
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 39, No. 2, August 2025, pp. 1299~1309

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v39.i2.pp1299-1309  1299

Journal homepage: http://ijeecs.iaescore.com

Processing queries on encrypted document-based database

Abdelilah Belhaj1, Soumia Ziti1, Karim Elbouchti2, Noureddine Falih3, Souad NajouaLagmiri4
1Intelligent Processing Systems and Security (IPPS) Team Faculty of Sciences, Mohammed V University in Rabat, Morocco

2Laboratoire Ingénierie des Systèmes Informatiques (LISI) Faculté des Sciences Semlalia, Université Cadi Ayyad Marrakech, Morocco
3LIMATI Laboratory, Computer Science Department, Polydisciplinary Faculty,

University of Sultan Moulay Slimane Beni Mella, Morocco
4IRSM, Institut Supérieur de Management d’Administration et de Génie Informatique Rabat, Morocco

Article Info ABSTRACT

Article history:

Received Jul 27, 2024

Revised Mar 25, 2025

Accepted Jul 2, 2025

 Big data is a set of technologies and strategies for storing and analyzing
large volumes of data in order to learn from it and make predictions. Since
non-relational databases such as document-based have been applied in
various contexts, the privacy protection must be taken into account by

strengthening security to prevent the exposure of user data. In this paper, we
focus mainly on secret sharing scheme that supports secure query with data
interoperability to design a practical model for document-based databases,
especially MongoDB. This approach, being based on secure query
processing by defining elementary and suitable operators, allows us to
perform operational computations and aggregations on encrypted data in the
non-relational document database MongoDB. The obtained results, in the
present work, could find places in various fields where data privacy and
security are primordial such as healthcare, cloud computing, financial

services, artificial intelligence and machine learning, in which user data
remains secure and confidential during processing.

Keywords:

Encryption

MongoDB

NoSQL database

Oriented document

Secret sharing

This is an open access article under the CC BY-SA license.

Corresponding Author:

Abdelilah Belhaj

Intelligent Processing Systems and Security (IPPS) Team Faculty of Sciences

Mohammed V University in Rabat

Morocco

Email: abdelilah_belhaj@um5.ac.ma

1. INTRODUCTION

Deploying a database in the cloud offers scalable, flexible, and cost-effective solutions
for storing and processing data. It can reduce operational overhead and enable organizations to

focus on their core applications. However, the outsourcing of private data storage and processing

to third-party cloud providers introduces significant security and privacy risks. It exposes sensitive

data to potential unauthorized access by external attackers or malicious insiders. Security and

privacy in the cloud environment remain paramount for users who rely on these services for

sensitive data management. Encrypting data before sending it to the cloud is a crucial measure to

address the privacy and security challenges of cloud-based databases. These measures allow

organizations to secure their data and protect it against both external threats and insider risks.

However, querying encrypted data and performing secure computations directly on ciphertext

present significant challenges and several schemes and techniques have been proposed for

processing encrypted data in relational and NoSQL (Not Only SQL) databases [1], each with its
strengths and limitations. These approaches allow for secure operations on encrypted data by

performing aggregate queries over encrypted data. NoSQL is designed to handle large volumes of

data and to store a wide variety of data types. Moreover, it provides significant advantages in

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 2, August 2025: 1299-1309

1300

terms of flexibility and scalability. However, it introduces unique security challenges that

organizations must proactively address [2]-[4].

In relational database, several models have been proposed to ensure Transparent Data

Encryption (TDE). These models offer solutions to provide security for data in-use by secure

query processing over encrypted such as CryptDB [5]. CryptDB employs various encryption

schemes depending on the operations needed on the data. Additive homomorphic encryption used

in cryptDB enables limited arithmetic operations directly on encrypted data because multiplication
and division are challenging to handle with partial homomorphic encryption. According to [6],

MONOMI divides the execution of the query into two parts: one part consists of queries to be

performed on outsourced encrypted data, and the other part involves executing queries on

decrypted data on the user's side. El Bouchti et al. [7] propose a new implementation solution to

protect encryption keys within DBMS by using a master key generated via an encryption on a

table or a column. Omran [8], have proposed approaches based on dividing table attributes into

multiple sub-columns according to the domain values of each attribute. It enables different queries

using an order-preserving mapping fonction. A key limitation of such approaches is that they

support only research on ciphertext.

Alternatively, Xuet al. [9] have adopted an additive homomorphic asymmetric

cryptosystem to conceive an encrypted MongoDB called cryptMDB. It cannot support complex

aggregations or operations on encrypted data due to the limitations of partial homomorphic
encryption. Almarwani et al. [10] the autors propose a model known by a Secure Document

Database (SDDB) for document-based databases which ensures an interrogation of encrypted data.

