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Abstract 
Robustness estimation is important issue to ensure stability, reliability, and precision of Wireless 

MEMS vibration test under harsh environment stressing. Although the robustness of vibration test is limited 
mainly by the embedded electronics and sensors, how to obtain precise and robust data by using energy 
effective and resources constrained wireless sensor nodes is still a problem. Paper uses the multivariate 
uncertainty statistics method to estimate robustness of online test data under harsh environment, and uses 
Fisher information distance to estimate transmitting robustness in its complication communication process. 
Experiments and simulation are designed to analyze the robustness and precise of wireless MEMS nodes 
in numerical value, results show estimation methods and model are effective.  
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1. Introduction 

Measuring vibration is very essential in detecting and diagnosing any deviation from 
normal conditions. The advantage of MEMS accelerometers from conventional piezoelectric 
accelerometers are their size, easy installation, cost and so on. 

In life cycle analysis, there are some qualitative experiments results for MEMS 
accelerometers in normal and harsh work situation. Ron Denton reported reliability results on 
MEMS accelerometers from field failure experience, the MTBF being around 2,000,000 hours 
(around 5*10-7h-1 for an exponential distribution of failures) [1]. Andover reported a failure rate 
of 1.75 ppm for MEMS accelerometers manufactured by MEMSIC [2].These results show that 
MEMS accelerometers are high reliability devices, with low failure rate. There have been 
several studies [3-6] addressing this issue for irradiation. COTS accelerometers have been 
shown to survive 1000 temperature cycles from -65°C to +150°C, as well as 30,000 mechanical 
shocks of 2,000G. But there are not enough test and analysis of its robustness. 

 Meanwhile, the MEMS sensors hold a great promise for the using of wireless smart 
vibration measurement based condition monitoring [7-14]. The robustness of the calibration 
procedure under harsh environment is crucial for the potential practical use of multi-sensor and 
single sensor devices.  MEMS accelerometers applied in the paper are capacitive based MEMS 
accelerometers, it measure changes of the capacitance between a proof mass and a fixed 
conductive electrode separated by a narrow gap [15].  

As the MEMS sensors of embedded electronics have two compensation means under 
harsh environment. One is environment compensation (system error); the other is noise signal 
filter which is stressed by harsh environment (random error and uncertainty). The paper is 
focused on the second problem. Robust statistic is shown to be useful to deal with the uncertain 
data in normal environment [16-20]. Based on this, paper supposes that the collect data under 
harsh environment contain "information” of test data. And the fisher information matrix and 
Cramer-Rao lower bound are applied to analyze robustness and precise of vibration sensor 
[21].  

This paper addresses the problem of robustness estimation of wireless MEMS sensor 
working under harsh environment. In section II, The formulation of problem is introduced. In 
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section III, the simulation method, experiment results and discussion will be present. In section 
IV, the conclusion is given. 
 
 
2. Problem Formulation 

There are two main problems in robustness analysis of wireless sensors under harsh 
environment (as shown in Figure 1). One is missing data processing in communication layer; 
the other is robust uncertainty analysis under harsh environment in physic layer. 

 
 

 
Figure 1. Two Layers of Wireless Vibration Sensor Robustness Analysis 

 
 

2.1. Robust Estimation Problem of Vibration Test under Harsh Environment 
The vibration signal model under harsh environment is shown as formula (1): 
 

,...),,(',...),,()(1 HTtfHTtft  (1) 

 
f(t,T,H,…) is certain test signal, f’ (t,T, H,…) is uncertain signal come from harsh 

environment. Here Γ1(t) means only test vibration value, have  not tested temperature, humidity, 
and other environment influence parameters. 

In the test scenario, we test vibration, temperature, humidity and so on simultaneously, 
obtain Γ2(t,T,H,…) from formula (2).  

 

,...),,(',...),,(,...),,(2 HTtfHTtfHTt  (2) 

 
To simplify the problem, here Suppose Γ2(t,T,H,…) has an empirical distribution, the 

qualitative robustness is essentially equivalent to weak continuity of Γ. As describe in formula 
(3)-(5). 

