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 Machine learning (ML) integration in biomedical signal processing and 

medical diagnosis has the potential to revolutionize healthcare by improving 

diagnostic accuracy. This paper focuses on the applications of different ML 

algorithms for analyzing real-time physiological data collected from 

Photoplethysmography (PPG) sensors. Heart rate variability (HRV) analysis 

using electrocardiography (ECG) signals makes the process longer and 

bulky. Therefore, this paper demonstrates the real-time generation of HRV 

signals using a simple, low-cost, and non-invasive PPG sensor which is 

further processed using the Arduino ATMEGA328P microcontroller and 

then interfaced to a PC for display to investigate the usefulness of HRV 

feature analysis. HRV features have been computed using time domain 

analysis (TA), and frequency domain analysis (FA). At last, these TA and 

FA indices have been given to different ML models that could predict the 

gender, age group, and physiological conditions of a human being. 

Prediction of the physiological conditions using TA, FA, and ML models 

simultaneously makes the proposed approach more novel than the other 

existing methods. Comparative analysis of different ML approaches using 

ROC curves and confusion matrices has been shown to find the effectiveness 

and precision of different proposed models. It shows random forest ML 

approach has achieved 91% accuracy in identifying the physiological 

conditions. This simple yet accurate real-time PPG-based time-frequency 

ML system might be useful in medical assessment with faster response. 
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1. INTRODUCTION 

Biomedical signal processing and analysis play a crucial role in medical diagnosis and monitoring. 

In recent years, the advent of artificial intelligence (AI) and machine learning (ML) techniques has 

revolutionized the field, enabling more accurate and efficient medical diagnosis. Medical diagnosis using ML 

and physiological signals is an emerging field with great potential to improve healthcare outcomes. One such 

approach involves building models that diagnose medical conditions using heart rate variability (HRV) 

values from PPG sensors. PPG sensors typically consist of a light-emitting diode (LED) and photo detector 

placed on the skin, usually on the fingertip or earlobe, and measure various physiological parameters by 

illuminating the skin with light and detecting the resulting changes in blood volume. HRV, a physiological 

phenomenon, is a measure of the variation in time between successive heartbeats that reflects the balance 

https://creativecommons.org/licenses/by-sa/4.0/
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between the sympathetic (fight-or-flight) and the parasympathetic (rest-and-digest) branches of the 

autonomic nervous system, which regulate the heart rate. 

These research studies span diverse applications of HRV analysis, showcasing the multidisciplinary 

nature of this field. Mojtahed et al. [1] have combined deep learning with wearable pressure and PPG data, 

enhancing accuracy in heart rate monitoring, which is vital for personalized health tracking. ML algorithms 

for detecting driver drowsiness based on HRV have been explored by CD Aswathi et al. [2] which contribute 

to the realm of driver safety technology. Bussas [3] have focused on employing ML to classify cognitive 

conditions using vital parameters, a crucial step in early diagnosis and intervention for cognitive disorders. 

Dolganov and Kublanov [4], [5] highlighted indicative factors of HRV for swift hypertension diagnosis, and 

evaluated the specificity of parameters in diagnosing arterial hypertension, providing valuable insights for 

hypertension management. Ishaque et al. [6] discussed the trends in HRV signal analysis, likely covering 

advancements and emerging methodologies. Wan-Hua et al. [7] investigated pulse wave forward peak 

detection and its cardiovascular applications, shedding light on novel diagnostic approaches. Matuz et al. [8] 

have employed ML models for HRV-based mental fatigue prediction, emphasizing the significance of HRV 

in mental health studies. Morales et al. [9] have shown sympathetic (fight-or-flight) and parasympathetic 

