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 Ocean data exhibits great heterogeneity from variances in measuring 

methods, formats, and quality, making it extremely complicated and diverse 

due to a variety of data kinds, sources, and study elements. A few examples 

of data sources are satellites, buoys, ships, self-driving cars, and distant 

systems. The processing of data is made more challenging by the significant 

regional and temporal variations in oceanic characteristics including 

temperature, salinity, and currents. This work presents an interactive tool for 

multivariate ocean parameter visualisation, specifically overlays, based on 

Python. In ocean data visualisation, overlays are extra visual layers or data 

points that are layered to improve comprehension over a basic map. Based 

on the available data and the visualisation goals, these overlays are chosen 

and blended. Users can customise overlays with this tool, which also 

supports formatting, 2D and 3D visualisation, and data preparation. In order 

to reduce artefacts, it uses kriging interpolation for 3D visualisation and a 

modified version of the ray casting algorithm for representing octree data. 

By integrating overlays like as bathymetry, currents, temperature, and 

marine life, users can produce visually appealing and comprehensive 

depictions of ocean data. This method provides a thorough grasp of intricate 

marine processes by making it easier to see patterns, trends, and 

abnormalities in the data. 
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1. INTRODUCTION 

The spatial and temporal visualization of ocean features is critical for many oceanography 

researchers. They use in situ data and programming models to extract insights and vital information about the 

world ocean. Visualization of ocean data/parameters conveys the inherent patterns, trends, and anomalies in 

the ocean. Oceanographers often prefer using maps with colorful markers for the visualization and analysis of 

ocean data. However, mapping oceanographic measurements to be effective is challenging because (i) there 

are diverse array of parameters, such as temperature, salinity, and oxygen content, at a wide range of depth 

and time scales and (ii) the interaction of the multiple parameters needs to be captured in the visualization 

[1], [2]. Researchers utilize approaches that allow them to display several ocean metrics on one plot or chart 

at the same time to make sense of these complicated observations [3], [4]. This can help identify patterns and 

interactions between variables that would not be obvious if each variable is evaluated separately.  

https://creativecommons.org/licenses/by-sa/4.0/
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These approaches can visualize temperature, salinity, currents, nutrients, and chlorophyll concentration, to 

name a few oceanographic factors. By visualizing many variables at the same time, it is possible to acquire a 

more comprehensive understanding of ocean dynamics and how different parameters interact with one 

another. By merging these multiple visualizations, researchers can acquire a deeper understanding of the 

intricate relationships between different ocean characteristics and how they affect marine ecosystems and 

climate trends [5], [6]. 

The main goal of the study is to create visual overlays of multivariate ocean data. This assists 

oceanographers in better understanding ocean parameters like temperature, salinity, density, ocean currents, 

and their relationships. The focus of this multivariate analysis is on how these parameters are distributed and 

how they influence each other. This paper presents interactive visualizations of multivariate analysis using 

Python data visualization libraries. Users can benefit from this by better understanding complex data sets, 

identifying patterns and trends, and making data-driven decisions. The paper also has a contributing 

component in 3D visualization [7], [8] in which the study makes use of the octree-based method for data 

representation and henceforth the ray casting algorithm is modified to make use of kriging interpolation to 

achieve the visualization with fewer artifacts. 

The remainder of the paper is structured as follows: section 2 provides a detailed design description 

of the proposed methodology. Section 3 demonstrates the visualization results and their interpretations. 

Conclusions and future work are drawn in section 4. 

 

 

2. METHOD 

This section provides an overview of the framework, describes the data types supported by the 

same, and the architecture of the framework, followed by the algorithms used in this work. The architecture 

of the proposed framework is shown in Figure 1. The entire architecture is divided into four layers (i) data 

layer, (ii) data management layer, (iii) data rendering layer, and (iv) visualization layer. The work starts from 

the initial data layer, which stores the heterogeneous, multivariate ocean data. The data management layer 

handles the pre-processing and format compatibility of the diverse dataset. The data rendering layer focuses 

on the implementation of the visualization algorithm in either of the two modes, namely (i) conventional 

CPU mode of implementation through which the basic plots like location maps, profile plots, scatter plots, 

colormaps, vector plots are implemented based on the Python script language in an interactive mode; and  

(ii) GPU mode of implementation where the algorithms are modified to decipher the data patterns more 

accurately. Finally, the visualization layer provides the mapping in univariate as well as multivariate modes. 

The improvement in this layer is achieved in this framework by modifying the ray casting algorithm and 

using kriging interpolation to reduce the artifacts during the visualization in 3D mode. 

