
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol. 12, No. 11, November 2014, pp. 7721 ~ 7727
DOI: 10.11591/telkomnika.v12i11.6512  7721

Received July 21, 2014; Revised August 24, 2014; Accepted September 10, 2014

A New Low-Costing QC-LDPC Decoder for FPGA

Zhao Han1, M.R. Anjum*2

 1School of Information Science and Technology, Jinan University, Guangzhou,
Guangdong Province, 510632, China

 2School of Information & Electronics, Beijing Institute of Technology,
Beijing, China. 100081.

*Corresponding author, e-mail: 328623033@qq.com

Abstract
Based on the Generalized Distributive Law and the features of FPGAs, this paper proposes a

new strategy for implementation of Low-Costing QC-LDPC Decoder on FPGA platform. We get this new
strategy from the Generalized Distributive Law, which is proposed to describe the belief propagation on
graphs. And using this new strategy a low-costing (2560, 1024) LDPC decoder is implemented on a Xilinx
Virtex-4 FPGA. Results show that this new strategy can make good use of the performance of LDPC
codes, even though it needs less resource.

Keywords: LDPC decoder, low-costing, generalized distributive law, FPGA

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

Low-Density Parity-Check (LDPC) Codes were first proposed by R.G. Gallager [1] in
1963 and rediscovered by David J.C. Mackay [2] in 1996. LDPC Codes has been attracting a
large amount of attention since then because of the good error-correcting performance and
parallel decoding. Moreover, many standards have adopted LDPC codes as channel coding,
such as IEEEStd802.16, CCSDS 131.1-O-2 and etc.

In practical implementations of many error-control and signal processing systems, field
programmable gate arrays (FPGAs) are widely used because it carries many advantages. As
the design of high throughput and low-costing LDPC decoder is in great need, more and more
LDPC decoders constructed on FPGAs are designed. Reference [3] proposed implementation
of a low complexity soft-input soft output (SISO) LDPC decoder. With (1008,504) LDPC codes,
the costs of the LDPC decoder are 1109 logic elements and 210,944 RAM bits. In[4], a flexible
partially-parallel LDPC Decoder is proposed, and it achieved 50Mbps throughput with the use of
2,778 slices and 29 Block RAMs on a Virtex-2 FPGA. Moreover, a structure for LDPC decoder
for long code length and is proposed in [5], in which implements a (9536, 4768) decoder with
the use of 34127 logic elements and 102RAMs. So designing a FPGA based, low-costing and
practical LDPC decoder is necessary.

In this paper, a parallel and low-costing LDPC decoder architecture for FPGA is
proposed, as well as an optimization of the memory system is presented. The architecture is
implemented on a Xilinx Virtex-4 FPGA, (2560,1024) LDPC code is chosen. The rest of the
paper is organized as follow. In the second section, the new strategy of LDPC decoder is being
proposed from the Generalized Distributive Laws (GDL) [6]. In section three, a (2560, 1024)
LDPC decoder is implemented using the new decoding strategy. And the results and analysis
are presented in section four.

2. LDPC Decoding Algorithms

When Gallager first proposed LDPC codes in 1962, a probabilistic decoding method
was also presented, and the Belief-Propagation Algorithm was introduced to LDPC decoding by
Mackay. As we know, the BP Algorithm can be viewed as massage passing on graphs, and it
obeys the Sum-Product Updating Laws (SPUL) [7] or the GDL.

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 11, November 2014: 7721 – 7727

7722

2.1. The LDPC Decoding in Factor Graphs

Figure 1. The Function of LDPC Described by Factor Graphs

 Under the definition of Factor Graphs, the function of a LDPC code described by a m×n
Matrix can be defined as the graph in Figure 1. So, based on the SPUL, the decoding process
can be described as the BP algorithm, and if we define these passing massages in Log-
Likelihood-Ratio(LLR) and do some modifications in its check node update step, it becomes the
Min-Sum algorithm (MSA). Both of the two algorithms are well known, and will not be stated
carefully in this paper again.

