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 Securing cloud-based internet of things (IoT) networks against intrusions 
and attacks is a significant challenge due to their complexity, scale, and the 
diverse nature of connected devices. IoT networks consist of billions of 
devices, computer servers, data transmission networks, and application 
computers, all communicating vast amounts of data that must adhere to 
various protocols. This study introduces a novel approach, termed 
hierarchical enhanced deep encoder-decoder with adaptive frequency 

decomposition (HED-EDFD), and is designed to address these challenges 
within cloud-based IoT environments. The HED-EDFD methodology 
integrates adaptive frequency decomposition, specifically adaptive 
frequency decomposition, with a deep encoder-decoder model. This 
integration allows for the extraction and utilization of frequency domain 
features from time-sequence IoT data. By decomposing data into multi-
resolution wavelet coefficients, the model captures both high-frequency 
transient changes and low-frequency trends, essential for detecting potential 

intrusions. The deep encoder-decoder model, enhanced with deep contextual 
attention mechanisms, processes these features to identify complex patterns 
indicative of malicious activities. The hierarchical structure of the approach 
includes a hierarchical wavelet-based attention mechanism, which enhances 
the accuracy and robustness of feature extraction and classification. To 
address the issue of imbalanced intrusion data, a cosine-based SoftMax 
classifier is employed, ensuring effective recognition of minority class 
samples. 
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1. INTRODUCTION 

The internet of things (IoT) has recently become a major trend due to its extraordinary potential to 

connect various heterogeneous smart sensors and devices. Currently, IoT devices are applied in diverse 

domains, including health, smart homes, smart grids, transportation, the environment, infrastructure, and 

public services. More applications for this technology are being discovered almost daily. However, IoT 

systems face significant challenges due to limited storage and processing power. They suffer from drawbacks 

such as security, reliability, integrity, confidentiality, and performance issues. To address these challenges, 

the integration of IoT with cloud computing, known as the cloud of things (CoT), has emerged as a viable 

solution. Many researchers have acknowledged that cloud computing helps address the issues associated with 

IoT by providing reliability, ubiquity, and scalability, along with a high-performance environment for 
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implementing IoT devices [1], [2]. The cloud environment for IoT networks and platforms offers 

connectivity among IoT devices and applications, as well as distributed computational resources and storage. 

Cloud computing is structured into three distinct layers: the system layer, the platform layer, and the 

application layer. The first two layers primarily address virtual machines (VMs) and operating systems.  

In contrast, the third layer focuses on applications hosted in the cloud, such as web-based applications.  

This framework underscores the advantages and extensive use of cloud computing. Despite these benefits, 
cloud-based IoT networks remain vulnerable to several security threats. As illustrated in Figure 1, common 

cyber-attacks can be categorized into network-related and other groups, which could seriously harm these 

networks. Ensuring IoT security, including data security, requires robust methods for detecting and resisting 

network intrusions and attacks. With the growing prevalence of IoT and smart devices, these systems have 

become prime targets for hackers. Even simple devices can have numerous exploitable vulnerabilities. While 

IoT devices offer many advantages and conveniences for accessing the Internet, they also impose higher 

requirements for network security and data protection [3], [4].  

 

 

 
 

Figure 1. Cloud-based network intrusion in IoT 

 

 

Figure 1 presents network-related attacks on cloud-based IoT networks, such as eavesdropping, 

denial-of-service (DoS), spoofing, and man-in-the-middle attacks, which compromise IoT device 

functionality and cloud applications, leading to data breaches and service disruptions. These attacks target the 

network layer and are considered a form of intrusion as they involve unauthorized access and interference 
with network communications. For instance, botnets can control simple terminal devices to form large 

networks that launch attacks or steal confidential information from the entire IoT network. More alarmingly, 

hackers can use network intrusions to silently steal or tamper with private information on IoT networks. 

Consequently, IoT security, particularly data security, has become an urgent research priority. Significant 

advancements have been made in this field, especially with the application of artificial intelligence and deep 

learning (DL) technologies in IoT security. Machine learning (ML) and DL techniques are highly effective 

for processing vast amounts of data, delivering superior computational results. These techniques can either 

select optimal features from datasets for classification or automatically extract relevant features using DL 

methods. Within the context of cloud IoT environments, cybersecurity has become a significant concern. 

This can be addressed by deploying robust intrusion detection systems (IDS) at edge nodes to monitor and 

secure data traffic across the network. Over the past decades, ML and DL-based network intrusion detection 

(NID) systems have shown remarkable effectiveness in detecting attacks within IoT networks, making them 
crucial for enhancing cybersecurity in these environments [5]. Convolutional neural networks (CNN), a DL 

architecture, have garnered significant attention from researchers due to their exceptional performance in 

handling image data in areas such as computer vision, image recognition, and segmentation. Consequently, 

CNNs have been applied in various domains, including networking and medical image processing [6]. 