(rest-and-digest) branches of the autonomic nervous system, which regulate the heart rate. Wan-Hua et al. [7] 

and Sung et al. [10] have used different statistical features such as mean, root mean square values to provide 

useful information about the variability and regularity of the heart rate. Jepsen et al. [11] explained that HRV 

is constantly modulated through complex interactions between branches of the autonomic nervous system, 

the sympathetic nervous system, and the vagus nerve. Since the activity maintains nonlinear relationship 

therefore variation in the sympathetic activity or the vagal tone can change the response of the heart rate to 

the simulation of any branch of the system. Birrenkott et al. [12] have shown that misshapen value between 

heartbeats is one of the first indicators of the existence of an anomaly in the patient’s health which can reveal 

diverse conditions such as respiratory and cardiac arrest, systemic inflammatory response syndrome, renal 

insufficiency, cardiac insufficiency, systolic arterial pressure, among others. Papini et al. [13] have 

characterized Photoplethysmography (PPG) as one of the most popular technologies in the last decade for 

monitoring of the physiological conditions of a patient, and, because of its non-invasiveness, PPG has been 

largely applied to personal portable devices and pulse oximetry due to its convenience and capacity to 

perform continuous readings. In addition, the signal can provide information about both the cardiovascular 

and respiratory systems which creates vast viability of the utilization and easiness of the patient’s 

physiological data acquisition. Albuquerque [14] efficiently incorporated PPG sensors into wristbands 

making these systems more accessible than the current electrocardiography (ECG) monitoring system which 

requires more number of electrodes to be attached to the patient’s chest explained by researcers  

[15]-[17]. On the other hand, PPG signal does not have a complex hardware implementation and as well as 

the requirement of a reference signal. PPG is a non-invasive technique for measuring blood perfusion through 

tissues by the emission of light rays as explained by Peter et al. [18]. PPG signal extraction is considered 

simple; however, the components of this signal can provide valuable information about the cardiovascular 

system as described by Fan and Li [19]. He has explained the statistical time-domain indices obtained by the 

beat-to-beat determination. Four different nonlinear methods namely scaled amplified analysis (RSA), 

higuchi fractal dimension (HFD), Displaced Flotation Analysis (DFA), and Exponential Generalized Hurst 

(GHE), have been applied by Karegar et al. [20] to extract resources for authentication of the ECG signal and 

study the nonlinear properties of this signal. The largest exponent of Lyapunov (LLE) has been used to 

extract useful characteristics of the PPG signal has been explained by Pham and Higa [21]. Quintero et al. 

[22] have rightly pointed out that the integration of ML algorithms with PPG data has the potential to 

enhance diagnostic accuracy, enable early detection of diseases, and facilitate personalized treatment 

strategies. The results of this study contribute to the growing body of research on ML-based approaches for 

biomedical signal analysis, paving the way for improved healthcare outcomes and patient care. Mejía-Mejía 

et al. [23] has shown time domain and frequency domain parameters can provide valuable information about 

the control of the cardiovascular system. PPG-derived inert-beat-intervals (IBI) have been proposed as a 

potential surrogate of HRV. Further, RR, an important marker extracted from HRV has been used to assess 

several cardiovascular, autonomic, and mental diseases using non-invasive indirect measurement. 

Priyadarshini et al. [24] have applied different machine-learning models to estimate PPG-based blood 

glucose, blood pressure, and activity detection. Mehrgardt et al. [25] have hypothesized that more accurate 

HR measurement results could be obtained by fusing data from complementing sensors and channels of 

varying modalities. A 3D-printed mechanical finger clip hosting multiple sensors, connected to an external 

electronics interface has been developed. Iqbal et al. [26] have used the deep learning method to use bilateral 

finger PPG sensors and CAD detection modules for the different classifications of coronary artery disease 

(CAD) patients. An uncertainty-based strategy for coronary artery disease screening from facial videos using 
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neural network decision-making has been proposed by Liu et al. [27]. Sadad et al. [28] have demonstrated 

cardiovascular disease detection based on PPG signal and using ML with cloud computing. 