2.2. The LDPC Decoding in GDL

Figure 2. The Function of LDPC Described by GDL

Table 1. The Definition of Local Domain and Local Kernel Figure 2
local domain local kernel

{x1} P(x1|y1)
{x2} P(x2|y2)
… …
{xn} P(xn|yn)

{x1, x3} 1
{x1, x2} 1

… …
{xa,xn} 1

Moreover, based on the definition of the Generalized Distributive Laws (GDL), we can
define the local domain and the local kernel as Table 1, and the function of a LDPC code can be
described as Figure 2. Hence, the decoding process can be described as follow:

(1) Initialization

(l) (0) 1jir  (1)

TELKOMNIKA ISSN: 2302-4046 

A New Low-Costing QC-LDPC Decoder for FPGA (Zhao Han)

7723

(l) (1) 1jir  (2)

(2) Variable-node update

(l) (l 1)

\

(0) (c 0 | y) (0)
i

ij ij i i j i
j C j

q K P r 




   (3)

(l) (l 1)

\

(1) (c 1| y) (1)
i

ij ij i i j i
j C j

q K P r 




   (4)

Where (l)
ijq is the massage passing from ith variable node to jth check node in lth

iteration, iC is the set of variable nodes that adjusted to the ith variable node, and \iC j is iC

without the jth check node. Moreover, ijK is the normalization constant which is (l) (l)(1) (0)ij ijq q .

(3) Check-node update

  (l) (l 1)

\

1 1
(0) 1 2 (1)

2 2
j

ji i j
i R i

r q 




   (5)

  (l) (l 1)

\

1 1
(1) 1 2 (1)

2 2
j

ji i j
i R i

r q 




   (6)

Where (l)
jir is the massage passing from the jth check node to the ith variable node in

lth iteration, jR is the set of variable nodes that adjusted to the jth check node, and \jR i is

jR without the ith variable node.

(4) Computing the Pseudo-posterior Probability

(l) (l 1)(0) (c 0 | y) (0)

j

i ij i i j i
j C

Q K P r 




   (7)

(l) (l 1)(1) (c 1| y) (1)

j

i ij i i j i
j C

Q K P r 




   (8)

Where (l)
iQ is the pseudo-posterior probability of ith bits after the lth iteration, and iK is

the normalization constant which is (l) (l)(1) (0)i iQ Q .

(5) Decoding

If (l) (l)(1) (0)i iQ Q , the ith bit will be decoded as 1, else the ith bit will be decoded as 0.

And if the decoded code word satisfies ˆ 0TC H  or the decoding process reaches the max
iterations we set, the decoding process stops.

 Similar with the convert from BP Algorithm to MSA, we can also describe the
steps of LDPC decoding as follow:

(1) Initialization

(0)() 0ijL r  (9)

(2) Variable-node update

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 11, November 2014: 7721 – 7727

7724

(l) (l)

\

() () ()
i

ij i j i
j C j

L q L P L r 


   (10)

Where

(l)
(l)

(l)

(0)
() ln

(1)
ij

ij
ij

q
L q

q
 is the LLR massage passing from the ith variable node to

the jth check node in lth iteration.
(3) Check-node update

    (l) (l) (l)

\i
\i

() sgn () min ()
j

j

ji i j i j
i R

i R

L r L q L q 

  (11)

Where

(l)
(l)

(l)

(0)
() ln

(1)
ij

ij
ij

r
L r

r
 is the LLR massage passing from the jth check node to the

ith variable node in lth iteration.
(4) Computing the Pseudo-posterior Probability

(l) (l)() () ()

i

ij i j i
j C

L Q L P L r 


   (12)

 Where
(l)

(l)
(l)

(0)
() ln

(1)
i

i
i

Q
L Q

Q
 is the LLR pseudo-posterior probability of ith bits after the

lth iteration.
(5) Decoding

If (l)() 0iL Q  , the ith bit will be decoded as 0, else the ith bit will be decoded as 1. And

if the decoded code word satisfies 0ˆ THC or the decoding process reaches the max iterations
we set, the decoding process stops.