Fully Homomorphic Encryption allows computation to be performed on encrypted data without

putting it at risk. It has a potential to solve security issues and privacy-preserving data processing

[11]-[16]. However, maintaining this property is challenging because fully homomorphic

encryption also presents several challenges including performance overhead, complexity of

implementation, several limitations in particular high latency and efficiency [17]-[20].

Wong et al. [21] have proposed SDB a secure query processing system that supports data

interoperability. It divides data into sensitive and nonsensitive, with only sensitive data being

encrypted allowing different operators of computation. The main idea of SDB is to split the

sensitive data into two shares, one share is kept by the data owner (DO) and the second is kept by
the service provider (SP). The encryption scheme used by SDB supports data interoperability by

allowing queries on encrypted data without decrypting it. Similar studies can be found in [22]. It

turns out that SDB provides data interoperability, making it possible to process complex queries

by using an asymmetric secret-sharing scheme. It is a proxy between the user and the database.

The SDB proxy is responsible for storing the column keys for sensitive data in its key store and

rewriting SQL operators that involve sensitive columns to their corresponding user-defined

functions (UDFs) [23], finally submitting the rewritten queries to the service provider (SP). The

SDB system adopts an approach based on the secure multiparty computation (SMC) model and

the secret sharing. Moreover, it prevents an attacker from recovering any sensitive data from their

encrypted values. The cryptographic process of the secret sharing consists, on the one hand, of

generating the item key encryption for each cell identified by the row number in each sensitive
column on the other, of sharing the computation of the encrypted value from its plaintext one.

In the present investigation, we apply the cryptographic tools of SDB on a document-

based database, referred to as secure query processing on document-based database MongoDB

(SMDB). Employing SDB principles to MongoDB enhances data security and privacy, secure

query processing in encrypted document-oriented databases. Our contribution is based on

processing data using a secret sharing encryption scheme to perform operational computations and

aggregations on encrypted data without revealing its content in non-relational document databases.

In particular, the present investigation could solve a relevant problem in data security by

preserving privacy. We expect that it could find a place in the bridging scenario of the

cryptography and security in order to maintain data privacy such as financial and medical

records [24]-[27].

2. METHOD

2.1. The proposal model

In this section, we present the architecture of SMDB being illustrated in Figure 1. In

addition, we describe in details the encrypted tool which is the subject of the present investigation

in this paper. In particular, the cryptographic tool will be studied.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Processing queries on encrypted document-based database (Abdelilah Belhaj)

1301

Figure 1. SMDB architecture

Here, the cryptosystem used in SDB is adopted. In SMDB, we use a common encrypted

tool proposed in the reference [17]. This allows us to perform multiple operations on encrypted

data. Before that, we consider the following materials. Specifically, g is a secret number and n is a

public key being generated according to the RSA cryptosystem. n = pq is a large positive integer
where p and q are prime numbers. In this way, g denotes a random number co-prime with n. To

start, we take a sensitive field F of the collection COL in document-oriented database DB. In

document-oriented database like MongoDB, each document includes a unique _id field. The latter

is a simple identifier being generated automatically. It can be used to retrieve a document.

Moreover, it can be considered as the first field of such a document which acts like a primary key.

The document could involve several sensitive fields. In order to elaborate simplified analysis, we

assume that the documents of collection myCOL have only one sensitive field F illustrated by:

{_ID: "value", "F": "value" // sensitive field, Other fields: 'data' }

We exploit two types of keys being field key and document encryption key. Indeed, the field key

represents a pair of random number randomly generated by DO (Data Owner) for each sensitive

field. As an example, we consider a sensitive field F. Indeed, we denote by fkF = ⟨m|x⟩the field

key of F where m and x are two random number such that 0 ≤ m, x ≤ n.

Document Encryption Key denoted by DK F is the item key to encrypt and decrypt the

sensitive field F in each document. It can be generated from the field key fkF < m, x > and _id of

document such that 0 ≤ _id ≤ n according to the following relationship:

𝐷𝐾𝐹 = 𝑘𝑒𝑦_𝑔𝑒𝑛(𝑖𝑑, 𝑓𝑘𝐹(𝑚, 𝑥)) = 𝑚𝑔(𝑖𝑑 𝑥 𝑚𝑜𝑑 𝜙(𝑛))𝑚𝑜𝑑 𝑛. (1)

It is denotedthat DKF varies with the _id document. Certain notations will be used. 𝑉 represents

the plaintext of the sensitive filed which must be stored in an encrypted form. Ve denotes the

encrypted value of 𝑉 and DKF
−1 denotes the modular multiplicative inverse of DKF

 such as:

𝐷𝐾𝐹 . 𝐷𝐾𝐹
−1 = 1 𝑚𝑜𝑑 𝑛. (2)

The value of the sensitive field is encrypted by the public key FDK as:

𝑉𝑒 = 𝐸𝐷𝐾𝐹
(𝑉) = 𝑉. 𝐷𝐾𝐹

−1 𝑚𝑜𝑑 𝑛 (3)