Hence a novel and suitable approach has been proposed in this paper combining the real-time PPG-

based HRV with several time and frequency domain features and supervised ML models. Graphical analysis 

of time-frequency features in association with supervised learning models like logistic regression, K-nearest 

neighbors (KNN) algorithm, Naïve Bayes, support vector machines (SVM), decision trees, and random 

forests, have been used and known for their ability to handle complex datasets to provide accurate 

classification results. The ML models have been trained using the featured dataset of specific physiological 

conditions or states. By fitting the extracted parameters into these ML models, the aim was to establish a 

reliable and efficient system for medical diagnosis and to initially predict the physiological conditions of an 

individual. The models have been evaluated using confusion matrices and various performance metrics such 

as accuracy, sensitivity, and specificity to assess their effectiveness in distinguishing between different 

medical conditions and states. 

 

 

2. METHOD 

PPG signals have been collected from a group of more than 30 healthy Indian individuals both male 

and female within the age group of 18-35. A total of 300 HRV data are collected from these individuals 

during two months on different days of which 150 samples are for resting and 150 samples are for 

working/stressed conditions. The data were collected with a duration of 20 minutes including 10 minutes of 

adjustment, 5 minutes of rest (baseline), and 5 minutes of physical activity. As a type of physiological test, 

participants were needed to go upstairs and downstairs for 5 minutes to evaluate HRV under stress 

conditions. For the PPG signal, the PPG sensor connected to the Arduino board as shown in Figure 1 was 

placed two times in each subject both on the left and right index fingers consecutively. The subject was asked 

to sit down and make sure they were familiarized with the procedure. The PPG has been recorded after the 

device has been set up and the data has been imported into the MATLAB software for calculations as shown 

in Figure 2. Figures 2(a) and 2(b). In this study, time domain features have been calculated and analyzed 

from the HRV signal. Besides that, HRV features have been extracted which are the inter-beat interval (IBI) 

in a PPG signal. All the time-based HRV features have been calculated in the Python platform. Frequency 

domain parameters have been computed using the fast fourier transform (FFT) of the RR or inter beat (IB) 

interval data and obtained the power spectral density (PSD) by taking the absolute squared values of the FFT 

coefficients. The PSD represents the distribution of power (energy) across different frequency components in 

the RR interval signal. NumPy library has been used in Python code to perform the FFT and to calculate the 

PSD. Matplotlib library has also been used to create a frequency spectrum graph from the HRV data. From 

the different frequency domain approaches like FFT-based PSD, Poincare plots and nonlinear features like 

Shannon entropy analysis have also been accomplished for different physiological conditions. On the other 

hand, after computation correlation and dependency matrices of different time domain indices on mean HRV 

have been calculated using the Python platform. Most prominent distinctive features have been taken as input 

attributes for the different classifier models. In this work, out of 300 samples, 100 samples for each class i.e., 

a total of 200 samples have been considered to develop the training method for the different classifier 

algorithms, whereas separate 50 samples of each class, i.e., a total of 100 samples have been used to validate 

each of the proposed ML models. Binary logistic regression, KNN algorithm, random forest, SVM, and 

decision trees have been used for this purpose. All approaches have been done in the Python platform.  

Figure 3 represents the flowchart of the methodology adopted in this work. 

 

 

 
 

Figure 1. Hardware set up and components 
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(a) (b) 

 

Figure 2. The MATLAB software for calculations (a) final setup for the hardware implementation using the 

PPG and (b) data collection and monitoring using the serial monitor of Arduino 

 

 

 
 

Figure 3. Flowchart of the proposed method 

 

 

The distribution of the randomly selected HRV samples in milliseconds for resting and 

working/stress samples in box plots are shown in Figure 4 to represent the range of the HRV samples of 

different physiological conditions from different age groups and genders. Figures 4(a) and 4(b) depicts that 

resting persons have larger variations in their HRV values while working/stressed persons have less 

variations in their HRV ranges. This has been found as one of the key features for determining the different 

physiological conditions. The following HRV features as shown Table 1 have been computed. 
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(a) (b) 

 

Figure 4. Variation of HRV for randomly chosen samples from resting (a) and working/stressed (b) persons 

of different age groups and genders 

 

 