Additionally, CNNs have demonstrated efficiency in dealing with numeric tabular datasets used for modeling 

IDS in cloud IoT environments. Traditional ML algorithms, such as decision tree (DT), random forest (RF), 
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extra tree (ET), and extreme gradient boosting (XGBoost), have shown strong performance in classifying 

network traffic that is not represented as image data [7], [8]. Other DL algorithms, like recurrent neural 

networks (RNN), have been used for time series data analysis with good accuracy. However, RNNs face 

challenges related to vanishing and exploding gradients, which CNN architectures can overcome. Therefore, 

CNNs are preferred for image data due to their high performance in image classification, particularly in cloud 

IoT security scenarios [9], [10]. 

The rapid proliferation of IoT devices has led to the emergence of complex, large-scale networks 
that generate vast amounts of data. These networks, often integrated with cloud computing for enhanced 

scalability and processing power, are increasingly susceptible to various security threats, including intrusions 

and attacks. Traditional IDS struggle to keep pace with the dynamic and distributed nature of cloud-based 

IoT environments, failing to capture the intricate patterns and anomalies present in the data. There is a 

pressing need for advanced methodologies that can efficiently analyze and detect threats in real time, 

ensuring the security and integrity of IoT networks. This research aims to address these challenges by 

developing a robust and scalable intrusion detection framework that leverages the strengths of both adaptive 

frequency decomposition and DL. 

 Hierarchical enhanced deep encoder-decoder with adaptive frequency decomposition (HED-EDFD):  

we propose a novel HED-EDFD model that integrates adaptive frequency decomposition for feature 

extraction with enhanced encoder-decoder architecture enhanced by deep contextual attention 
mechanisms. This hybrid approach enables the effective capture and analysis of both temporal and 

frequency domain features from IoT data. 

 Advanced feature extraction: the use of adaptive frequency decomposition allows for the decomposition 

of IoT data into multi-resolution wavelet coefficients, capturing both high-frequency transient changes 

and low-frequency trends. This enhances the ability to detect complex patterns indicative of intrusions. 

 Extensive experiments using IoT-23, KDD 99, and TON datasets demonstrate the superior performance 

of the HED-EDFD model, showing significant improvements in F-score, accuracy, and AUC metrics 

compared to traditional methods. 

 

 

2. RELATED WORK 

NIDS are designed to monitor large volumes of network traffic and identify malicious activities, 
making them essential for securing cloud-based IoT environments. Upon detecting abnormal behavior, NIDS 

sends real-time alerts to administrators to mitigate potential attacks, ensuring the protection of interconnected 

devices and data in cloud-IoT systems. Tuan et al. [11], conducted a comparative study evaluating the 

performance of various ML methods in classifying Botnet attack traffic. They assessed support vector 

machine (SVM), multilayer perceptron (MLP), DT, Naive Bayes (NB), and unsupervised methods like  

K-means clustering on datasets including KDD’99. The study revealed that unsupervised methods achieved 

the best performance with 98% accuracy. Shao et al. [12], an ensemble of hoeffding tree and RF models was 

created using online learning for both normal and attack traffic. The work in [13] introduced a feature 

selection technique as a preprocessing step for an ML-based botnet attack detector, ranking features by 

Pearson correlation coefficients to optimize the detector’s performance on the Bot-IoT dataset. Pujar et al. 

[14], developed an attack detection algorithm involving feature extraction from network traffic and ML 
classifiers such as K-nearest neighbor (KNN), SVM, DT, and MLP, evaluated on a dataset collected in their 

study. Sreedhara et al. [15] focused on an MLP-based Mirai Botnet detector specifically for software defined 

networks (SDN), feeding five metrics, including communication protocols, into the MLP. The study [16] 

addressed cloud computing challenges by developing a filter-based ensemble feature selection (FEFS) and 

deep learning model (DLM) combining RNN with Tasmanian devil optimization (TDO) for intrusion 

detection, showing improved security based on metrics like F-measure, specificity, sensitivity, and accuracy. 

Maheswari et al. [17], enhanced IDS performance by integrating teacher learning optimization with 

deep recurrent neural networks (TL-DRNN) and using modified manta-ray foraging optimization (MMFO) 

for feature selection, validated with standard datasets to improve false positive and negative rates, accuracy, 

precision, recall, specificity, and F-measure. Elaziz et al. [18] proposed using swarm intelligence algorithms 

and deep neural networks (DNN) for intrusion detection in IoT-cloud systems, alongside the Capuchin search 

algorithm (CapSA) for feature selection, demonstrating competitive performance across various datasets. The 
study [19] introduced the ensemble intrusion detection model for cloud computing using deep learning 