The decryption process is given as follows:

𝐷𝐷𝐾𝐹
(𝑉𝑒) = 𝑉. 𝐷𝐾𝐹𝑚𝑜𝑑 n = 𝑉. 𝐷𝐾𝐹 . 𝐷𝐾𝐹

−1𝑚𝑜𝑑 𝑛 = 𝑉𝑠 . (4)

The_id of document is used to encrypt the value of the sensitive field F. Thus, the

identifier _ID itself must be encrypted. It does not need to be encrypted in the same way as

sensitive fields. To illsutre this scenrio, Figure 2 shows the process of encrypting the values of the

field F in each document into encrypted values.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 2, August 2025: 1299-1309

1302

Figure 2. Encryption of field F in each document (n=55 and g= 3).

2.2. Secure operators in encrypted document-database
In this subsection, we provide relevant details of SMDB by giving comprehensive

description and implementation of secure operators.

2.2.1. Multiplication operator (×)

First, we consider a collection called myCol in the document oriented database myDB

containing two sensitive fields A and B as follow :{ _id:"", "A": "Encrypted value", "B":

Encrypted value"}, fkA = ⟨mA|xA⟩ and fkB = ⟨mB|xB⟩are their key fields respectively.

Suppose a user send the following MQL (MongoDB Query Language) query to calculate the
multiplication of the field A and the field B over encrypted values:

myCol.aggregate([{ $project: {_id:1, R: { $multiply: ["$A", "$B"] } } }])

First, the proxy rewrites and sends a rewritten query to MongoDB. Now, we show how

this scenario works. Indeed, we consider R as the output field containing the result of the

multiplication of the fields A and B in the encrypted form R=A×B. For a document identified by

id, a and b are the plaintext values of fields A and B, respectively. However, ae and be denote

their encrypted values stored in the database. Take r being the plaintext value of the output field

Rsuch that r = a × b. Let re be the encrypted value of nR given by 𝑟𝑒 = 𝑎𝑒 × 𝑏 𝑒 .

MongoDB executes the MQL query over encrypted data and returns results to the proxy server.

For each document, the query computes the product of the encrypted values ae and be and returns

the result re which should be stocked in the output field R. This scenario is illustrated in Figure 3.

Figure 3. The multiplication of two sensitive fields. (n=55 and g= 3)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Processing queries on encrypted document-based database (Abdelilah Belhaj)

1303

The proxy server constructs the key field fkR of R according to the following relationship:

𝑓𝑘𝑅 = ⟨𝑚𝐴 × 𝑚𝐵|𝑥𝐴 + 𝑥𝐵⟩. (5)

It determines the document key DKR. The later is the key used to decrypt the field R in each

document identified by _id as follows: 𝐷𝐾𝑅 = 𝑚𝐴 × 𝑚𝐵𝑔𝑖𝑑(𝑥𝐴+𝑥𝑏)(𝑚𝑜𝑑 𝑛) which is equivalent

to: 𝐷𝐾𝑅 = 𝐷𝐾𝐴. 𝐷𝐾𝐵(𝑚𝑜𝑑 𝑛). Indeed, we have :

𝑟𝑒 . 𝐷𝐾𝑅 = 𝑎𝑒 . 𝑏𝑒. 𝐷𝐾𝑅 = 𝑎. 𝐷𝐾𝐴
−1. 𝑏. 𝐷𝐾𝐵

−1. 𝐷𝐾𝐴. 𝐷𝐾𝐵(𝑚𝑜𝑑 𝑛) = 𝑎. 𝑏(𝑚𝑜𝑑 𝑛)

𝑟𝑒 . 𝐷𝐾𝑅 = 𝑟. (6)

Finally, the proxy server decrypts the cipher text of R which is the result of the multiplication by

using DKR and returns the plaintexts to the authorized user. In what follows, we give the assioated

Algorithm 1:

Algorithm 1. EE multiplication

Input : Field A, B with field key ⟨mA|xA⟩ and ⟨mB|xB⟩
Output: R= A.B with R's field key ⟨mR|xR⟩
Client-protocol:

mR = mA × mB mod ϕ(n)

xR = xA + xBmod n.
Server-protocol:

for each document id do:

 Let ae, b e be the encrypted value of A and B. Set re = ae × b emod n.

End.

2.2.2. Key field update 𝒌𝐞𝐲_𝐮𝐩𝐝𝐚𝐭𝐞

In order to update the key field fkA = ⟨mA|xA⟩ of the field A to ⟨mC|xC⟩ without

affecting stored data, one needs an operator denoted by key_update(A, ⟨mC|xC⟩). Key update is a

helper operator that takes as input a field A and a target field key ⟨mC|xC⟩. It gives as output a

field C with fkC = ⟨mC|xC⟩ is its key field. C shares some plaintext of the field A without

revealing sensitive value. First of all, we add a new auxiliary field S with the field key ⟨ms|xs⟩ in

the collection with the plaintext value given by 𝑆 = 1 𝑚𝑜𝑑 𝑛. According to the encryption

protocol mentioned above, we have: 𝑠𝑒 = 𝐷𝐾𝑠
−1(𝑚𝑜𝑑 𝑛) where se is the encrypted value of S.