Table 1. Selected HRV features for extraction 
Sl No Processing method HRV features No of features 

1 Time analysis IBI, IBIdifference, HRVmean, SD, SDNN, NN50, PNN50, NN20, 

PNN20, RMSSD, APV, SDSD, AVNN 

13 

2 Frequency analysis SD1, SD2, SD ratio, LF power, HF power, VLF power, VHF power 7 

3 Non-linear analysis Shannon entropy 

Total 

1 

21 

 

 

2.1.1. Time domain features 

Figure 5 and Figure 6 show the variation of inter-beat interval (IBI) or peak-to-peak (PP) interval of 

randomly chosen samples from resting and working/stressed persons respectively of different age groups and 

genders. Figure 5 demonstrates that IBI values for resting people vary more in longer intervals while Figure 6 

depicts that for working/stressed subjects IBI values vary with some lower intervals. 

The difference between consecutive peaks, i.e., the variation in the time interval between successive 

heartbeats (IBIdifference) have also been shown in Figure 7 and Figure 8. From Figure 7 it has been found 

clearly that IBIdifference variation occurs less for resting people and Figure 8 shows larger variation in 

IBIdifference for working/stressed people. 

All the time-based HRV features  like standard deviation (SD), standard deviation of the normal-to-

normal intervals (SDNN), normal-to-normal (NN) intervals that differ by more than 50 milliseconds (NN50), 

percentage of adjacent normal-to-normal intervals differing by more than 50 milliseconds (PNN50), normal-

to-normal (NN) intervals that differ by more than 20 milliseconds (NN20), percentage of normal-to-normal 

(NN) intervals that differ by more than 20 milliseconds (PNN20), root mean square successive difference 

(RMSSD), average peak variability (APV), standard deviation of successive differences (SDSD), average 

NN interval (AVNN) which is the mean of the normal to the normal interval have been calculated in the 

Python platform and using the following equations that have been shown in Table 2. 

Tables 3 and 4 show calculated time domain indices of randomly chosen samples from resting and 

working/stressed persons at different age groups and genders. It has been observed from the correlation and 

dependency matrices that the SD, SDNN, APV, RMSSD, and SDSD show more prominent distinctions 

between the different physiological conditions and shown in Figure 9. Hence these indices have been selected 

as the main inputs to the different ML approaches. Correlation and dependency matrices of different time 

domain indices on mean HRV for randomly chosen samples from resting Figure 9(a) and working/stressed 

and Figure 9(b) persons of different age groups and genders. 
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Figure 5. IBI values for resting people vary more in longer intervals 

 

 

  
  

 
 

Figure 6. Working/stressed subjects IBI values vary with some lower intervals 
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Figure 7. IBIdifference variation occurs less for resting people 
 

 

  

  

 
 

(c) 
 

Figure 8. Larger variation in IBIdifference for working/stressed people 
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Table 2. Equations used for the calculation of time domain parameters 
Sl No. Time domain parameters Equation 

1 IBI IBI =
60000

HRV(ms)
 

2 IBIdifference 
It refers to the difference between consecutive peaks, i.e., the variation in the time interval 

between successive heartbeats. 

3 Mean HRV 

HRVmean = 
∑ (HRV)100

0

n
 

 

HRVmean = 
HRV1 + HRV2  + HRV3  +⋯+ HRV100  

100
 

4 
Standard deviation of 

HRV 

SD of HRV = √
∑ (HRV−HRVmean)2100

0

(n−1)
 

 

Where, n=number of RRs in the specified period 

5 SDNN 

Standard deviation of normal-to-normal intervals reflects the overall variability of the heart 

rate and is calculated as the standard deviation of a set of inter-beat intervals measured during 

a specific period. 