(EICDL) to tackle issues like privacy, confidentiality, and quantum computing attacks, achieving higher 

precision, accuracy, and recall compared to other methods. Zhang et al. [20] applied DNN for intrusion 

detection in online music education on public cloud networks, utilizing fuzzy logic-based feature selection, 

Salp swarm optimization, and the integration of gated recurrent unit (GRU) and CNN, resulting in higher 

intrusion detection accuracy. Parameswari et al. [21] developed the rat swarm hunter prey optimization-deep 
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maxout network (RSHPO-DMN) model for intrusion detection in computer networks, showing superior 

performance in accuracy, precision, recall, and F1-score. Joraviya et al. [22] explored security in 

containerized cloud environments using DL methods, specifically CNNs, for anomaly detection in system 

call sequences and images, enhancing detection accuracy and reducing false positives and negatives. The 

framework in [23] analyzed and labeled incoming traffic packets using an auto-associative deep random 

neural network and an online estimate of its statistically measured trustworthiness, enabling IDS to adapt to 
time-varying network traffic characteristics and eliminating the need for offline data collection. The model in 

[24] introduced a resilient federated learning architecture for diverse IoT environments and vehicular 

networks, emphasizing versatility and modularity. Finally, Nakip and Gelenbe [25] developed a novel IDS to 

address class imbalance in federated learning at both local and global levels, demonstrating improved 

generalizability in detecting various attacks under both IID and non-IID data settings. 

Despite significant advancements in IDS for cloud-based IoT networks, there remains a substantial 

research gap in effectively capturing and analyzing the complex, high-dimensional data generated by these 

environments. Traditional methods often fall short in addressing the real-time processing and scalability 

requirements needed to detect sophisticated and evolving threats. There is a critical need for innovative 

approaches that leverage advanced signal processing and DL techniques to enhance the accuracy and 

efficiency of intrusion detection in cloud IoT networks. 

 
 

3. PROPOSED METHOD 

Figure 2 illustrates a hierarchical IoT security system. It shows the flow of data from the application 

layer through the cloud security layer to the cloud servers. The process begins with flow gathering, followed 

by detecting symptoms of intrusion. Intrusion detection for the network and modifying core packets are 

handled next. Managing and monitoring include security management, network infrastructure monitoring, 

and network function management. This structured approach ensures comprehensive monitoring and security 

across cloud servers and IoT networks. 

 

 

 
 

Figure 2. Proposed cloud IoT framework for intrusion detection 

 

 

As shown in Figure 2, the IoT is a complex distributed hierarchical system comprising billions of 

devices, computer servers, data transmission networks, and application computers. The data transmitted 

within IoT networks are complex due to various transmission protocols, making intrusion and attack 

prediction challenging. The primary challenge in this study is recognizing and extracting useful features from 
this transmitted data. Given that IoT data are time sequences, extracting frequency domain features is crucial 

for effective classification, warranting in-depth exploration. The proposed model HED-EDFD is designed as 

a hierarchical cloud IoT security model considering the three hierarchical i.e., function-based, infrastructure-

based, and management-based; the management module ensures the data security along with data 

transmission. The functional security module ensures the intrusion data packets and the fault detection 

module ensures network intrusion. 
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3.1.  Hierarchical enhanced deep encoder-decoder with adaptive frequency decomposition 

This section of the paper introduces the detection of intrusion for the transmitted information in the 

IoT models. The proposed approach includes the distinct wavelet enhanced encoder-decoder model that is 

used in the detection of IoT models. The framework of the proposed system is specified in Figure 3. 
 
 

 
 

Figure 3. Proposed intrusion detection model 
 

 

The wavelet transform mechanism is embedded into the enhanced encoder decoder system for 
retrieval of data through the frequency domain which is essential for the detection of intrusions using actions. 

Time signals have various applications considering real-time. The data that is used from frequency-time 

spectrograms are proved to be more helpful in comparison to the original signals of vibration. The short-time 

Fourier transform is generally used for image processing tasks as well as time sequential processing, 

however, this technique does not possess flexibility while considering time sequential processing, as the 

solution is constant at all frequencies as well as periods. Therefore, an analytical transform mechanism called 

adaptive frequency decomposition that has increased flexibility is utilized. This mechanism grasps the 

localization idea from the short-time Fourier transform that resolves the challenge of the window dimension 

not changing with the frequency. The major characteristics are that it can highlight the features of some parts 

of the problem using transformation as well as frequency localization can be analyzed. Gradually the signal is 

refined using the operations of translation as well as expansion. In conclusion, the sub-division of time can be 

attained at increased frequencies as well as the sub-division of frequency can be attained at lower 
frequencies. The method automatically adapts to the needs of frequency time signal which increases the focus 

on the signal details. 