The proxy computes two numbers p and q such that:

𝑝 = 𝑥𝑆
−1(𝑥𝐶 − 𝑥𝐴)𝑚𝑜𝑑 𝜙(𝑛) (7)

𝑞 = 𝑚𝐴. 𝑚𝑠
𝑝

. 𝑚𝐶
−1. 𝑚𝑜𝑑 𝑛. (8)

For each document, MongoDb computes the value of the output field C via Ce = q. ae. se
p

following to the Algorithm 2:

Algorithm 2: _update(A, ⟨mC|xC⟩)

Input: Field A with field key ⟨mA|xA⟩
Output: C= A with C's field key ⟨mC|xC⟩
Client-protocol :

Let the field S with the field key ⟨ms|xs⟩

 p = xS
−1(xC − xA)mod ϕ(n), q = mA. ms

p
. mC

−1. mod n.
Server-protocol: Obtain p,q

for each document id do:

 Let ae, sebe the encrypted value of A and S. Set ce = q. ae. se
p

mod n .

end.

The rewriting MQL query is as follow:
Xs, ms=generate_key_field(), Add_auxilary_field(S)

P, q=compute_pq(ma,xa,mn,xn,ms,xs)

myCol.aggregate([{$project {_id:1, N: {$multiply:[p,"A","$pow":{"S",q}]},}

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 2, August 2025: 1299-1309

1304

 The proxy decrypts the result stored in the field N using the key update fkN = ⟨mN|xN⟩ . The

key_update(A, ⟨mN|xN⟩) operator will help us to define other secure operators, serving as a

relevant tool.

2.2.3. Addition/Subtraction (+,-)

Given a request from the user to calculate the sum of two sensitive fields A and B stored in
encrypted form in document-oriented database MongoDB:

myCol.aggregate([{ $project: {_id:1, C: { $sum: ["$A", "$B"] } } }]

The query performs calculations on encrypted data. Our objective is to calculate the sum

without revealing the plaintext value of the sensitive fields. The result of the sum is stored in

the output field C returned by query such that C=A+B. For each document, MongoDB computes

Ce which denotes the sum of the encrypted values aeand be given by 𝐶𝑒 = 𝑎𝑒 + 𝑏𝑒. In order to
make our protocol behaves like an isomorphic additive function, we should perform the same field

key for A, B and C such that: 𝑓𝑘𝐴 = 𝑓𝑘𝐵 = 𝑓𝑘𝐶 = 𝑘. We can use the key update operator to

assign them the same field key without modifying the contents of fields. The proxy rewrites the

query by first applying the key update operator to the fields A and B. To do this, the server proxy

generates a field key ⟨mC|xC⟩ and computes the output fields A1 and B1 by applying the key

update protocol to fields A and B and using the same key field⟨mC|xC⟩ . This leads to A1

= key_update(A, ⟨mC|xC⟩) and B1 = key_update(B, ⟨mC|xC⟩). The field key of A1and B1 and C

are all ⟨mC|xC⟩, as shown in Algorithm 3.

Algorithm 3. EE addition

Input: Field A, B with field key ⟨mA|xA⟩ and ⟨mB|xB⟩
Output: C= A+B with R's field key ⟨mC|xC⟩
Client-protocol: Generate random ⟨mC|xC⟩
A1 =key_update(A, ⟨mC|xC⟩), B1=key_update (B, ⟨mC|xC⟩)

Server-protocol:

for each document id do:

 Let ae, b e be the encrypted value of A1 and B1, Set ce = ae × b emod n.

 end.

The SMDB proxy server rewrites the query as follows:

myCol.aggregate([{ $project { id:1, A1 : {$multiply:[pa,"A","$pow":{"SA",qa}]},

B1: {$multiply:[pb,"B","$pow":{"SB",qb}]}, C :{ $sum: ["A1", "B1"] }}])

The proxy decrypts the result of the sum stored in the field C by usingDKC = (id , ⟨mC|xC⟩) and

returns the plaintext value to the user.