6 NN50 
NN50 = ∑ |RRn+1 − RRn| > 50 ms 

Where, RRn+1 =The RR for the next R wave, RRn = The RR for the current R wave 

7 PNN50 

PNN50 = 
NN50 × 100

Total Number of  NN intervals
 

Where NN50 = number of pairs of adjacent NN intervals that differ by more than 50 
milliseconds 

8 NN20 

NN20 = ∑ |RRn+1 − RRn| > 20 ms 

 

Where, RRn+1 =The RR for the next R wave, RRn = The RR for the current R wave 

9 PNN20 

PNN20 = 
NN20 × 100

Total Number of  NN intervals
 

Where NN20 = number of pairs of adjacent NN intervals that differ by more than 20 
milliseconds 

10 RMSSD 
RMSSD = √

∑ (RRn+1−RRn)2100
0

(N+1)
 

Where, RRn+1 =The IBI for the next R wave, RRn = The IBI for the current R wave 
N = Total number of NN intervals 

11 ARV 

ARV = 
∑ |RRn+1  − RRn| 100

0

(N−1)
 

Where, RRn+1 =The RR interval for the next R wave, RRn = The RR interval for the current R 

wave 

12 SDSD SDSD = √
∑ (RRn+1−RRn  −Mean RR)2100

0

(N−2)
 

13 AVNN AVNN = 
∑ NN Intervals

N
 

 

 

Table 3. Time domain parameters at resting condition 
Sl No Time domain indices Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

1 IBI 127.579 80.4754 99.9172 124.4372 143.7754 

2 IBIdifference 0.27390 0.39875 0.84423 0.02728 0.02331 
3 Mean HRV 575 1210 786 725.5 486.7 

4 SD 671.567303 845.565343 535.105 619.86840 256.190006 

5 SDNN 50.81212 52.5339 45.5383 59.26368 45.548682 
6 NN50 14 8 13 14 30 

7 PNN50 0.233333 0.242424 0.22414 0.212121 0.2702703 

8 NN20 21 11 20 20 41 

9 PNN20 0.35 0.333333 0.34483 0.30303 0.3693694 

10 RMSSD 74.87 81.896 67.418 70.799 69.832 

11 ARV 60.817 67.764 54.961 54.991 57.464 
12 SDSD 68.14811 81.09645 66.1766 70.99478 69.831905 

13 AVNN 127.579 80.4754 99.9172 124.4372 143.77545 

 

 

2.1.2. Frequency domain features 

Frequency bins have been identified corresponding to the LF, HF, VHF, and VLF bands and sum 

the PSD values within these bands to obtain the LF and HF powers, respectively. The sampling rate has been 

taken as 4 Hz. Ultra-low frequency (ULF) and very low frequency (VLF) power has been obtained from the 

ULF and VLF power bands from the PSD of the RR interval data which has been shown in Figure 10. 

Figures 10(a) and 10(b) of a randomly chosen person at different physiological conditions. Less variation in 

resting subjects and larger variation in working/stressed subjects clearly distinguish different physiological 

conditions. 
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Table 4. Time domain parameters at working/stressed condition 

Sl No Time domain indices Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

1 IBI 156.2834 139.6485 126.363 157.0275 169.8324 
2 IBIdifference 0.08470 0.04729 0.52790 0.19054 0.80402 

3 Mean HRV 448.5 528.2 712 409.84 371.26 

4 SD 282.33641 473.833657 664.725 136.781495 107.1690608 
5 SDNN 44.86444 43.28091 58.8291 35.652218 31.38581 

6 NN50 23 18 20 25 23 

7 PNN50 0.18254 0.165138 0.25 0.1798561 0.154362 
8 NN20 43 40 30 48 46 

9 PNN20 0.34127 0.366972 0.375 0..3453237 0.308725 

10 RMSSD 61.632 52.286 73.982 49.598 48.064 
11 ARV 47.702 41.951 58.739 40.221 37.534 

12 SDSD 61.771 52.28456 73.8335 49.547992 47.05842 

13 AVNN 155.9443 139.6485 126.363 157.02752 169.8324 

 

 

  
(a) (b) 

 

Figure 9. Correlation and dependency matrices of different time domain indices on mean HRV for randomly 

chosen samples from resting (a) and working/stressed (b) persons of different age groups and genders 
 