 

 

 
 

Figure 1. Architecture diagram of the proposed framework 

 

 

2.1.  Data format 

The framework is designed to work with all commonly used data formats. A brief overview of the 

data sets used in the present study is given below. The data sets mentioned are accessible from www.cen.uni-

hamburg.de and www.copernicus.eu.in. The ocean reanalysis/analysis system4 (ORAS4) employs version 

3.0 of the Nucleus for European Modelling of the Ocean (NEMO) [9] in the ORCA1 horizontal 

discretization, with a 1°-horizontal resolution in the extra-tropics and a refined meridional resolution in the 
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tropics. ORAS4 has 42 vertical levels, with the first 18 corresponding to the upper 200 m, and it assimilates 

temperature, salinity, and sea surface height anomaly data, but not velocity observations. World Ocean Atlas 

(WOA) data [10] is also used in the study. The model is forced by atmospheric-derived daily surface fluxes 

from ERA40 [11], ERA-Interim [12], and the ECMWF [13] operational archive for different periods from 

1957 to 2015. The study utilized 1°x1° monthly gridded temperature and salinity data from 1979 to 1990 and 

ERA-Interim data for 10-meter wind components to analyze wind characteristics. 

 

2.2.  Data management layer 

The data management layer manages data pre-processing, validation, and conversion into the 

appropriate format. Date pre-processing: this layer plays an important role in the architecture. Pre-processing 

helps to ensure that ocean data is accurate, consistent, and suitable for analysis. Data cleaning is used to 

remove or correct any errors or inconsistencies in raw data. Errors can occur as a result of instrument failure, 

human error, or other factors. Filtering outliers, correcting missing or invalid data, and checking for duplicate 

data are all examples of data-cleaning methods. Data integration is the process of combining data from 

various sources or sensors. This can be accomplished by combining data with similar properties or by 

aligning data based on time or location. Interpolation is the process of estimating missing data points from 

nearby data points. When there are gaps in the data or missing values, interpolation is frequently required. 

Format conversion: different formats (and also different coordinate systems) pose a challenge in 

data visualization. The common data formats which are supported by the proposed tool include NetCDF, 

ASCII, Binary and HDF. NetCDF is the most widely used data format. NetCDF is machine-independent, and 

is self-descriptive in nature. Because it is simple to access subsets of a dataset, NetCDF data are easily 

scalable. To process NetCDF files quickly and effectively, it is usually desirable to create a subset of data 

from the enormous file. The tool is capable of converting the unstructured measured data to structured data. 
 

2.3.  Data rendering engine 

In this layer, the oceanographic data is rendered to generate 2D and 3D images or animation from a 

3D scene. The rendering pipeline has a sequence of stages like geometric processing, rasterization, shading, 

texturing and blending to transform the oceanographic data to a 2D/3D image or animation. The 2D images 

are rendered with the support of vector field extraction from data followed by line rendering and surface 

rendering. When 3D images are rendered, volume rendering and is surface rendering schemes are adopted. 

Rendering is a computationally intensive process and, in this work, the same is implemented using the central 

processing unit (CPU) or the graphics processing unit (GPU). 

In the CPU implementation part, the gridded data management scheme is adopted. For instance, in 

oceanographic data analysis, temperature readings are gathered at different depths and locations using 

sensors or satellites. These data points can be interpolated and rendered using finite difference methods [14] 

or ray casting algorithm [15]. The resulting visualizations can be used to better understand the thermal 

structure of the ocean and help to identify regions of heat exchange between the ocean and the atmosphere. In 

CPU rendering, the computer performs calculations in a serial fashion, executing one instruction at a time. 

This is the sole reason behind its accuracy as well as the slow rendering speed. 

In the GPU implementation part, the gridded data is managed using an octree data structure. Octree 

[16] is a data structure that can be used to represent volumetric data such as ocean temperature, salinity and 

currents. Octrees are tree-based data structures that recursively divide a 3D space into eight equal-sized 

subspaces, or octants. The octree structure allows efficient compression of data, by storing only the most 

significant data values in the parent nodes, while the more detailed data values are stored in the child nodes. 

Each octree node can be defined by its coordinates in 3D space, represented as a vector (x, y, z). The 

coordinates of the root node are usually defined as (0, 0, 0), and the coordinates of each child node can be 

calculated using the (1): 
 

𝑐ℎ𝑖𝑙𝑑_𝑛𝑜𝑑𝑒𝑠 =  𝑝𝑎𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒𝑠 +  𝑠𝑖𝑧𝑒/2 ∗  (2 ∗ 𝑖𝑛𝑑𝑒𝑥_𝑐ℎ𝑖𝑙𝑑 −  1) (1) 
 

where index_child is an integer between 1 and 8 representing the index of the child node, and size is the 

length of the side of the parent node. The representation of an octree is in tree form is given in Figure 2.  