2.2.4. Comparison (= / >)

Given two sensitive fields A and B stored in encryption form in document-based
database. W consider two comparison operators including equality (=) and ordering (>) that

compare values and return true or false. The proxy first calculates C = F × (A − B) where F is a

random field in a collection and C is the output field. Secondly, the proxy applies key update

operator to the output field C. Let Z be the output field of the key update operator such that

Z= 𝑘𝑒𝑦(𝐶, ⟨1|0⟩). Finally, the proxy can determine the comparison's outcome based on the value

z of Z. If 𝑧 > 0, then one has 𝑎 > 𝑏 and if 𝑧 = 0 then one has 𝑎 = 𝑏. The comparison is often

used in selection queries. Suppose a user sends a Mql query to proxy server as follows:

db.users.find({ ”A” : "B"})

This Mql query will be rewritten by the proxy. Firstly, the Proxy computes two numbers 𝑝𝑧 and

𝑞𝑧 according to the previous relationships, and adds a new auxiliary field Z, as shown in

Algorithm 4

Algorithm 4. Comparison

Input: Field A, B with field key ⟨mA|xA⟩ and ⟨mB|xB⟩
Output: field of comparison results C= 1 if A>B; C=0 if A=B; C=-1 if A<B

Client-protocol:

R = F × (A − B) , Z= key_update(R, ⟨1|0⟩).
Server-protocol:

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Processing queries on encrypted document-based database (Abdelilah Belhaj)

1305

for each document id do:

 Let ze be the values on Z. if ze > 0: ce = 1 elif ze = 0: ce = 0 Else ce = −1

end.

Then, the proxy server rewrites the MQL query as follows:

add_auxillary_field("SZ",ms,xs)

p,q=calcul_pq(mc,xc,1,0,ms,xs)

myCol.aggregate([{ $match:{"$$Z" :0}

$project {_id:1,C: {$multiply:["F","$subtract":{"$A", "$B"}]},

Z: {$multiply:[pz,"C","$pow":{"SZ",qz}]},}])

2.2.5. Aggregation operations, sum, count, average and group

Several documents are processed via aggregation operation, which then produce results.

Consider the collection myCol, which has n documents and an encryptedvalue in the sensitive

Field A. Our objective is to calculate the sum of the values in the field A from encrypted

data: Sn = ∑ ai
n
i=1 where ai are the plaintext values of the field A in a document To achieve this,

the proxy first generates a random number mC and applies the key update protocol to the field A.

Take C the output field such that C = key_update(A, ⟨mC|0⟩) and Cn is the sum of (ci)e which

denotes encrypted value of the field C in the document

Cn = ∑ (ci)e
n
i=1 = 𝑚𝐶

−1. 𝑆𝑛. (9)

Indeed, we have:

𝑆𝑛 = 𝑚𝐶
 . 𝐶𝑛. (10)

A user can send the following methods to calculate the sum of values in a field A in MongoDB:
db.myCol.aggregate([{$group: { _id:null, sum_val:{$sum:"$A"}}}]).

The proxy rewrites the query by executing key updates protocol and stores the result in the output

field C as follows:

Xs,ms=Generate_key_field() ,add_auxillary_field("S")

mc=generate_number()

p,q=calcul_pq(ma,xa,mc,0,ms,xs)

db.myCol.aggregate([{$group: { _id:null, C: {$multiply:[p,"A","$pow":{"S",q}]},

sum_val:{$sum:"$$C"}}}]).

The proxy decrypts the result by using the following relationship:

𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑠𝑢𝑚𝑣𝑎𝑙
= 𝑠𝑢𝑚𝑣𝑎𝑙 × 𝑚𝑐 (11)

In the same way, we can define the other aggregation operators, including:$count, $group, $avg.

2.3. Implementation

The implementation of this system has three basic entities: client, proxy SMDB

representing the main logic of this system, and a server provider. The latter performs a number of

functions through UDFs which are the user defined JavaScript functions stored on Google Cloud

storage buckets. The proxy uses secret sharing encryptions to encrypt sensitive filed. The Id field

is encrypted using the AES-CMC deterministic encryption algorithm which allows the server to

find the document. SMDB proxy is composed of four main componentswhich are Query Parser,

Query analyser, Query Rewriter and Query Executer.

We must emphasize that choosing the appropriate length of key for SMDB cryptosystem
is essential to achieve a balance between security and performance. We notice that the length of

ciphertexts is quite long since we use 1024-bit key length. To ulistrate, we provide certain

example:For key size=1024 bit, To generate the field key of the sensitive field A ⟨mA|xA⟩, we

give the following scheme:

xa=random.randint(1,n)

ma=random.randint(1,n)

Consider the following document containing two sensitive fields A and B. {'A': 1235 , 'B': 524}

The _id is a identifier of each document arbitrarily generated as follow :id= random.randint(1,n).

The id is added in encrypted form using AES [28] encryption scheme in particular AES-CBS [29].