 

3.1.1. Optimized data embedding and processing 

Assume a sequential signal denoted as 𝑧(𝑣), we consider the wavelet to be a series of convolution 

computations between the sequential signal 𝑧(𝑣) and the main wavelet function that is denoted as 𝜔(𝑣). This 

results in a series of coefficients for the wavelets that is given as (1). From the (1), 𝜔∗(∙) is the conjugate of 

𝜔(∙). The main base function that is termed as 𝜔(∙) has a form as given in (2). 
 

𝑌𝑧(ℶ, 𝑢; 𝜔) = ∫  
∞

−∞
𝑧(𝑣)𝜔𝑢,ℶ

∗ (𝑣)𝑑𝑣 (1) 

 

𝜔𝑢,ℶ(𝑣) = (𝑢
−1

2 ) 𝜔((𝑣 − ℶ)(𝑢)−1) (2) 

 

Here, the scale factor is given 𝑢 and the translating factor is denoted as ℶ. Once the pre-processing of 

information is completed, the data dimension is given as 𝑇𝐽×𝑌 , the length of direction for frequency and time 

is denoted using 𝐽 and 𝑌 respectively. A one-dimensional sequence is utilized for embedding. The sample 

information is firstly divided into patches or segments, where every spectrogram of 𝑍 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑇𝐽×𝑌 is 
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split for only the direction of time. This results in time sequences that have length denoted as 𝑝 which is 

expressed as 𝑧𝑟 = [𝑧1, 𝑧2, … . , 𝑧𝑝], where 𝑧𝑘  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑇𝐽×𝑟 , every segment has a width of 𝑟 and 𝑝 =
𝑌

𝑟
. 

During the embedding process for the segments, the mechanism used focuses on a decreased 

dimension constant vector representation. Firstly, the information input is stored in the linear projection that 

is given as 𝑌 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑇𝑟×𝑓 , the size of the input information is denoted as 𝑓. Once the sequence of the 

projected segment is obtained, a class token that is expressed as 𝑎𝑘 is added. The spectrogram representation 

is obtained at this stage. Once the segment embeddings is completed, it is essential to perform the process of 

position embedding. After the position as well as segment embedding is completed, the information 

embedding form is given as (3). Here, 𝑎𝑘  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑇𝑓 represents the class token while 

𝐺𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑇(𝑝+1)𝑓 that represents the position embedding. 

 

𝑧𝑔𝑘 = [𝑎𝑘 ; 𝑧1𝑌, 𝑧2𝑌, … . , 𝑧𝑝𝑌] + 𝐺𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  (3) 
 

3.1.2. Hierarchical enhanced encoder decoder 
The information of the IoT systems is taken into account with the time sequence. The information 

has to be retrieved from the sequence in applications of natural language processing as well as data of lesser 

frequencies from the time sequence while they are being processed. Therefore, the adaptive frequency 

decomposition model is embedded as the enhanced encoder decoder system for the retrieval of data having a 

lesser frequency. The enhanced encoder-decoder model is modified in the proposed architecture as compared 

to the traditional model. For the decoder phase, attention learning is utilized in the adaptive frequency 

decomposition model. Here, the model consists of two stages, namely the decomposition and the 

reconstruction. These two stages are used together as well as can be used separately. The model majorly 

involves three phases, decomposition, attention, and the reconstruction phase. The modified adaptive 

frequency decomposition model phases include the reconstruction as well as the decomposition phase. The 

attention phase is a part of cross-attention. 
The adaptive frequency decomposition model as well as the transform for multiple wavelets is 

essential and used widely for digital applications for signal processing mechanisms. They are applied for the 

retrieval of data from the frequency domain for digital signals that are essential to what the present 

applications of DL require. Prior studies have proposed to use of the learning algorithm for hierarchical 

wavelets. However, only one signal can undergo the processing process using this algorithm. Therefore, in 

this study, the attention-learning algorithm needs to grasp the process of learning various input signals to 

attain attention-learning.  

The adaptive frequency decomposition model transforms a signal of one dimension to a two-

dimensional time-scale expression that is generally applied to uninterrupted signal processes. The form that is 

transformed is expressed using (2). Considering the adaptive frequency decomposition model, the base 

wavelet for the adaptive frequency decomposition model is as expressed in (4). 

 

𝜔𝑙,𝑚(𝑣) = ((𝑢0
𝑙 )

−1

2 ) 𝜔 ((𝑣 − 𝑚ℶ0𝑢0
𝑙 )(𝑢0

𝑙 )−1) (4) 

 

In the (4), 𝑙 and 𝑚 are integers, 𝑢0 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1 and ℶ0 is a constant parameter. For this 

experiment, the values of 𝑢0 is set to 2 and ℶ0 is set to 1. While the adaptive frequency decomposition model 

is applied, the base of the wavelet function has to be chosen. These functions should possess some 

characteristics that include regularity constraints, admissibility constraints as well as vanishing situations. 