 

  
(a) (b) 

 

Figure 10. PSD of the RR interval for (a) a resting and (b) a working/stressed person  
 

 

The VLF and the low frequency (LF) Bands range from 0.0033 to 0.04 Hz (or 3.3 to 40 mHz) and 

0.04 to 0.15 Hz (or 40 to 150 mHz) respectively. The high-frequency band ranges from 0.15 to 0.4 Hz  

(or 150 to 400 mHz) and the Very High-Frequency Band ranges from 0.4 to 0.5 Hz (or 400 to 500 mHz). 

Frequency spectrum graph from the HRV data have been shown in Figure 11 and Figure 12. The graph 

displays the PSD, highlighting the VLF, LF, HF, and VHF bands in the background. At resting condition 

Figures 11 (a)-(c) depicts less variation and at working/stressed condition Figures 12(a)-12(c) depicts  

more variations in the frequency bands. Different frequency domain parameters have been shown in  

Tables 5 and 6. 
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(a) (b) 

 
(c) 

 

Figure 11. Power spectral density (a)-(c) in the frequency domain for randomly chosen samples from resting 

persons of different age groups and genders 

 

 

  
(a) (b) 

 
(c) 

 

Figure 12. Power spectral density (a)-(c) in the frequency domain for randomly chosen samples from 

working/stressed persons of different age groups and genders 
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Table 5. Frequency domain parameters during resting conditions 
Sl No Frequency domain indices Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

1 SD1 48.18071 57.33519 46.78685 50.19331 49.37116 
2 SD2 2841.661 2231.304 1957.798 4504.238 1711.117 

3 SD Ratio 58.97923 38.91683 41.84504 89.73781 34.65824 

4 LF Power 673483.9273687 38860.839793 348084.009 733084.1346571 811986.4265374 
5 HF Power 418384.8948564 305832.04258 178545.509 2739136.097402 2006693.112117 

6 VLF Power 0 0 0 0 50155.41 

7 VHF Power 387312.44 0 94627.35 221619.233 79199.16 

 

 

Table 6. Frequency domain parameters during work/stress conditions 
Sl No Frequency domain indices Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

1 SD1 43.67242 36.96519 52.20025 35.03043 33.2703 

2 SD2 2121.001 2379.637 4196.038 1314.660 862.8903 
3 SD Ratio 48.56614 64.37508 80.38348 37.52907 25.93575 

4 LF Power 914000.0702291 504977.52335 277942.527 1375636.761779 363341.7327217 

5 HF Power 2434037.858509 1309949.9175 3420239.21 1704670.035395 1420910.129393 
6 VLF Power 1269613.27 1667310.43 0 421507.1 179543.98 

7 VHF Power 704445.55 630481.57 461259.44 525549.02 372151.9 

 

 

On the other hand, SD1 represents the standard deviation of the perpendicular distance of each point 

on the scatter plot to the line of identity (x=y) and SD2 is the standard deviation of each point from the y = x 

+ average R-R interval specifies the length of the ellipse. Both have been obtained from Poincare plots or 

calculated using the equations Table 7. 

 

 

Table 7. Equations used for the calculation of frequency domain parameters 
Sl No. Frequency domain parameters Equation 

1 SD1 
SD1 = √

∑ (Diff RRn−Diff RRn+1  )
2100

0

(2×N)
 

 

Where N is the total number of R-R interval pairs 

2 SD2 

SD2 = √
∑ (Diff RRn+ Diff RRn+1  )

2100
0

(2×N)
 

 

Where N is the total number of R-R interval pairs 

 

 

Poincare plot is a graphical representation of two components of the same signal in a 2D graphical 

plane. The high continuity of the poincare plot indicates low disturbances in the signal which signifies the 

difference between the consecutive elements is very low. But when discontinuity occurs, the signal generates 

disturbances in the form of rapid changes in the signal level. 