According to cryptosystem of secret sharing SMDB, a cipheretext document is created and sent to

MongoDB server by proxy server.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 2, August 2025: 1299-1309

1306

3. RESULTS AND DISCUSSION
Given the following MQL query which computes the product of the sensitive field A and

B and only returns documents where the value of output field C is greater than 1255.

db. mycol.aggregate([{ $ project: { id: 1, C: { $multiply: ["$A", "$B"] } } },

{ $match: { C: { $gt: 1255 } } }])

All the experimental procedures are performed on an Intel(R) Core (TM) i5-1035G1 CPU

@ 1.00 GHz, 1190 MHz, 4 cores, 8 processors. Overview of query performance: stage breakdown

and client vs. server execution time as shown in Figure 4. Figure 4(a) shows the performance of

the query and the amount of time taken by each component of the proxy.

(a) (b)

Figure 4. Performance of the query (a) query performance time and (b) client-side and server-side query

performance

The cost of client-side and server-side query execution is illustrated in Figure 4(b). To evaluate the

execution time of the proxy server, we divide it into several components. The total proxy execution Time is

measured from the moment the query enters the proxy until the final result is returned to the client. server

must handle all processing, which can be costly. It depends on several factors including encryption and

decryption overhead, query complexity and performance. The proposal model has been tested by considering
numbers of documents ranging from 500 to 2500. The time taken by a query in a proxy system SMDB plus

response time from the server. Figure 5 illustrates a comparison of the time required for aggregate operations

between an unencrypted database and a database encrypted using our SMDB Model

Figure 5. Aggregate query execution time using SDMB

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Processing queries on encrypted document-based database (Abdelilah Belhaj)

1307

Applying SDB approach based on secure query processing with data interoperability in a

cloud database to a document-based database like MongoDB involves several key considerations.

Although SDB provides robust data protection and privacy for securely processing queries in

encrypted databases, it also encounters certain limitations and challenges including high

computational costs, storage overhead due to encrypted data size, finally key management and

Security Risks. As an expected behavior, it has been remarqued that the execution time increase
rapidly in terms of number of documents. In the end of this work, we would like to discuss the

security behavior. Multiple systems have indeed been implemented to detect and prevent attacks

on SQL and NoSQL databases [30]-[32]. First, we provide the treats of our model illustrated in

Figure 6. There are two main types of threats. For treat 1, the SMDB proxy server can be

compromised by attackers. In this case, the attackers can use the keys to arbitrarily encrypt or

decrypt user data.

For the threat 2, an attacker can see the requests sent to the SP and all intermediate

encrypted results from any operator involved in the request. An attacker can also intercept

messages exchanged over the communication channel between the client and the server. The

attacker cannot deduce the plaintext of the sensitive field or the encrypted result.

To summarize, we have approached a secret sharing scheme promote secure query with

data interoperability to design a practical model for document-based databases, especially
MongoDB. Since the application of fully homomorphic encryption is not easy task, this study can

be exploited to perform operational computations and aggregations on encrypted data in the non-

relational document database MongoDB. The present work could find places in various fields

where data privacy and security are primordial such as healthcare, Cloud Computing, financial

Services, artificial intelligence and Machine Learning, in which user data remains secure and

confidential during processing. However, the empirical discussions need more sophisticated

hardware. We hope address such questions in futures researches.

Figure 6. Threats of scheme

4. CONCLUSION

In this paper, we have presented a practical model for Secure MongoDB document-

oriented database SMDB based on secret sharing. We have provided an exhaustive explanation of

SMDB’s query rewriting and analysis of performance. It has remarked that this query processing

system based on a asymmetric secret-sharing is practically efficient that supports multiple secure

operators while maintaining data interoperability. This is crucial in sensitive sectors like

healthcare, financial services, banking and government. Moreover, it has been believed that the
obtained results could find places in various applications and uses in connection with AI, in which

the neural networks could be applied to encrypted data. However, our model provides robust data

protection and privacy, its application in NoSQL databases introduces certain challenges related to

performance, scalability, and complexity. This approach could be adopted for appropriates

applications where the importance of this study appears more relevant for extended hardware. This

may need more thinking and further investigations.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 2, August 2025: 1299-1309

1308

REFERENCES
[1] J. Xia, Q. Huang, Z. Gui, and W. Tu, “NoSQL databases,” in Open GIS, Cham: Springer International Publishing, 2024,

pp. 143–171.

[2] M. Kantarcioglu, “Securing big data: new access control challenges and approaches,” in Proceedings of ACM Symposium on

Access Control Models and Technologies, SACMAT, May 2019, pp. 1–2, doi: 10.1145/3322431.3326330.

[3] S. Sicari, A. Rizzardi, and A. Coen-Porisini, “Security&privacy issues and challenges in NoSQL databases,” Computer Networks,

vol. 206, p. 108828, Apr. 2022, doi: 10.1016/j.comnet.2022.108828.

[4] S. B, “‘Using MongoDB to understand the underlying methods techniques encryption in NoSQL database,’” International

Journal of Research Publication and Reviews, pp. 862–866, Sep. 2022, doi: 10.55248/gengpi.2022.3.9.23.