Here, the base function for wavelets is taken as orthogonal polynomials, specifically Legendre polynomials 

for this study. The Legendre polynomials are denoted as 𝑅𝑘(𝑧) having weight function as 

𝑦𝑁(𝑧) 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1 where −1 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1 which satisfies as given in 

(5) and (6). 

 

∫  
1

−1
𝑅𝑘(𝑧)𝑅𝑙(𝑧)𝑑𝑧 = (2(2𝑘 + 1)−1)𝛿𝑘𝑙 (5) 

 

𝛿𝑘𝑙 = {1, 𝑘 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑙 0, 𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑙 (6) 

 

The importance of the adaptive frequency decomposition model is shown by its ability to decompose signals 

at various scales as well as choosing various scales based on various targets. The multiple wavelet transform 

combines the benefits of both the adaptive frequency decomposition model as well as the orthogonal 

polynomials. Consider a function ℎ(𝑧), the coefficients used for multiple wavelets for scale 𝑝 for measure 𝜌 

are given as (7). 
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𝑢𝑛
𝑝

= [⟨ℎ, 𝜎𝑘𝑛
𝑝

⟩𝜗]
𝑘=0

𝑚𝑓−1
  

𝑓𝑛
𝑝

= [⟨ℎ, 𝜔𝑘𝑛
𝑝

⟩𝜗]
𝑘=0

𝑚𝑓−1
 (7) 

 

For the (7), 𝑢𝑛
𝑝
 ,𝑓𝑛

𝑝
 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜  𝑇𝑚×2𝑝

, the wavelet orthogonal basis of polynomials is represented as 𝜎𝑘𝑛
𝑝

 

and 𝜔𝑘𝑛
𝑝

. The count of dimensions that are transformed or the count of orthogonal basis is represented as 𝑚𝑓. 

The scales for reconstruction or decomposition are given as (8). 
 

𝑢𝑛
𝑝

= 𝐽(0)𝑢2𝑛
𝑝+1

+ 𝐽(1)𝑢2𝑛+1
𝑝+1

  

𝑢2𝑛
𝑝+1

= 𝛴(0)(𝐽(0)𝑉
𝑢𝑛

𝑝
+ 𝐼(0)𝑉

𝑓𝑛
𝑝)  

𝑢2𝑛
𝑝+1

= 𝛴(0)(𝐽(0)𝑉
𝑢𝑛

𝑝
+ 𝐼(0)𝑉

𝑓𝑛
𝑝

)  

𝑓𝑛
𝑝

= 𝐼(0)𝑢2𝑛
𝑝+1

+ 𝐽(1)𝑢2𝑛+1
𝑝+1

  

𝑢2𝑛+1
𝑝+1

= 𝛴(1)(𝐽(0)𝑉
𝑢𝑛

𝑝
+ 𝐼(1)𝑉

𝑓𝑛
𝑝) (8) 

 

(𝐽(0) 𝐽(1) 𝐼(0) 𝐼(1) ) (𝐽(0) 𝐽(1) 𝐼(0) 𝐼(1) )
𝑉

= (𝛴(0)−1
 0 0 𝛴(1)−1

 ) (9) 
 

Here, the linear coefficients are expressed as (𝐽(0), 𝐽(1), 𝐼(0), 𝐼(1)) that are constant matrices for the 

decomposition of wavelets and have to satisfy the (9). The inverse matrices of 𝛴(0) and 𝛴(1) are given as 

𝛴(0)−1
 and 𝛴(1)−1

 respectively. On computation of the multiple wavelet tensor product basis as well as the 

multiple scale, we obtain the multiple wavelet expression. The multiple wavelet application possesses the 

benefits of both the orthogonal polynomials as well as the wavelets. The multiple wavelets portray the 

function on a subspace of polynomials by utilizing the Legendre polynomials given in (5). 

To introduce the attention model based on the multiple wavelets, the framework of the multiple 

wavelet system is applied. The proposed system utilizes attention learning elements as units A, B, and C 

rather than using neural networks in general. The system includes reconstruction as well as decomposition. 

The decomposition behaves as a RNN. Where, for every iteration, 𝑢𝑝+1 denotes the input including 𝑙, 𝑠, and 

𝑥 as sub-scores. Every sub-score is computed separately about the mechanism specified further. On using (8), 

the multi-level and multiple wavelet coefficients at a superficial stage are denoted as 𝑢𝑝 and 𝑓𝑝 is computed 

respectively. Furthermore, after storing the values in the four attention networks, namely, 𝐶, 𝐷, 𝐸, and 𝑉 the 

resulting 𝑊’s multi-level and multiple wavelet coefficients are obtained. An operator 𝑉𝑐 = 𝑤 has to be 

mapped, the mapping based on the multiple wavelet form is given as (10). From the (10), one separate layer 

of perceptrons is denoted as 𝑉 that is used to process the signal remaining post-decomposition stages denoted 

as 𝑁. 
 

