-VNW [25]. The selection of FABEMD and BEMD-VNW was
based on their effectiveness and rapidity compared to other EBMD approaches. On the other hand, we chose
the synthetic texture image (STI) because it enables us to evaluate the efficacy of the BEMD approach using
the orthogonality index (OI). The OI was developed in order to evaluate the quality of IMFs [18]. This index’s
definition is as:

OI =

M∑
x=1

N∑
y=1

K+1∑
i=1

K+1∑
j=1

BEMCi − BEMCj∑2
BEMC (x, y)

 (7)

We refer to the IMFs and the residue as bidimensional empirical multimodal components (BEMCs).
A smaller OI value indicates an optimal decomposition with respect to local orthogonality. In general, OI
values of 0.1 or less are often regarded as sufficient. However, the FABEMD is a BEMD approach that does
away with the interpolation phase. The upper and lower envelopes are obtained from the image’s extrema
using order-statistics filter, with just one iteration for each IMF (MNAI=1). However, in order to prevent
significant discontinuities, both envelopes need to have a smoothing operator applied multiple times, which
increases the computation time. While fast BEMD based on variable neighborhood window method (BEMD-
VNW) suggests replacing the square window used in the FABEMD approach with a disc window, which
has an isotropic structure element window, considering that the isotropic structural element window is more
compatible with the image’s properties, adjacent maximal and minimal values are averaged to determine the
appropriate size for the window.

3. RESULTS AND DISCUSSION
3.1. BEMD-CSRBF with adjusting the support size

In this section, we used the cameraman image of size 128×128 as a simulation image in Figure 2.
Table 2 shows the development of extrema during the IMFs with a support size of 10 for the CSRBF function.
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The results corresponding to a support size of 20 are represented below in Table 3. Table 2 shows that the
development of the number of extrema (either the maximal or the minimal) remains stable, especially from the
third IMF between 136 and 156 for maximal and between 119 and 121 for minimal, with an execution time of
10.30 seconds. At the size of support 20 as shown in Table 3, we find that the development of the number of
extrema is faster, but in the last two IMFs, it remains stable with fewer extremes. with an increase in execution
time (19.34 seconds), which is logical when we use a larger support size of the CSRBF functions in the inter-
polation phase.

Figure 2. Original image

Table 2. Number of extrema and execution time during BEMD decomposition with support size equal to 10
Example in Arabic
Max Min

IMF 1 656 637
IMF 2 214 199
IMF 3 156 121
IMF 4 136 119
Time 10.30 s

Table 3. Number of extrema and execution time during BEMD decomposition with support size equal to 20
Number of extrema
Max Min

IMF1 708 694
IMF2 105 96
IMF3 53 53
IMF4 44 45
Time 19.34 s

In both cases, the number of extrema is stable in the last IMFs due to a discontinuity of the signal
using a fixed support size. Because the support no longer contains extrema for estimating the best envelopes
(upper and lower). This influenced the extraction of low frequencies, as demonstrated in Figures 3 and 4.
Figures 3(a) to 3(d) depict the IMFs extracted from the cameraman image with a fixed support size of 10, while
Figures 4(a) to 4(d) display the IMFs extracted with a fixed support size of 20.

Table 4 displays the evolution of the number of extrema points, including both maximal and minimal
values, as well as the time taken for the BEMD decomposition of the cameraman image using a novel method.
This table shows how the number of extrema varies with each IMF, offering important insight into the perfor-
mance and efficiency of the algorithm. Additionally, Figure 5 illustrates this image’s BEMD decomposition,
and Figures 5(a) to 5(d) show all of these IMFs.
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According to Table 4, we observe that the number of extrema during BEMD is gradually decreasing
from the first IMF (708 for maxima and 694 for minima) to the fourth IMF (9 for maxima and 10 for minima).
This type of evolution allows us to extract the low frequencies, as we see in Figure 5. We also noted that the
calculation time (12.19 seconds) remains acceptable, especially since we have ensured the extraction of low
frequencies.