[5] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb: protecting confidentiality with encrypted query

processing,” in Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, Oct. 2011, pp. 85–100,

doi: 10.1145/2043556.2043566.

[6] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing analytical queries over encrypted data,” Proceedings of the

VLDB Endowment, vol. 6, no. 5, pp. 289–300, Mar. 2013, doi: 10.14778/2535573.2488336.

[7] K. El bouchti, S. Ziti, F. Omary, and N. Kharmoum, “New solution implementation to protect encryption keys inside the database

management system,” Advances in Science, Technology and Engineering Systems Journal, vol. 5, no. 2, pp. 87–94, 2020, doi:

10.25046/aj050211.

[8] O. M. Omran, “Data partitioning methods to process queries on encrypted databases on the cloud.” 2016.

[9] G. Xu, Y. Ren, H. Li, D. Liu, Y. Dai, and K. Yang, “CryptMDB: a practical encrypted MongoDB over big data,” in IEEE

International Conference on Communications, May 2017, pp. 1–6, doi: 10.1109/ICC.2017.7997105.

[10] M. Almarwani, B. Konev, and A. Lisitsa, “Fine-grained access control for querying over encrypted document-oriented database,”

Communications in Computer and Information Science, vol. 1221 CCIS, pp. 403–425, 2020, doi: 10.1007/978-3-030-49443-8_19.

[11] R. Hamza et al., “Towards secure big data analysis via fully homomorphic encryption algorithms,” Entropy, vol. 24, no. 4, p. 519,

Apr. 2022, doi: 10.3390/e24040519.

[12] N. R, V. K, M. A, I. P, and A. P, “A hybrid improved zhou and wornell’s inspired fully homomorphic encryption scheme for

securing big data computation in cloud environment.” Apr. 16, 2021, doi: 10.21203/rs.3.rs-356001/v1.

[13] A. Alabdulatif, I. Khalil, and X. Yi, “Towards secure big data analytic for cloud-enabled applications with fully

homomorphic encryption,” Journal of Parallel and Distributed Computing, vol. 137, pp. 192–204, Mar. 2020, doi:

10.1016/j.jpdc.2019.10.008.

[14] A. Jadama, A. Mohammed, and F. Rashid, “Fully homomorphic encryption,” 2024.

[15] Z. Zheng, K. Tian, and F. Liu, Fully Homomorphic Encryption. 2023.

[16] T. Z. Erlanovna, T. Sakhybay, A. Z. Muratovna, and T. Gulzat, “Development Paillier’s library of fu lly homomorphic

encryption,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 34, no. 3, pp. 1989–1998, Jun. 2024, doi:

10.11591/ijeecs.v34.i3.pp1989-1998.

[17] G. Dimitoglou and C. Jim, “Performance evaluation of partially homomorphic encryption algorithms,” in Proceedings - 2022

International Conference on Computational Science and Computational Intelligence, CSCI 2022 , Dec. 2022, pp. 910–915, doi:

10.1109/CSCI58124.2022.00163.

[18] N. Jain and A. K. Cherukuri, “Revisiting fully homomorphic encryption schemes,” arXiv, 2023, doi: 10.48550/arXiv.2305.05904.

[19] A. Maqousi, M. Alauthman, and A. Almomani, “Homomorphic encryption enabling computation on encrypted data for secure

cloud computing,” in Innovations in Modern Cryptography, 2024, pp. 215–240.

[20] W. Dai and B. Sunar, “cuHE: a homomorphic encryption accelerator library,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9540, 2016, pp. 169–186.

[21] W. K. Wong, B. Kao, D. W. L. Cheung, R. Li, and S. M. Yiu, “Secure query processing with data interoperability in a cloud

database environment,” in Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data , Jun. 2014,

pp. 1395–1406, doi: 10.1145/2588555.2588572.

[22] M. R. Asghar, G. Russello, B. Crispo, and M. Ion, “Supporting complex queries and access policies for multi -user encrypted

databases,” in Proceedings of the 2013 ACM workshop on Cloud computing security workshop, Nov. 2013, pp. 77–88, doi:

10.1145/2517488.2517492.

[23] J. Luo, L. Zhang, and X. Li, “A model-driven parallel processing system for IoT data based on user-defined functions,” in 2020

IEEE 5th International Conference on Cloud Computing and Big Data Analytics, ICCCBDA 2020, Apr. 2020, pp. 463–470, doi:

10.1109/ICCCBDA49378.2020.9095646.

[24] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 576 LNCS, Berlin, Heidelberg:

Springer Berlin Heidelberg, 1992, pp. 420–432.

[25] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network predictions via MiniONN transformations,” in

Proceedings of the ACM Conference on Computer and Communications Security, Oct. 2017, pp. 619–631, doi:

10.1145/3133956.3134056.