According to the features of FPGAs, we adopt the second decoding method to design
the LDPC decoder we proposed. Because the second decoding method can initialize the
decoder by assign 0 to all L(r)ji, and this step can be realized in the initialization of FPGA at
once, while the first one need extra assignment operation to assign the value of the received
bits to L(q)ij the value of the received bits. Hence, the second decoding method uses fewer
sources than the first one. In fact, in the first iteration, the variable-nodes update step finishes is
equal to the Initialization in MSA, but this “Initialization” use the variable-nodes update instead
of adding extra assignment operation to the decoder.

3. Implementation

Figure 3. The Procedure of (2560, 1024) QC-LDPC Decoder

TELKOMNIKA ISSN: 2302-4046 

A New Low-Costing QC-LDPC Decoder for FPGA (Zhao Han)

7725

Using the decoding algorithm we proposed above, a (2560, 1024) QC-LDPC decoder
on FPGA is implemented in this section. The procedure of the decoder is shown in Figure 3, to
further reduce the resources consumption, we ignore the computation of the syndrome, and set
a max iteration through the Monte Carlo simulation method [8].

The structure of the decoder is shown in Figure 4, the Solid lines stand for the direction
of data passing, while the dashed lines stand for the direction of control signal and addressing
signal. The RAM_p, RAM_r and RAM_q represent RAMs that store the values of the received
bits, the value of L(r)ji and the value of L(q)ij respectively. Two address generators generate the
read/write addresses of RAM_p, RAM_r and RAM_q. The variable-nodes update step and the
check-nodes update step will be preceded in the variable_nods_update model and the
check_nods_updatemodel, and the decoding model decides which digit the input bit should be,
1 or 0. Moreover, the processing control model generates control signal for address generator,
nodes update model decoding model according to procedure of the decoder.

Figure 4. The Structure of (2560, 1024) QC-LDPC Decoder

As the check matrices of LDPC codes are always very large, the number of massage
passed between check nodes and variable nodes is usually very large, so the consumption of
the address generator is always very large. In this design, the address generator two parts, a
ROM stores the initial address of every sub-matrix and an address-shifter which consisted of an
adder and a mode 128 counter. The address shifter generates the address for each RAM by
adding the initial address and the number of the counter together, so that the costing of the
address generator can be lowered.

Moreover, to short the decoding time the decoder consumes and balance the resource
costing of the decoder, we choose a two-parallel scheme. In this scheme, the variable nodes
update model and the check nodes update model have two inputs with one computing core, so
that the decoding time will be half of serial decoder in the same code length with little increase
in resource costing.

Finally, to fit the special two-input update model, RAM_r and RAM_q will be a two-input
and two-output RAMs, so that they can input or output two values at the same time. What is
more, in order to let RAM_r outputs 0s at the first iteration, the reset port of this block RAM
should be enabled. And after the first iteration, the reset port of it will be disabled again.

4. Results

A parallel low-costing LDPC decoder is designed and implemented on a Xilinx Virtex-4
FPGA platform. When the number of quantization bits and the max iterations are set to 6 and 25
respectively, the bit error rate (BER) performance of the decoder is shown as Figure 5 and
Table 2.

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 11, November 2014: 7721 – 7727

7726

Figure 5. The BER Performance of the (2560,1024) LDPC Decoder

Table 2. The Coding Gain of (2560,1024) LDPC

BER
BPSK

(Eb\N0\dB)
Coding Gain in Simulation

 (Eb\N0\dB)
Coding Gain in FPGA

(Eb\N0\dB)
1e-2 4.32 3.01 2.90
1e-3 6.79 5.16 5.05
1e-4 8.40 6.53 6.41
1e-5 9.58 7.52 7.29

As we can see, the coding gain of the decoder we proposed in this paper is over 7.2 dB
when BER is 1e-5, which is very close to the coding gain of the LDPC code we simulated on
MATLAB. It means that, with the 6 quantization bits and 30 max iterations, this LDPC decoder
can make good use of the performance of (2560, 1024) LDPC code.