(a) (b) (c) (d)

Figure 3. BEMD-CSRBF with a support size of 10 on (a) IMF 1, (b) IMF 2, (c) IMF 3, and (d) IMF 4

(a) (b) (c) (d)

Figure 4. BEMD-CSRBF with a support size of 20 on (a) IMF 1, (b) IMF 2, (c) IMF 3, and (d) IMF 4

Table 4. Number of extrema and execution time during BEMD decomposition with adjusting support size
Number of extrema
Max Min

IMF1 708 694
IMF2 116 117
IMF3 27 29
IMF4 9 10
Time 12.19 s

(a) (b) (c) (d)

Figure 5. BEMD-CSRBF with adjusting support size: (a) IMF 1, (b) IMF 2, (c) IMF 3, and (d) IMF 4

3.2. Analyses and discussion using a synthetic texture image
In this section, we utilized a STI of size 256×256 pixels. The STI was generated by combining three

synthetic component images (SCIs). Both the STI and SCIs are shown in Figure 6. We create each SCI by
employing sinusoidal waves with slight variation in frequency in both the horizontal and vertical directions.
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Figure 6(a) illustrates the higher frequencies (SCI 1), Figure 6(b) illustrates the middle frequencies (SCI 2),
Figure 6(c) illustrates the low frequencies (SCI 3), and Figure 6(d) presents the STI. Table 5 presents the global
mean of each component SCI and the OI values of the STI.

The STI in Figure 6(c) was used to apply a novel algorithm. Figures 7 to 9 demonstrate that IMFs
resembled the original SCIs. Figure 7 shows the IMFs as shown in Figures 7(a) to 7(c) and their summation
in Figure 7(d) resulting from the FABEMD. The IMFs of the STI as shown in Figures 8(a) to 8(c) and their
summation in Figures 8(d) corresponding to BEMD-VNW are presented in Figure 8. And Figure 9 present
the IMFs in Figures 9(a) to 9(c) and their summation in Figure 9(d) resulting from the proposed BEMD. The
proposed BEMD generates 3 IMFs (SCI), which is the same number as the original STI. This indicates that the
decomposition of the method is appropriate.

(a) (b) (c) (d)

Figure 6. STI and their SCIs; (a) SCI-1, (b) SCI-2, (c) SCI-3, and (d) STI obtained by adding (a) to (c)

Table 5. Index of orthogonality and global mean of SCIs
SCI 1 SCI 2 SCI 3

Global mean 0.0046 0.0622 -0.287
OI 0.0488

(a) (b) (c) (d)

Figure 7. STI decomposition using FABEMD: (a) IMF 1, (b) IMF 2, (c) IMF 3, (d) STI obtained
by adding (a) to (c)

(a) (b) (c) (d)

Figure 8. STI decomposition using BEMD based on variable neighborhood: (a) IMF 1, (b) IMF 2, (c) IMF 3,
(d) STI obtained by adding (a) to (c)
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(a) (b) (c) (d)

Figure 9. STI decomposition using proposed BEMD: (a) IMF 1, (b) IMF 2, (c) IMF 3, (d) STI obtained
by adding (a) to (c)

To conduct a more thorough evaluation of the novel BEMD and two other BEMD methods, Table 6
presents the number of acquired IMFs, the time required, and the OI values of the decomposition of the STI for
each algorithm. We observed that the number of IMFs remains 3 in the proposed BEMD and other methods of
BEMD. This effectively supports the number of components (SCIs) of STI, indicating that they exhibit good
decompositions. Compared to the execution time and OI values, we observe that the suggested approach has
an improved execution time of 3.23 seconds and a more effectively OI value of 0.0975.

In general, these characteristics indicate that the proposed is an appropriate choice for the decompo-
sition of the STI in Figure 1(d) in comparison with the FABEMD and BEMD-VNW algorithms, knowing that
the OI values and time required for the corresponding novel method are less than those corresponding to other
BEMD methods. which makes this method a favourable choice for various imagery applications, especially
those focused on feature extraction, including image indexing and facial recognition.

Table 6. Comparing the proposed BEMD, FABEMD and BEMD-VNW for the STI, including the total
number of BEMCs, total time needed, and OI

Proposed BEMD FABEMD BEMD-VNW
Total no. of IMFs 3 3 3

Total time (seconds) 3.23 4,09 3.78
OI 0.0975 0.1102 0.1049

4. CONCLUSION
This article presents an improvement to the BEMD-CSRBF algorithm for efficient low frequency

extraction (the last IMFs). This method is based on adjusting the support size of the CSRBF function in the
BEMD algorithm. To extract the first IMF, we determine the support size of the CSRBF function based on
the extrema distribution, and then the other IMFs are extracted using a dynamic support size based on the
initial support size. This approach demonstrates improved quality in the BEMD-CSRBF decomposition and
proves its effectiveness compared to other BEMD decomposition methods, both in terms of quality of IMFs
and computational complexity. Future research will focus on the CSRBF function’s adaptive choice depending
on the image used and its frequency content.
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