𝑊𝑓𝑛
𝑝

= 𝐶𝑝𝑓𝑛
𝑝

+ 𝐷𝑝𝑢𝑛
𝑝
  

𝑊𝑢𝑛
𝑝

= 𝐸𝑝𝑓𝑛
𝑝
  

𝑊𝑢𝑛
𝑁 = 𝑉𝑢𝑛

𝑁  (10) 
 

This mechanism involves top-down as well as bottom-up methods. For the top-down approach, for 

every sequential input having dimension 𝑂, the signal is retrieved by the decomposition that has a fixed 

sequence by computing at least 𝑁 iterations. In the next phase, the reconstruction model utilizes a bottom-up 

operation for the output that results in the decomposition step for the computation of coefficients at multi-

level at a more refined stage. Finally, the constituent parameters are gathered at the reconstruction stage as 

given in (10). The process of training is executed until the required output is attained. The means of this 

implementation is the transformation of the output to a hierarchical wavelet space for every iteration. During 

execution, the networks of attention learning that are 𝐶, 𝐷, and 𝐸 possess the same attributes in architecture. 

The parameters that are used in the reconstruction model as well as the decomposition model are constant 

matrices 𝐽 𝑎𝑛𝑑 𝐼, which implies that the models do not require prior training.  

The attention phase is the same as the enhanced encoder decoder module. The input of the attention 

phase includes keys denoted as 𝑚, queries that are given as 𝑠, and values expressed as 𝑤. The queries are 

taken from the decoder and are attained as 𝑠 = 𝑧𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ∙ 𝑦𝑠. The encoder gives the values as well as the keys 

and it can be received as 𝑥 = 𝑧𝑑𝑒𝑐𝑜𝑑𝑒𝑟 ∙ 𝑦𝑥 and = 𝑧𝑑𝑒𝑐𝑜𝑑𝑒𝑟 ∙ 𝑦𝑚. The expression of attention can be formulated 

as given (11). 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑠, 𝑚, 𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ((𝑠𝑚𝑉)(𝑓𝑠)
−1

2 ) 𝑥 (11) 
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The last stage of the proposed study for intrusion detection includes a classifier that aids in decision-

making for general information as well as intrusive information. The model proposed includes completely 

linked layers along with a SoftMax classifier that is implemented. Normally, the samples are discriminated 

for information classification using Euclidean distance. However, there are constraints while considering 

certain applications that could include environments having high-dimension. We look towards modifying the 

performance of the model by using a classifier based on cosine. The loss function of this classifier is as in (12). 
 

𝑁 = −𝑙𝑜𝑔 ((𝑒𝑢.𝑐𝑜𝑠𝑐𝑜𝑠 (∅𝑘,𝑙+1{𝑙=𝑎𝑘}.𝑜) )(∑  
𝑝
𝑙=1 𝑒𝑢.𝑐𝑜𝑠𝑐𝑜𝑠 (∅𝑘,𝑙+1{𝑙=𝑎𝑘}.𝑜) )

−1
) (12) 

 

For the (12), the angle between the 𝑙 − 𝑡ℎ weights is denoted as ∅𝑘,𝑙  for the final completely linked 

layer 𝑌𝑙 and the output is expressed as ℎ𝑘. The hyperparameter scale is given as 𝑢 and the angular marginal 

penalty is expressed as 𝑜 between 𝑧𝑘 and 𝑌𝑙 that is utilized simultaneously for improvement of the 

discrepancy as well as the compactness inside the classes. For the proposed study, the values of 𝑢 is fixed to 

32 and 𝑜 is set to 0.5. Considering real-time scenarios, the count of normal data is generally more in 

comparison to that of data having fault or intrusion. This could result in an imbalance in classification that 

leads to difficulties while considering intrusion detection. To resolve this issue, we include a higher number 

of intrusive samples compared to normal samples while considering the training process. We use inverse 

proportion for particular classes concerning the training data as the weight. The lesser the count of data 

samples in the training dataset for a particular class, the higher the weight for that class while training, and 

the higher the count of data samples in the training dataset for a particular class, the lower the weight for that 

class while training. Simultaneously, the normal values of the weights are between 0 and 1. 

 
 

4. PERFORMANCE EVALUATION 

This section evaluated the HED-EDFD model considering the different datasets, further model is 

compared with the existing model based on meta-learning [26], this employs a lightweight meta-learning 

ensemble approach, combining weak learners like RF and MLP to enhance detection accuracy. It is 

optimized to run efficiently on resource-limited devices, achieving high accuracy and low false positive rates. 

The model uses a stacked ensemble with a meta-estimator for robust performance across various datasets. 