[26] T. Sander, A. Young, and Moti Yung, “Non-interactive cryptocomputing for NC/sup 1/,” in 40th Annual Symposium on

Foundations of Computer Science (Cat. No.99CB37039), 2003, pp. 554–566, doi: 10.1109/sffcs.1999.814630.

[27] B. Sarkar, A. Saha, D. Dutta, G. De Sarkar, and K. Karmakar, “A survey on the advanced encryption standard (AES): a pillar of

modern cryptography,” International Journal of Computer Science and Mobile Computing, vol. 13, no. 4, pp. 68–87, Apr. 2024,

doi: 10.47760/ijcsmc.2024.v13i04.008.

[28] M. Vaidehi and B. J. Rabi, “Design and analysis of AES-CBC mode for high security applications,” in Second International

Conference on Current Trends In Engineering and Technology - ICCTET 2014, Jul. 2014, pp. 499–502, doi:

10.1109/ICCTET.2014.6966347.

[29] R. Macedo et al., “A practical framework for privacy-preserving NoSQL databases,” in 2017 IEEE 36th Symposium on Reliable

Distributed Systems (SRDS), Sep. 2017, vol. 2017-Septe, pp. 11–20, doi: 10.1109/SRDS.2017.10.

[30] M. Shachi, N. S. Shourav, A. S. S. Ahmed, A. A. Brishty, and N. Sakib, “A survey on detection and prevention of SQL and

NoSQL injection attack on server-side applications,” International Journal of Computer Applications, vol. 183, no. 10, pp. 1–7,

Jun. 2021, doi: 10.5120/ijca2021921396.

[31] C. Blanco et al., “Security policies by design in NoSQL document databases,” Journal of Information Security and Applications,

vol. 65, p. 103120, Mar. 2022, doi: 10.1016/j.jisa.2022.103120.

[32] A. M. Eassa, “NoSQL security in web application,” in The Role of Cybersecurity in the Industry 5.0 Era, IntechOpen, 2025.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Processing queries on encrypted document-based database (Abdelilah Belhaj)

1309

BIOGRAPHIES OF AUTHORS

Abdelilah Belhaj in 2013, he earned his Master’s degree in applied informatics
and offshoring from Mohammed V University in Rabat, Morocco. Currently, he is pursuing
his Ph.D. His research in in cryptography, big data and deep learning. He can be contacted at
email: abdelilah_belhaj@um5.ac.ma.

Soumia Ziti is a full professor and researcher at Mohammed V University in
Rabat since 2007. She obtained her PhD in computer science specializing in graph theory from
the University of Orleans in France, along with a diploma in advanced studies in fundamental
computer science. Furthermore, she earned a master's degree in science and technology in
computer science from the same institution. Her research interests encompass a wide range of
topics including graph theory, information systems, artificial intelligence, data science,
software development, database modeling, big data, cryptography, and numerical methods and

simulations. She can be contacted at email: s.ziti@um5r.ac.ma.

Karim El Bouchti in 2020, he obtained a Doctor of Computer Science degree
from the Faculty of Sciences of Mohammed V University in Rabat Morocco. Since 2023, he
has been working as an associate professor at the Faculty of Sciences Semlalia, University
Cadi Ayyad Marrakech, Morocco. With 10 years of professional experience in CNESTEN the

National Center for Energy Sciences and Nuclear Technology, his field of research focuses on
cyber security, big data analytics. He can be contacted at email: k.elbouchti@uca.ac.m.

Noureddine Falih in 2013, he obtained a Doctor of Computer Science degree
from the Faculty of Sciences and Technologies of Mohammedia, Morocco. Since 2014, he has
been working as an associate professor at the Polydisciplinary Faculty of Sultan Moulay
Slimane University in Beni Mellal, Morocco. With 18 years of professional experience in
several renowned companies, his research interests revolve around information system

governance, business intelligence, big data analytics, and digital agriculture. He can be
contacted at email: nourfald@yahoo.fr.

Souad Najoua Lagmiri she received her diploma for doctor degree from the
Mohammadia School of Engineers Rabat. Currently Director of the Higher Institute of
Management, Administration and Computer Engineering Rabat Morocco. She has published
several scientific articles in international journals and conferences. His field of research

focuses on encryption algorithms, cryptography, and information security based on complex
mathematical equations. She can be contacted at email: snajoua.lagmiri@gmail.com.

mailto:najoua.lagmiri@gmail.com
https://orcid.org/0000-0002-5357-9170
https://scholar.google.com/citations?user=WRHlJrEAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=55999104600
https://orcid.org/0000-0002-5073-1536
https://scholar.google.com/citations?user=fkn6edwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=7401623241
https://orcid.org/0000-0002-1418-3173
https://www.scopus.com/authid/detail.uri?authorId=57205694849
https://orcid.org/0000-0003-1608-6390