In order to accurate analysis and to increase the classification accuracy of different physiological 

conditions SD1 and SD2 have been chosen for the poincare plots, the distribution of the SD1 and SD2 values 

for different physiological conditions is shown in Figure 13 and Figure 14 respectively. Figures 13 (a)-(d) 

explain high continuity of the poincare polt which indicates low disturbance at resting conditions of four 

randomly chosen subjects at different age groups and genders. On the other hand, Figures 14 (a)-(d) shows 

discontinuity which indicates high disturbances at working/stressed conditions of four randomly chosen 

subjects of different age groups and genders. 

 

2.1.3. Non-linear features 

The Shannon entropy for a discrete random variable X with probability mass-function P(X) is 

defined using the formula, 

 

H(X) = - ∑[𝑃(𝑥) × 𝑃(𝑥)] 
 

It measures the uncertainty or randomness amongst IBI values. Different Shannon entropy values 

have been shown in Tables 8 and 9 and it can be concluded that higher values of entropy indicate greater 

variability and less predictability in the physiological conditions while lower values indicate more regularity 

and predictability in the analysis of different physiological conditions. 
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(a) (b) 

  
(c) (d) 

 

Figure 13. Poincare plot of the different resting person samples considering SD1 and SD2 (a)-(d) represents 

Poincare plot of randomly chosen samples from resting persons of different age groups and genders 
 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 14. Poincare plot of the different running person samples considering SD1 and SD2 (a)-(d) poincare 

plots of randomly chosen samples from working/stressed persons of different age groups and genders 
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Table 8. Shannon entropy values at different physiological conditions: resting condition 
Non-linear indices Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Shannon entropy 5.598661905257 5 5.72762686 5.658498821422 5.891801565544 

 

 

Table 9. Shannon entropy values at different physiological conditions: working/stressed 
Non-linear indices Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Shannon entropy 5.728621214283 6.3066803544 5.55870981 5.952485198987 5.638952533646 

 

 

Developing classifier model using machine learning: binary logistic regression, a supervised ML 

algorithm has been used for the classification problem. All the inputs are taken as independent variables.  

A probability value between 0 and 1 is produced. Here two different classes have been taken resting as Class 

0 and working/stressed as Class 1. The logistic function for input has been set to a threshold value. If it goes 

beyond the threshold value, then it belongs to Class 1 otherwise it belongs to 0. It has been referred to as 

binary logistic regression because the dependent variable is binary. 

Being a nonparametric algorithm the KNN, a supervised ML method, has been employed to handle 

classification and regression problems simultaneously. In our case, K=5 has been taken. As a lazy learner 

algorithm, without learning from the training dataset KNN stores the dataset and acts on the dataset directly 

at the time of classification. 

Random forest, a popular ensemble learning algorithm has been employed particularly in large 

datasets with high dimensionality. Multiple generations of decision trees make the algorithm strong enough. 

Multiple decision trees have been trained on randomly selected subsets of the dataset. In the initial step, these 

subsets are sampled randomly from the dataset. Subsequently, decision trees have been constructed based on 

these subsets, ensuring diversity among the trees. Once the trees are built, predictions are made by 

aggregating the individual tree outputs through voting for classification problems. 

A decision boundary between two classes has been set up in the case of the SVM algorithm which 

chooses extreme cases or support vectors. For the SVM algorithm, the main goal is to create the decision 

boundary efficiently that can segregate n-dimensional space into classes so that the new data point can be put 

in the correct category in the future. For the creation of the best decision boundary, known as a hyperplane,  

SVM chooses the extreme points/vectors which are called as support vectors, and hence algorithm is termed 

as SVM. 

In case of decision tree, the CART algorithm has been used for classification and regression 

problems simultaneously. Time domain features have been taken as the dataset and possible solutions have 

been made based on given conditions. 

