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Abstract 
This paper introduces the uses of Robust Dynamic State Estimation (RDSE) with Phasor 

Measurement Unit (PMU), The M-Estimators Quadratic Linear (QL) and Square Root (SR) Estimators 
have been used. For the solution of the M-estimators problem, Iteratively Re-weighted Least Squares 
Estimation (IRLS) method is applied. In this work, we used the Decoupled Current Measurement (DCM) 
method to include the Phasor Measurement Unit in Robust Dynamic State Estimation. The proposed 
method has been tested on standard data 30-bus testing system as a case study. 
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1. Introduction 
The power system can be operated in economic and secure with high reliability, if its 

state is known at the present time and next time, one step ahead for a known loading condition 
and network topology [1]. Static State Estimation (SSE) provides the information of system state 
of present time instant [2, 3]. Because the nature of the power system is not static, so,  Dynamic 
State Estimation (DSE) can provide the information of system state of the current and next time 
instant (one step ahead) [4]. The DSE can predict the system state based on the previous state 
of the system, followed by a filtering process to provide the estimated state of the system [4-6]. 
In electric power system the prediction of the state variables at the next time interval, is very 
important for operation and control in both normal and abnormal conditions.   

Most of the existing DSE methods at predicting and filtering step fail to determine the 
true behavior of the power system dynamics [4, 5], [7-9]. Moreover, the outlieris and Leverage 
points, which are created from the bad data points in the measurements, have a large influence 
on the state estimate. Therefore, M-Estimator concept is introduced to develop a robust 
dynamic state estimation method based on modeling the system dynamics for predicting and 
filtering step to improve the performance of the filter in presence of outliers [1, 2, 10, 11].  

In state estimation, the state variable (bus voltage angle) is very important for 
estimating the state of the system. This voltage angle was not available by SCADA system as a 
measurement before. At recent time, PMUs able to provide the direct measurement of 
synchronized voltage phase angle as well as voltage magnitude and current phasor at the 
buses where it is installed, with addition to higher accuracy than the SCADA [12-14]. Therefore, 
many methods are proposed to install the PMUs in state estimation. In [15], Hybrid state 
estimation is proposed, in which a linear measurement model of traditional SE in terms of the 
voltage and current that provided by PMU measurements to form an augmented measurement 
vector resulting in a nonlinear state estimator. An alternative approach to include synchronized 
Phasor measurement in traditional state estimation is presented in [16]. A multilevel scheme 
and two stages of state estimator using PMUs is proposed in [17, 18]. In [19], an extensive 
review on the usage of PMUs is presented.  

In this paper, a Robust Dynamic State Estimation (RDSE) is proposed with and without 
PMU, based on M-Estimators. Quadratic Linear (QL) and Square Root (SR) estimators are 
used. Iteratively Re-weighted Least Squares Estimation(IRLS) method is applied. A technique 
using DCM to add PMU in state estimation is used. For predicted and filtered state we used 
Holt’s double exponential smoothing technique and EKF. The proposed method is applied to the 
standard data IEEE 30-bus as a case study [20]. 
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2.  Mathematical Model  
2.1. M-estimators  

The Weighted Least Square (WLS) state estimation model can be found in [21].The M-
estimators are a maximum likelihood estimator, minimize an objective function which represents 
the measurement residuals  r , subject to the constraints given by measurement equations 

[2]. 
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Where,  r  is a function represents the measurement residual ir , z is the vector of the 

measurements, x  is the state variables and  h x  is the measurement function. 

 
2.2. Iteratively Re-weighted Least Squares Estimation (IRLS) 

This method can suppress the bad data in the regular measurements, and also can 
avoid the impact of any existing of leverage measurements when they carry bad data [2].  

The objective function is expressed as: 
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By using Taylor approximation for    k kh x h x H x    yields: 
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  is the tuning parameter whose values range between 1 and 4, specified by the users. 
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2.3 Decoupled Current Measurement (DCM) Method 
In this method, the decoupled formulation of Weighted Least Square (WLS) is used [2, 

14]. The current measurement which is measured by PMU is decoupled into active and reactive 
measurement and added to the WLS state estimation decoupled formula. Hence, the new 
formulation of the measurements set is written as: 
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" "AZ  represent active measurements. " "RZ  is the reactive measurements. The subscripts" "r
and " "i  are the real and imaginary part of the phasor measurements.  

The line current i jI in line " "ij  is calculated as in [16].  
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The series admittance between bus " "i  and bus " "j  is ij ij ijy g jb  , and the shunt admittance 

at bus " "i  is  0 0i iy jb .The nonlinear. 