Many of the most common test statistics and estimators depend on the sample (x 1. . . x 
n,) only through the empirical distribution function. 

 


ixn n 1

 (3) 

Where ix stands for the pointmass 1 at x. That is, 
 

)(),...,( 1 nnn Fxx   (4) 
 
If the limit in probability exists: 
 

)(lim)( n
n

FF 
  

(5) 

 
Then Γ is Fisher consistent, or (asymptotic robustness). Let: 
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(6) 
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Then Cramer-Rao inequality is: 
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Where I is Fisher information [21], ‘p’ is distribution of ‘a’. 
For Γ2 (t, T, H,…) has native component of uncertainty f’ (t, T, H,…), the robust 

estimation problem of vibration test under harsh environment is multivariate uncertainty robust 
statistics problem. 

 
 2.2. Robust Estimation Problem of Wireless Data Transmitting under Harsh Environment 

In network transmitting, there are packet losing rate owing to attacks, environment 
influence, end of battery power and so on. 

In the paper, wireless sensors losing packet stochastic processing is supposed to be 
Poisson processing.  

The paper focuses on two robust estimation problems. One is robust estimations 
occurred in uncertainty different deployment place, the other is robust precise estimations of 
10% uncertainty connectivity (or packet losing rate) in one node.  

 In the first situation, Fisher information distance D is defined to present different 
deployment status. As shown in formula (8). 
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(8) 

 
Suppose data transmitting probability of nodes in different deployment place is similar, 

the Kullback Leibler divergence is half of Fisher information distance. 
 

),(),(),( 122121 ppDppDppD KLKLF   (9) 

 
In the second situation, the location of missing data is defined to describe the 

relationship between precise (or CRLB) with missing data. Then: 
 

cbCRLBn
n




)(lim
 

(10) 

 
b is location of missing data, n is number of transmitting data, c is const. 

 
 

3. Methods and Simulation Analysis  
To solve problems in section II, two hypotheses are introduced firstly, and then the 

robust uncertainty analysis of vibration test is proposed and simulated, in the end, based on the 
noisy uncertain signal model, robust estimation problem of wireless data transmitting is 
analyzed and simulated.  

  Hypotheses 1: the Packets losing during one period under uncertain interface is the 
Poisson stochastic process; and the Packets losing in different deployment is also the Poisson 
stochastic process.  

Hypotheses 2: Harsh degree, or different environment information contain native test 
error information in Fisher information inequality. For example, the same MEMS chip, 
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uncertainty and deviation of COS application have smaller value than it of industrial application; 
uncertainty and deviation of industrial application have smaller value than it of automotive 
electronics; and uncertainty of automotive application has smaller value than it of harsh 
applications.   

 
3.1. The Vibration Test Design and Robustness Analysis under Harsh Environment 

The first test is to verify the vibration signal model. Here we test vibration in different 
temperature, humidity, and in different place. Table 1 is temperature test data, Figure 2 shown 
test in hydroelectric station. 

Table 1 presents test value of two MEMS vibration sensors in normal (20 º) and cold (-
10º) temperature.  

The first test is to verify the vibration signal model. Here we test vibration in different 
temperature, humidity, and in different place. Table 1 is temperature test data, fig.2 shown test 
in hydroelectric station. 

Table 1 presents test value of two MEMS vibration sensors in normal (20 º) and cold (-
10º) temperature.  

So it is reasonable to use follow uncertain signal model under harsh environment like 
(3). 

 
Table 1. Test Value of Two MEMS Vibration Sensors in Normal (20 º) and cold (-10º) 

Temperature 
 x y z notes 
Normal temperature- 
node No1 

0.00g 0.06g 0.88g  
Rate 1/20 Rate 1/4 Rate 1/4 Vary data/all data 
Change 0.01g Change 0.01g Change 0.01g Max-min value 

Normal temperature- 
node No2 

0.05g 0.02g 0.92  
Rate 1/1.5 Rate 1/1.5 Rate 1/1.5 Vary data/all data 
Change 0.05g Change 0.02g Change 0.08g Max-min value 