The costing of the decoder proposed in this paper is shown in Table 3, and
comparisons with some other decoders are also shown.

Table 3. The Costing of the Proposed Decoder
 Slices 4-inputs LUTs 16K RAMs/ROMs Max Working Clock

Proposed 862 (3.5%) 1,084(2.2%) 10(3.1%) 181.242MHz
Reference[9] 7,755 22,014 8,555(Registers) 113MHz

Reference[10] 46,190 34,908 138 131.411MHz

Moreover, the throughput of the decoder can be calculated as below:

CLK

Tk
T D

c


 (13)

Where TC is the throughput of the decoder, k is the information bits in a codeword, TD is the
decoding clocks of the decoder, and CLK is the frequency of working clock. In the decoder we
proposed, k=1024 bits, TD= 208384clocks, CLK=180MHz, so the throughput of a single decoder
TC =8.5Mbps. But with the low-costing of the decoder, we can achieve a high throughput by
using multi-parallel decoding strategy. For example, if we make full use of the FPGA we use, we
can put 25 decoder on one FPGA, and the throughput can reach 212.5Mbps.

0 1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0

B
E

R

BER of Simualtion

BER of FPGA
BER of BPSK

TELKOMNIKA ISSN: 2302-4046 

A New Low-Costing QC-LDPC Decoder for FPGA (Zhao Han)

7727

5. Conclusion
This paper proposes a LDPC decoding algorithm according to the features of FPGAs,

and a low-costing LDPC decoder is implemented by using the GDL algorithm. The results
shows that the LDPC decoder needs fewer resources compared again with other LDPC
decoders, and the decoder can reach a high throughput by using multi-parallel decoding
strategy. So the low-costing decoder is flexible for different applications.

References
[1] RG Galleger. Low density parity checkcodes. IRE Trans. Info.Theory. 1962; IT-8: 21-28.
[2] DJC MacKay, RM Neal. Near Shannon limit performance of low-density parity check codes. Electron

Lett. 1996; 32(18): 1645-1646.
[3] Arnone LJ, Castineira Moreira J, Farrell PG. Field programmable gate arrays implementations oflow

complexity soft-input soft-output low-densityparity-check decoders. IET Communications. 2012; 6(12):
1670-1675.

[4] VA Chandrasetty, SM Aziz. A Multi-LevelHierarchical Quasi-Cyclic MatrixFor Implementation of
Flexible Partially-Parallel LDPC Decoders. IEEE International Conference on Multimedia and Expo
(ICME), Barcelona. 2011: 1-7.

[5] Lei Yang, Hui Liu, CJ Richard Shi. Code Construction and FPGA Implementation of a Low-Error-Floor
Multi-Rate Low-Density Parity-Check Code Decoder. IEEE Transactions on Circuit and Systems. 2006
53(4): 892-904.

[6] SM Aji, RJ McEliece. The Generalized Distributive Law. IEEE Transactions on Information Theory,
2000; 46(2): 325-343.

[7] FR Kschischang, BJ Frey, HA Loeliger. Factor Graphs and the Sum-Product Algorithm. IEEE
Transactions on Information Theory. 2001; 47(2): 498-519.

[8] Mackay. Information Theory, Inference, and Learning Algorithm. 2006: 416 449.
[9] VA Chandrasetty, SM Aziz. FPGA Implementation of High Performance LDPC Decoder using

Modified 2-bit Min-Sum Algorithm. Second International Conference on Computer Research and
Development. 2010: 881-885.

[10] Yue Sun, Yuyang Zhang, Jianhao Hu, Zhongpei Zhang. FPGA Implementation of Nonbinary Quasi-
Cyclic LDPC Decoder Based On EMS Algorithm. International Conference on Communications,
Circuits and Systems, 2009: 1061-1065.