The Jacobin matrix of the phasor measurement is written as. 
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2.4. Robust Dynamic State Estimation with PMU 

The basic model of DSE is given by: 
  

1x F x G wk k k k k                                                                                          (13) 

 
Where kx is the state vector at instant k, 1xk  is the state vector at instant  1k  , Fk  is a function 

represents the state transition between two instants of time, and is an  n n  diagonal matrix,Gk  

is a vector associated with trend behavior of the system of the state trajectory dimensional  1n   

and w k is white Gaussian noise with zero mean and covariance matrix Q.  
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The parameters F k and G k  are calculated using Holt’s double exponential smoothing 

method [7, 22]. 
For predicted state, Let ˆkx  and k  be the estimated state at a time k  and its 

covariance matrix, at  time  1k  , the predicted state vector 1xk   and its covariance matrix 

1kM   can be obtained by: 

 
ˆ
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For filtering state, now we obtained the new measurements 1kz   at the instant of time 

 1k  . Based on the data at a time k  the forecasted state vector at the instant of time  1k   

will then be filtered to obtain the estimated state 1kx  at the instant of time  1k 
 with its 

estimated error’s covariance 
1k  . By using EKF , the objective function minimizes the residuals 

of the measurements and error in the state vector. Hence, the objective function for active 
measurements and reactive measurements at the next time (k+1) is given by: 
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Note that, the time index  1k   has been omitted to simplify the notation.  
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Where K is called the gain matrix. 

 
 

3. The Simulation Analysis 
3.1. Description of Simulation  

In this paper, IEEE 30-bus test system is used to evaluate the performance of the 
proposed method. The load curve at each bus was composed of a linear trend and random 
fluctuation (jitter). For simulating the dynamic nature of the system, the simulation is carried out 
over a period of 20 time sample intervals. During each interval, the load per bus is increased by 
a constant change of 5% for all buses with a constant power factor, so that the reactive power 
followed the active power. The true values of measurements were obtained by the load flow. 
The simulated measurements were obtained by adding a normally distributed error function with 
zero mean and standard deviation. In this work, Holt’s double parameter linear exponential 
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smoothing method for predicting state is used. For filtering state we used the EKF[23].The 
tuning parameter  of the M-Estimators is chosen to be 2.5 for the both QL and SR estimators. 

The parameters of α and β for state prediction are chosen to be 0.7 and 0.435, while the 
elements of Q is fixed at 10-6. 

 
3.2. Performance Indices 

The average performance indices for voltage magnitudes and voltage angles is given 
by: 
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_v pre  and _ p r e represent the absolute predicted error as a percentage ratio, of the voltage 

magnitudes and voltage angles, t r u ev and t r u e  are the true value of voltage magnitude and 

angle and prev  and pre   are transposed of the predicted voltage magnitude and voltage angle. 

 
 

3. Results and Analysis  
In this paper, the proposed method is applied to 30-bust under normal operating 

conditions, and tested with and without PMU, where a single PMU has been added to every bus 
at each experiment. It also compared with the traditional WLS state estimation method. The 
weight of the PMU measurements is fixed at 100 times the normal SCADA measurement for all 
buses. 

 
 

Table 1. The Average Results of the Various Estimators without PMU  

Estimation 
method 

Predicted Error% Filtered Error % 

Voltage Angle Voltage Angle 

QL 0.1854 1.0313 0.1739 0.9403 
SR 0.1869 1.0165 0.1753 0.9268 

WLS 0.3960 2.2864 0.3712 2.0806 
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Figure 1. Performance Index of the IEEE 30-bus Test System for Estimated Voltage Magnitude  
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Figure 2. Performance Index of the IEEE 30-bus Test System for Estimated Voltage Angle  
 

 
Table 1 shows a comparative study of the average results of the estimators at normal 

operation without PMU. Whereas it shows that, the use of robust M-estimators is better than the 
use of WLS estimator, because these M-estimators are designed for automatically detecting the 
bad measurements and suppressing their influences on the state estimate.  

Figure 1 and Figure 2 represent the performance characteristics for the average error of 
voltage magnitude and voltage angle at the filtered state over a period of 20 time sample 
intervals. 

 
 

Table 2. The Percentage of the Average Error in Voltage Magnitude and Angle using QL 
Estimator 

Location 
Of PMU 

Predicted Error% Filtered Error % Location 
Of PMU 

Predicted Error% Filtered Error % 
Voltage Angle Voltage Angle Voltage Angle Voltage Angle 