Cold temperature- 
node No1 

0.01g 0.13g 0.92g  
Rate 1/20 Rate 1/4 Rate 1/4 Vary data/all data 
Change 0.01g Change 0.01g Change 0.02g Max-min value 

Cold temperature- 
node No2 

0.12g 0.16g 0.95  
Rate 1/1.5 Rate 1/1.5 Rate 1/1.5 Vary data/all data 
Vary 0.1g Vary 0.08g 0.08g Max-min value 

 
 

 
 

Figure 2. Wireless vibration MEMS sensors in fields 
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As the chance (or variety) measure is sub additive. That is, for any countable sequence 

of events ,..., 21  , then have: 
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Method 1: multivariate uncertainty robust statistics problem in worst case analysis, the 
every environment influence factor other than temperature, robust estimation can use formula 
(12), and meanwhile the resolving capability of robust statistics is inversely proportional to the 
harsh degree. 

The simulation of method 1 is use (13) as normal robust statistics, use (11) as in robust 
harsh statistics. as shown in Figure 2 
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(a) An example resolving capability of robust 

statistics in normal environment 

 
(b) An example resolving capability of robust 

statistics in harsh environment 
 

Figure 3. (a)  An example resolving capability of robust statistics in normal environment; (b) An 
example resolving capability of robust statistics in harsh environment 

 
The CRLB of (13) had been proved to be (14): 
 

GCRLGCRLBc )21(   (14) 
 
Theory 1: the CRLBc’ of uncertain signal model under harsh environment  have value 

as shown in (15). 
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The formula (17) is true only ̂  is asymptotic unbiased estimation. 
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So the CRLBc’ of uncertain signal model under harsh environment have value as 

shown in (15), the )'....'( 22
1 n  is come from )(2 b  

Method 2: multivariate uncertainty robust statistics problem in uncertain analysis tools. 
Multivariate data analysis can include a large number of measured variables, even 

some variables overlap (it might be dependent). As shown in Figure 4. 
 

 
Figure 4. Factor Analysis in Multivariate Data Process 

 
 
3.2. The Transmitting Data Test Design and Robustness Analysis under Harsh 
Environment 

In test design, first is testing communication influenced by environment, for temperature 
influence the communication had been tested in research before, irradiation influence  
communication had been tested [27] (as shown in Figure5 ). Second is testing in communication 
protocol, how much packet loss rate can be accepted. Results show 10% packet loss rate is 
reasonable. 

 

 
 

Figure 5. The Relationship between Nuclear Irradiation and Received Signal Strength at 
Different Frequency 
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Method 1: as periodic data has infinity number, so have Equation (19). 
 

cbCRLBn )(  (19) 

 
Suppose the Packets losing during one period under uncertain interface is the Poisson 

stochastic process; and the Packets losing in different deployment is also the Poisson 
stochastic process.  

And suppose all acquired data transmit to the receiver. 
Then use (13) as normal signal, (11) as robust signal, Figure 5 show Possion missing 

data is almost random, and the missing data increase uncertainty, the mean value almost has 
no change. 

Method 2: Basically, Fisher information distance D (8)-(9) has similar meaning with 
cluster analysis of uncertain data (or to do cross-validation). 

As shown in paper [28], reliable estimations of classifier accuracy using cross-validation 
techniques and finite-size data samples shows: the more accurate is a model induced from a 
small amount of real-world data, the less reliable are the values of simultaneously measured 
cross-validation estimates.  

 

 
 

Figure 6. The Relationship between Robust Missing Signal and its Mean Value 
 

 
4. Conclusion 

This paper presents robustness analysis of wireless MEMS vibration sensors under 
harsh environment. In sensing layer,the robust uncertainty analysis of sensor shows the statistic 
resolution of test data is inverse proportional to the harsh degree, and the Fisher information is 
a function with harsh environment status. In communication layer, the mean value of test data 
influenced by Possion missing data is almost random, and the more missing data number 
increases the uncertainty value of test data, but the mean value has almost no change. It is also 
shown that Fisher information distance D has similar meaning with cluster analysis of uncertain 
data. 
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