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Abstract 
Based on the Generalized Distributive Law and the features of FPGAs, this paper proposes a 

new strategy for implementation of Low-Costing QC-LDPC Decoder on FPGA platform. We get this new 
strategy from the Generalized Distributive Law, which is proposed to describe the belief propagation on 
graphs. And using this new strategy a low-costing (2560, 1024) LDPC decoder is implemented on a Xilinx 
Virtex-4 FPGA. Results show that this new strategy can make good use of the performance of LDPC 
codes, even though it needs less resource. 
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1. Introduction 

Low-Density Parity-Check (LDPC) Codes were first proposed by R.G. Gallager [1] in 
1963 and rediscovered by David J.C. Mackay [2] in 1996. LDPC Codes has been attracting a 
large amount of attention since then because of the good error-correcting performance and 
parallel decoding. Moreover, many standards have adopted LDPC codes as channel coding, 
such as IEEEStd802.16, CCSDS 131.1-O-2 and etc. 

In practical implementations of many error-control and signal processing systems, field 
programmable gate arrays (FPGAs) are widely used because it carries many advantages. As 
the design of high throughput and low-costing LDPC decoder is in great need, more and more 
LDPC decoders constructed on FPGAs are designed. Reference [3] proposed  implementation 
of a low complexity soft-input soft output (SISO) LDPC decoder. With (1008,504) LDPC codes, 
the costs of the LDPC decoder are 1109 logic elements and 210,944 RAM bits. In[4], a flexible 
partially-parallel LDPC Decoder is proposed, and it achieved 50Mbps throughput with the use of 
2,778 slices and 29 Block RAMs on a Virtex-2 FPGA. Moreover, a structure for LDPC decoder 
for long code length and is proposed in [5], in which implements a (9536, 4768) decoder with 
the use of 34127 logic elements and 102RAMs. So designing a FPGA based, low-costing and 
practical LDPC decoder is necessary. 

In this paper, a parallel and low-costing LDPC decoder architecture for FPGA is 
proposed, as well as an optimization of the memory system is presented. The architecture is 
implemented on a Xilinx Virtex-4 FPGA, (2560,1024) LDPC code is chosen. The rest of the 
paper is organized as follow. In the second section, the new strategy of LDPC decoder is being 
proposed from the Generalized Distributive Laws (GDL) [6]. In section three, a (2560, 1024) 
LDPC decoder is implemented using the new decoding strategy. And the results and analysis 
are presented in section four. 
 
 
2.  LDPC Decoding Algorithms 

When Gallager first proposed LDPC codes in 1962, a probabilistic decoding method 
was also presented, and the Belief-Propagation Algorithm was introduced to LDPC decoding by 
Mackay. As we know, the BP Algorithm can be viewed as massage passing on graphs, and it 
obeys the Sum-Product Updating Laws (SPUL) [7] or the GDL. 
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2.1. The LDPC Decoding in Factor Graphs 
 

 
 

Figure 1. The Function of LDPC Described by Factor Graphs 
 
 

 Under the definition of Factor Graphs, the function of a LDPC code described by a m×n 
Matrix can be defined as the graph in Figure 1. So, based on the SPUL, the decoding process 
can be described as the BP algorithm, and if we define these passing massages in Log-
Likelihood-Ratio(LLR) and do some modifications in its check node update step, it becomes the 
Min-Sum algorithm (MSA). Both of the two algorithms are well known, and will not be stated 
carefully in this paper again.  
 
2.2. The LDPC Decoding in GDL 
 

 
 

Figure 2. The Function of LDPC Described by GDL 
 
 

Table 1. The Definition of Local Domain and Local Kernel Figure 2 
local domain local kernel 

{x1} P(x1|y1) 
{x2} P(x2|y2) 
… … 
{xn} P(xn|yn) 

{x1, x3} 1 
{x1, x2} 1 

… … 
{xa,xn} 1 

 
 

Moreover, based on the definition of the Generalized Distributive Laws (GDL), we can 
define the local domain and the local kernel as Table 1, and the function of a LDPC code can be 
described as Figure 2. Hence, the decoding process can be described as follow: 

(1) Initialization 
 

(l) (0) 1jir           (1) 
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(l) (1) 1jir           (2) 

 
(2) Variable-node update  
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Where (l)
ijq  is the massage passing from ith variable node to jth check node in lth 

iteration, iC  is the set of variable nodes that adjusted to the ith variable node, and \iC j  is iC  

without the jth check node. Moreover, ijK  is the normalization constant which is (l) (l)(1) (0)ij ijq q . 