NO PMU 0.1854 1.0313 0.1739 0.9403 16 0.0833 0.4810 0.0614 0.2771 
2 0.0721 0.4717 0.0464 0.2415 17 0.0911 0.4479 0.0687 0.2260 
3 0.0737 0.4821 0.0513 0.2719 18 0.0923 0.4711 0.0704 0.2611 
4 0.0701 0.4751 0.0495 0.2625 19 0.0968 0.4634 0.0759 0.2487 
5 0.0700 0.6030 0.0431 0.4544 20 0.0902 0.446 0.0685 0.2302 
6 0.0737 0.4433 0.0500 0.2130 21 0.0856 0.4542 0.0634 0.2336 
7 0.0731 0.4990 0.0501 0.3024 22 0.0882 0.4537 0.0666 0.2364 
8 0.0775 0.4967 0.0540 0.3028 23 0.0944 0.5168 0.0770 0.3408 
9 0.0778 0.45374 0.0535 0.2357 24 0.0824 0.4757 0.0606 0.2585 

10 0.0785 0.4602 0.0521 0.2399 25 0.0795 0.5120 0.0602 0.3187 
11 0.0998 0.4579 0.0808 0.2457 26 0.0775 0.5756 0.0569 0.4277 
12 0.0682 0.49579 0.0412 0.3058 27 0.0749 0.4904 0.0487 0.2800 
13 0.0740 0.5247 0.0547 0.3573 28 0.0722 0.5122 0.0491 0.3163 
14 0.0794 0.5184 0.0598 0.3427 29 0.0729 0.5610 0.0500 0.3972 
15 0.0854 0.4897 0.0630 0.2900 30 0.0749 0.5986 0.0526 0.4526 

 
 

Table 3. The Percentage of the Average Error in Voltage Magnitude and Angle using SR 
Estimator 

Location 
Of PMU 

Predicted Error% Filtered Error % Location 
Of PMU 

Predicted Error% Filtered Error % 
Voltage Angle Voltage Angle Voltage Angle Voltage Angle 

NO PMU 0.1869 1.0165 0.1753 0.9268 16 0.0799 0.4789 0.0579 0.2726 
2 0.0715 0.4846 0.0453 0.2644 17 0.0908 0.4435 0.0684 0.2311 
3 0.0718 0.4841 0.0489 0.2733 18 0.0925 0.4676 0.0707 0.2583 
4 0.0705 0.4730 0.0497 0.2576 19 0.0971 0.4598 0.0762 0.2475 
5 0.0692 0.5887 0.0422 0.4319 20 0.0909 0.4466 0.0690 0.2362 
6 0.0734 0.4487 0.0499 0.2150 21 0.0867 0.4515 0.0641 0.2377 
7 0.0726 0.5127 0.0496 0.3241 22 0.0896 0.4482 0.0678 0.2388 
8 0.0745 0.4975 0.0496 0.3048 23 0.0949 0.4647 0.0734 0.2530 
9 0.0765 0.4548 0.0514 0.2411 24 0.0841 0.4608 0.0622 0.2467 

10 0.0783 0.4578 0.0515 0.2410 25 0.0810 0.4717 0.0596 0.2574 
11 0.0989 0.4510 0.0793 0.2405 26 0.0785 0.5496 0.0568 0.3933 
12 0.0678 0.5039 0.0411 0.3163 27 0.0727 0.4808 0.0448 0.2669 
13 0.0733 0.5208 0.0540 0.3497 28 0.0696 0.5100 0.0454 0.3146 
14 0.0772 0.5149 0.0566 0.3374 29 0.0714 0.5424 0.0480 0.3717 
15 0.0798 0.4893 0.0568 0.2862 30 0.0735 0.5791 0.0506 0.4268 
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Table 2 and Table 3 show the performance of proposed method for IEEE 30-bus with 
and without PMU. It is obvious from these results the influences of the PMU in RDSE, where 
about (50% - 75%) improvement of estimated voltage magnitude. On the other hand, the 
improvement in the voltage angle is about (42% - 77%) for both QL and SR method. These 
results also prove the accuracy of DCM technique for including PMU in DSE. 
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Figure 3. The Percentage of the Average Error in Voltage Magnitude using QL Estimator 
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Figure 4. The Percentage of the Average Error in Voltage Angle using QL Estimator 
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Figure 5. The Percentage of the Average Error in Voltage Magnitude using SR Estimator 
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Figure 6. The Percentage of the Average Error in Voltage Angle using SR Estimator 
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Figures 3, 4, 5 and 6 display the variations of the percentage of the estimated errors 
when the PMU is included individually at each bus. It can be seen that, the importance of the 
PMU to improve the accuracy of the estimator. Additionally, further improvements at the 
predicted and filtered state that obtained by the PMU are shown. 
  
 
4. Conclusion 

Regards to the above results, we conclude that the uses of the robust M-Estimators are 
the perfect solution for Wide Area Measurement System, with high robustness and efficiency 
relative to a WLS state estimator. Furthermore, the uses of the robust M-Estimators improve the 
predicting and filtering states. Also the results show the advantages of the Decoupled Current 
Measurement method for including PMU in Dynamic State Estimation, which improves the 
quality of the estimator then upgrades the system reliability. 
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