 

4.1.  Dataset details 

The IoT-23 [27] dataset, sponsored by Avast and captured by Czech Technical University’s 

Stratosphere Lab, spans from 2018 to 2019. This includes 20 IoT malware traffic scenarios with 5931K 
flows, alongside three benign traffic scenarios with 2645K flows, featuring real and labeled IoT malware 

infections and benign traffic. The other two datasets are KDD99 [28] and TON [29]. 

 

4.2.  Results 

In Table 1, the HED-EDFD model achieved an accuracy of 0.998 and a false positive rate (FPR) of 

0.030, significantly outperforming traditional models such as super-learner, subsemble-learner, and 

sequential-learner, which had accuracies of 0.994, 0.993, and 0.993, respectively. The HED-EDFD model 

also maintained high recall and precision rates at 0.995 each, resulting in a robust F1-score of 0.995. 

Furthermore, the HED-EDFD model demonstrated efficient processing with a time of 2.5 seconds, making it 

highly suitable for real-time applications. These results underscore the HED-EDFD model’s exceptional 

capability in providing accurate and efficient intrusion detection compared to conventional ensemble 

methods. 
 

 

Table 1. Binary classification on IoT-23 dataset 
Model type Acc FPR Recall Pre F1-s P-v Time(s) 

Super-learner 0.994 0.038 0.994 0.994 0.994 0.0099 3.95 

Subsemble-learner 0.993 0.045 0.993 0.993 0.993 0.0099 7.62 

Sequential-learner 0.993 0.04 0.993 0.993 0.993 0.0099 19.9 

Bagging 0.993 0.038 0.993 0.993 0.993 0.0099 264 

Boosting 0.988 0.099 0.989 0.989 0.988 0.0099 0.15 

Stacking 0.892 0.923 0.892 0.877 0.851 0.0099 0.38 

HED-EDFD (proposed model) 0.998 0.030 0.995 0.995 0.995 0.0098 2.5 

 

 

In Table 2, the HED-EDFD model achieved perfect scores in accuracy (1.000), FPR (0.001), recall 

(1.000), precision (1.000), and F1-score (1.000), outperforming other models like super-learner, subsemble-
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learner, sequential-learner, and stacking. Notably, while the bagging model also achieved perfect scores, its 

processing time was significantly longer (999.0 seconds) compared to the HED-EDFD model’s efficient 1.5 

seconds. These results highlight the HED-EDFD model’s exceptional accuracy and efficiency, making it an 

optimal solution for real-time intrusion detection applications. 
 

 

Table 2. Binary classification comparison on KDD99 
Model type Acc FPR Recall Pre F1-s P-v Time(s) 

Super-learner 0.998 0.002 0.998 0.998 0.998 0.0099 2.69 

Subsemble-learner 0.998 0.002 0.998 0.998 0.998 0.0099 7.29 

Sequential-learner 0.998 0.001 0.998 0.998 0.998 0.0099 17.3 

Bagging 1 0.001 1 1 1 0.0099 999.0* 

Boosting 0.973 0.119 0.997 0.973 0.972 0.0099 0.13 

Stacking 0.999 0.001 0.999 0.999 0.999 0.0099 0.23 

HED-EDFD (proposed model) 1 0.001 1 1 1 0.0098 1.5 

 

 

In Table 3 the HED-EDFD model achieved the highest accuracy at 0.990 and the lowest FPR at 

0.002. Additionally, the HED-EDFD model maintained high recall and precision rates at 0.987 each, 

resulting in a robust F1-score of 0.987. The processing time of the HED-EDFD model was also efficient at 

0.5 seconds, making it suitable for real-time applications. In comparison, other models like super-learner, 
subsemble-learner, and sequential-learner exhibited lower accuracy and higher FPR, while the Bagging 

model, despite its high accuracy, had a significantly longer processing time. 
 

 

Table 3. Binary classification comparison on TON dataset 
Model type Acc FPR Recall Pre F1-s P-v Time(s) 

Super-learner 0.979 0.019 0.979 0.994 0.994 0.0099 0.57 

Subsemble-learner 0.981 0.016 0.981 0.993 0.993 0.0099 0.89 

Sequential-learner 0.981 0.011 0.983 0.993 0.993 0.0099 3.34 

Bagging 0.986 0.008 0.986 0.986 0.986 0.0099 80 

Boosting 0.963 0.004 0.963 0.965 0.963 0.0099 0.19 

Stacking 0.97 0.005 0.97 0.971 0.97 0.0099 0.4 

HED-EDFD (proposed model) 0.99 0.002 0.987 0.987 0.987 0.0098 0.5 

 

 

The evaluation of models on the IoT-23 dataset shows that the HED-EDFD (proposed model) 

outperforms others with an accuracy of 99.80% and an FPR of 3.00%. Super-learner, subsemble learner, 

sequential learner, and bagging ensemble also demonstrated high accuracies (99.30%-99.40%) but varied in 

FPRs, with bagging ensemble achieving the lowest at 3.84%. In contrast, models like stacking ensemble and 

NB had high FPRs (92.34% and 92.30%), despite moderate accuracies, making them less reliable. The MLP 

model achieved perfect accuracy (100%) but an impractically high FPR (100%). Overall, the HED-EDFD 

model’s superior accuracy and low FPR make it the most effective choice for real-time intrusion detection in 

IoT environments as shown in Figure 4. 
 