(3) Check-node update 
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Where (l)
jir  is the massage passing from the jth check node to the ith variable node in 

lth iteration, jR  is the set of variable nodes that adjusted to the jth check node, and \jR i  is 

jR  without the ith variable node. 

(4) Computing the Pseudo-posterior Probability 
 

 
(l) (l 1)(0) (c 0 | y ) (0)

j
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(l) (l 1)(1) (c 1| y ) (1)

j
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Where (l)
iQ  is the pseudo-posterior probability of ith bits after the lth iteration, and iK  is 

the normalization constant which is (l) (l)(1) (0)i iQ Q . 

(5) Decoding 

If (l) (l)(1) (0)i iQ Q , the ith bit will be decoded as 1, else the ith bit will be decoded as 0. 

And if the decoded code word satisfies ˆ 0TC H  or the decoding process reaches the max 
iterations we set, the decoding process stops. 

 Similar with the convert from BP Algorithm to MSA, we can also describe the 
steps of LDPC decoding as follow: 

(1) Initialization 
 

 
(0)( ) 0ijL r           (9) 

 
(2) Variable-node update 
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(l) (l)

\

( ) ( ) ( )
i

ij i j i
j C j

L q L P L r 


          (10) 

Where 

(l)
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(1)
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q
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q
  is the LLR massage passing from the ith variable node to 

the jth check node in lth iteration. 
(3) Check-node update 
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(4) Computing the Pseudo-posterior Probability 
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 Where 
(l)

(l)
(l)

(0)
( ) ln

(1)
i

i
i

Q
L Q

Q
  is the LLR pseudo-posterior probability of ith bits after the 

lth iteration. 
(5) Decoding 

If (l)( ) 0iL Q  , the ith bit will be decoded as 0, else the ith bit will be decoded as 1. And 

if the decoded code word satisfies 0ˆ THC or the decoding process reaches the max iterations 
we set, the decoding process stops. 

According to the features of FPGAs, we adopt the second decoding method to design 
the LDPC decoder we proposed. Because the second decoding method can initialize the 
decoder by assign 0 to all L(r)ji, and this step can be realized in the initialization of FPGA at 
once, while the first one need extra assignment operation to assign the value of the received 
bits to L(q)ij the value of the received bits. Hence, the second decoding method uses fewer 
sources than the first one. In fact, in the first iteration, the variable-nodes update step finishes is 
equal to the Initialization in MSA, but this “Initialization” use the variable-nodes update instead 
of adding extra assignment operation to the decoder.  
 
 
3. Implementation 
 

 
Figure 3. The Procedure of (2560, 1024) QC-LDPC Decoder 
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Using the decoding algorithm we proposed above, a (2560, 1024) QC-LDPC decoder 
on FPGA is implemented in this section. The procedure of the decoder is shown in Figure 3, to 
further reduce the resources consumption, we ignore the computation of the syndrome, and set 
a max iteration through the Monte Carlo simulation method [8]. 

The structure of the decoder is shown in Figure 4, the Solid lines stand for the direction 
of data passing, while the dashed lines stand for the direction of control signal and addressing 
signal. The RAM_p, RAM_r and RAM_q represent RAMs that store the values of the received 
bits, the value of L(r)ji and the value of L(q)ij respectively. Two address generators generate the 
read/write addresses of RAM_p, RAM_r and RAM_q. The variable-nodes update step and the 
check-nodes update step will be preceded in the variable_nods_update model and the 
check_nods_updatemodel, and the decoding model decides which digit the input bit should be, 
1 or 0. Moreover, the processing control model generates control signal for address generator, 
nodes update model decoding model according to procedure of the decoder. 