In this work, out of 300 samples, 100 samples for each class i.e., a total of 200 samples have been 

considered to develop the training method for the different classifier algorithms, whereas separate 50  

samples of each class, i.e., a total of 100 samples have been used to validate each of the proposed ML 

models. For each HRV sample sex, age, HRVmean, SD, RMSSD, SDSD, ARV, SDNN, PNN50, and  

PNN20 total of 10 numbers of attributes have been taken as input. Therefore, the size of the input vector  

is 200×10. 

 

 

3. RESULT AND DISCUSSION 

In this work, the different classifier models have been used and tested using 100 samples 

considering 50 samples of each class from a separate dataset. It has been observed that time indices like SD, 

RMSSD, SDSD, ARV, and SDNN show prominent distinctiveness among the different physiological 

conditions. Further, it has been observed that PSD shows significant variations in the frequency bands.  

The Poincare plot shows the SD1 and SD2 values distribution considering low and high signal disturbances. 

Time indices feature-based ML classifier approaches are simple and fast. As a result, the proposed  

approach is ideal for a reliable and efficient system for medical diagnosis and to initially predict the 

physiological conditions of an individual and effective in distinguishing between different medical conditions 

and states. 

The effectiveness of each applied model has also been performed by calculating the metrics such as 

accuracy, precision, recall, and F1-score. Accuracy measures the ratio of correct predictions to the total case 

examined making it suitable for balanced classification tasks. Precision addresses the genuinity of the 

predicted class which gives high confidence in the prediction class. Recall shows the actual proportion of the 

correct classification task. The F1-score represents the harmonic mean of precision and recall. All the results 

and calculated metrics of different ML approaches have been compared in Table 10. It has been observed 
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from Table 10 that the accuracy of the Random Forest ML approach is found to exceed 91% and the 

remaining classifier gives the accuracy below 90%. Figure 15 shows all the ROC curves of each ML model. 

Thus, on an overall analysis, a high accuracy of classification exceeding 91%, with a moderate 

number of samples for developing the different classifier models, and finally introduction of a very  

simple, low-cost, and non-invasive scheme in developing a real-time simple time-frequency feature- 

based ML classifier for the assessment of different physiological states have been the highlights of the 

proposed work. 
 

 

Table 10. Comparison of model accuracy 
Quality of state 

Actual state 

Predicted state  Total number of 

correct classifications 

Classifier 

name 

Classifier 

accuracy (%) 

Classifier 

precision 

Recall F1-

score Resting Working 

Resting 

Working 

43 

10 

7 

40 

43 

40 

Logistic 

regression 

83% 0.85 0.8 0.824 

Resting 

Working 

44 

11 

6 

39 

44 

39 
KNN 

83% 0.86 0.78 0.818 

 
Resting 

Working 

46 

5 

4 

45 

46 

45 

Random 

forest 

91% 0.92 0.9 0.911 

Resting 
Working 

42 
10 

8 
40 

42 
40 

SVM 
82% 0.83 0.8 0.815 

Resting 
Working 

41 
10 

9 
40 

41 
40 

Decision 
tree 

81% 0.82 0.8 0.811 

 

 

 
 

Figure 15. ROC curves of each ML model 

 

 

4. CONCLUSION 

The present work aims to construct accurate and efficient techniques for leveraging the power of 

ML techniques to enhance the accuracy and efficiency of HRV analysis, leading to improved understanding 

and diagnosis of various physiological and pathological conditions of human beings. In this proposed 

approach both time-frequency indices have been considered. It is found that time indices of HRV  

features produce consistent trends and significant differences during the resting and working/stressed phases. 

Poincare plot distribution has also been performed to analyze the quadrant. Simultaneously different 

supervised machine-learning models have been used using time domain indices. After comparison,  

it has been found that the random forest ML model has achieved an accuracy of 91%, a precision of 0.92,  

a recall value of 0.9, and an F1-score of 0.911 in the proposed scheme. The other models like  

logistic regression, KNN, SVM, and decision tree have achieved an accuracy of 83%, 82%, and 81% 

respectively. Hence the real-time simple time-frequency feature-based classifier makes the ML  

models’ novel and suitable for identifying different medical conditions and states for real-life 

implementation. 
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