 

 
 

Figure 4. Accuracy and FPR comparison on IoT-23 dataset 
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The evaluation of models on the KDD99 dataset highlights the HED-EDFD (proposed model) as the 

top performer, with perfect accuracy of 100% and the lowest FPR of 0.001%. While the bagging ensemble 

also achieved 100% accuracy, its FPR was higher at 0.030%. Super-learner, subsemble learner, sequential 

learner, and stacking ensemble all maintained high accuracies around 99.80%-99.90% but had slightly higher 

FPRs ranging from 0.001% to 0.160%. Boosting ensemble, despite achieving a lower accuracy of 97.26%, 

showed an FPR of 11.940%, indicating a higher rate of false positives. Notably, NB had a poor performance 
with an FPR of 37.700% despite an accuracy of 91.70%. MLP, DT, logistic regression, and RF also 

performed well in terms of accuracy (99.70%-100%) and had low FPRs (0.020%-0.040%). Overall, the 

HED-EDFD model’s perfect accuracy and minimal FPR make it the most effective model for intrusion 

detection in the KDD99 dataset. Figure 5 shows the accuracy and FPR comparison on various models. 

The evaluation of models on the TON dataset demonstrates the HED-EDFD (proposed model) as the 

superior performer with an accuracy of 99.00% and the lowest FPR of 0.002%. Among other models, 

subsemble learner, sequential learner, and bagging ensemble also showed high accuracies ranging from 

98.10% to 98.60% but had higher FPRs between 0.780% and 1.590%. The boosting ensemble model, despite 

its lower accuracy of 96.30%, managed an FPR of 0.370%. Notably, NB performed poorly with an FPR of 

49.840% and an accuracy of 65.10%. MLP, DT, logistic regression, and RF displayed high accuracies from 

90.90% to 97.90%, but varied significantly in their FPRs, with DT achieving the highest FPR of 8.570%. 

Overall, the HED-EDFD model’s combination of high accuracy and exceptionally low FPR positions it as the 
most effective solution for real-time intrusion detection on the TON dataset. Figure 6 shows the accuracy and 

FPR comparison with various models. 
 

 

 
 

Figure 5. Accuracy and FPR comparison on various model 
 

 

 
 

Figure 6. Accuracy and FPR comparison with various model 
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4.3.  Comparative analysis 

The comparative analysis of ensemble and DL models across the IoT-23, KDD99, and TON datasets 

reveals the HED-EDFD (proposed model), a DL-based model, as the most effective for binary classification 

in IDS. On the IoT-23 dataset, the HED-EDFD model achieved an accuracy of 99.80% with an FPR of 

3.00%, outperforming ensemble models like super-learner and bagging ensemble, which had higher FPRs 

despite high accuracy. For the KDD99 dataset, the HED-EDFD model attained perfect accuracy (100%) and 

the lowest FPR (0.001%), significantly surpassing ensemble models such as super-learner and sequential-
learner, and even matching bagging ensemble’s accuracy but much lower processing time. On the TON 

dataset, the HED-EDFD model again demonstrated superior performance with an accuracy of 99.00% and an 

exceptionally low FPR of 0.002%, outperforming ensemble models like subsemble learner, bagging 

ensemble, and boosting ensemble. This consistent high performance across all datasets underscores the HED-

EDFD model’s robustness, accuracy, and efficiency, making it the optimal choice for real-time intrusion 

detection in diverse environments. 

 

 

5. CONCLUSION 

The HED-EDFD model introduced in this study offers a robust and innovative solution for intrusion 

detection in cloud-based IoT environments by integrating adaptive frequency decomposition with an 

enhanced deep encoder-decoder architecture and deep contextual attention mechanisms, the HED-EDFD 
model effectively captures both high-frequency transient changes and low-frequency trends in IoT data. This 

dual-domain feature extraction capability is crucial for identifying complex patterns indicative of malicious 

activities, which traditional IDS often fail to recognize. Performance evaluations across IoT-23, KDD99, and 

TON datasets highlight the model’s superiority. The HED-EDFD achieved 99.80% accuracy and a 3.00% 

false positive rate on the IoT-23 dataset, and perfect scores on the KDD99 dataset (100% accuracy, 0.001% 

FPR). Its efficient processing time further supports real-time application suitability. 
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