 
 

 
 

Figure 4. The Structure of (2560, 1024) QC-LDPC Decoder 
 
 

As the check matrices of LDPC codes are always very large, the number of massage 
passed between check nodes and variable nodes is usually very large, so the consumption of 
the address generator is always very large. In this design, the address generator two parts, a 
ROM stores the initial address of every sub-matrix and an address-shifter which consisted of an 
adder and a mode 128 counter. The address shifter generates the address for each RAM by 
adding the initial address and the number of the counter together, so that the costing of the 
address generator can be lowered. 

Moreover, to short the decoding time the decoder consumes and balance the resource 
costing of the decoder, we choose a two-parallel scheme. In this scheme, the variable nodes 
update model and the check nodes update model have two inputs with one computing core, so 
that the decoding time will be half of serial decoder in the same code length with little increase 
in resource costing.  

Finally, to fit the special two-input update model, RAM_r and RAM_q will be a two-input 
and two-output RAMs, so that they can input or output two values at the same time. What is 
more, in order to let RAM_r outputs 0s at the first iteration, the reset port of this block RAM 
should be enabled. And after the first iteration, the reset port of it will be disabled again. 
 
 
4. Results 

A parallel low-costing LDPC decoder is designed and implemented on a Xilinx Virtex-4 
FPGA platform. When the number of quantization bits and the max iterations are set to 6 and 25 
respectively, the bit error rate (BER) performance of the decoder is shown as Figure 5 and 
Table 2. 
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Figure 5. The BER Performance of the (2560,1024) LDPC Decoder 
 
 

Table 2. The Coding Gain of (2560,1024) LDPC 

BER 
BPSK 

(Eb\N0\dB) 
Coding Gain in Simulation 

 (Eb\N0\dB) 
Coding Gain in FPGA 

(Eb\N0\dB) 
1e-2 4.32 3.01 2.90 
1e-3 6.79 5.16 5.05 
1e-4 8.40 6.53 6.41 
1e-5 9.58 7.52 7.29 

  
 

As we can see, the coding gain of the decoder we proposed in this paper is over 7.2 dB 
when BER is 1e-5, which is very close to the coding gain of the LDPC code we simulated on 
MATLAB. It means that, with the 6 quantization bits and 30 max iterations, this LDPC decoder 
can make good use of the performance of (2560, 1024) LDPC code. 

The costing of the decoder proposed in this paper is shown in Table 3, and 
comparisons with some other decoders are also shown. 

 
 

Table 3. The Costing of the Proposed Decoder 
 Slices 4-inputs LUTs 16K RAMs/ROMs Max Working Clock 

Proposed 862 (3.5%) 1,084(2.2%) 10(3.1%) 181.242MHz 
Reference[9] 7,755 22,014 8,555(Registers) 113MHz 

Reference[10] 46,190 34,908 138 131.411MHz 

 
 

Moreover, the throughput of the decoder can be calculated as below: 
 

 
CLK

Tk
T D

c


          (13) 

 
Where TC is the throughput of the decoder, k is the information bits in a codeword, TD is the 
decoding clocks of the decoder, and CLK is the frequency of working clock. In the decoder we 
proposed, k=1024 bits, TD= 208384clocks, CLK=180MHz, so the throughput of a single decoder 
TC =8.5Mbps. But with the low-costing of the decoder, we can achieve a high throughput by 
using multi-parallel decoding strategy. For example, if we make full use of the FPGA we use, we 
can put 25 decoder on one FPGA, and the throughput can reach 212.5Mbps. 
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5. Conclusion 
This paper proposes a LDPC decoding algorithm according to the features of FPGAs, 

and a low-costing LDPC decoder is implemented by using the GDL algorithm. The results 
shows that the LDPC decoder needs fewer resources compared again with other LDPC 
decoders, and the decoder can reach a high throughput by using multi-parallel decoding 
strategy. So the low-costing decoder is flexible for different applications. 
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