To construct an octree, the 3D space is recursively subdivided into smaller cubes until the desired 

level of detail is reached. The subdivision algorithm typically works by checking whether each cube contains 

any data points, and if so, dividing it into eight smaller cubes. The subdivision can be performed using the 

following steps: 

i) Check if the current cube contains any data points. 

ii) If the cube is too small or contains no data points, mark it as a leaf node and stop 

iii) Otherwise, divide the cube into eight smaller cubes. 

iv) Recursively apply the subdivision algorithm to each of the smaller cubes. 
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Figure 2. Mesh representation of an octree 
 

 

For example, to represent sea surface temperature (SST) using an octree, we can divide the ocean 

surface into octants and assign a temperature value to each octant. The octree can be built recursively by 

dividing each octant into eight smaller octants until a desired level of detail is achieved. One approach to 

representing SST using an octree is to use a multi-resolution representation, where each level of the octree 

represents a different level of detail. At the highest level of the octree, each octant represents a large area of 

the ocean surface with a low level of detail, and at lower levels of the octree, each octant represents a smaller 

area with a higher level of detail. To store the temperature values in the octree, a hash table can be used to 

store the value associated with each octant. Octrees are thus useful for level-of-detail rendering, where 

different levels of detail can be displayed based on the distance from the observer. The level of detail is 

determined by the depth of the octree. This can be particularly useful for interactive visualization of large 

oceanographic datasets. The octree traversal traces the ray and its collision with the scene. The rendering 

speed in GPU implementation is further improved using sorted sibling traversal [17] by the ray as described 

in the following steps. 

1) Start at the root 

2) If the ray intersects the root bounds, check the children 

If the child is a non-leaf, find the nearest child closest to the ray origin, by comparing with basis x, y, and 

z planes 

i. To determine which of the parent node’s three axis planes the ray has collided with, look for the 

next closest sibling. 

ii. The entry point of the beam into the next closest sibling will be revealed by the closest plane that is 

struck. 

iii. If no plane is struck, then the ray is headed out of the node and will not hit any other children of the 

current parent. 

3) Else, halt the entire process. 
 

2.4.  Python interface 

Python has a wide variety of packages that can be used to visualize ocean parameters. Depending on 

the particular requirements, one or more of these libraries may be useful. The key visualization tools in the 

suggested framework for data analysis are Matplotlib and Plotly. A well-known Python data visualisation 

toolkit called Matplotlib provides several tools for making plots, charts, and graphs. It may show a variety of 

ocean parameters, including temperature, salinity, sea level, and currents. A Python module called Plotly 

enables us to make interactive, web-based visualizations. Making interactive maps, scatter plots, line plots, 

and other visualizations is possible with it.  

Python Qt is used as the graphical user interface (GUI) for interactive visualization. Creating high-

quality, native-looking apps with a consistent user interface and behaviour across platforms is straightforward 

with Qt’s wide range of tools and modules. Python programmers can use the PyQt or PySide libraries to 

access the Qt framework. PySide is an alternate set of bindings that is only partially compatible with PyQt, 

which is a set of Python bindings for the Qt framework. The Qt framework includes essential elements such 

as Qt Core, Qt GUI, and Qt Widgets. Qt Core provides non-GUI features like event management, data 

storage, networking, and threading. Qt GUI offers tools for building graphical user interfaces, including 

widgets, layouts, and event handling, while Qt widgets contains reusable UI elements like menus, buttons, 

and text editors, along with layout managers for organizing widgets. 
 

2.5.  Visualization layer 

The objective of visualization layer is to provide univariate and multivariate visualization of the 

oceanographic dataset. The univariate visualization techniques are available in different methods like  

(a) colormaps, (b) vector plots, (c) contour plots, (d) stick plot, (e) streamline plots, and (f) rose plots. 
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The matplotlib library in Python includes the ‘cmocean’ module, which contains colormaps tailored 

to specific oceanographic variables, such as thermal, haline, ice, oxy, and algae. For example, the ‘algae’ 

colormap in shades of green represents chlorophyll, while the ‘thermal’ colormap transitions from dark blue 

to yellow for temperature values. These colormaps are preferred over conventional ones like ‘rainbow’ and 

‘jet’ for better cognition in oceanographic data visualization. For visualizing oceanographic data with 

magnitude and direction, such as wind and current, vector plots, stick plots, and streamline plots are used. 

The ‘quiver’ function in Python helps plot vector and stick representations, and the ‘streamplot’ function 

provides streamline plots illustrating the velocity field’s density and magnitude. Additionally, the ‘bar_polar’ 

function in matplotlib can plot rose charts to visualize wind speed and direction distributions at a given 

location. 

While rendering contour plots in 2D and 3D visualization, the rendering speed suffers as there are 

not sufficient points available as samples in the spatial area considered. Thus, the oceanographic data is 

characterizedof non-uniform section interval (eg-depths at non-uniform intervals in Argo float). Hence, to 

speed up the ray-casting algorithm for volume rendering, appropriate spatial interpolation technique is to be 

adopted. The spatial interpolation method chosen is kriging [18]. Kriging uses a linear combination of the 

observed values in the adjacent nodes of the octree, with weights determined by their spatial correlation, 

given as (2). 

 

𝑍(𝑥) = ∑𝜆𝑖𝑍(𝑥𝑖) (2) 

 

where Z(x) is the estimated value of the variable at the target location x, λi is the weight assigned to the i-th 

observation at location xi, and the summation is taken over all the observations within the specified 

neighborhood around the target location. The weights are determined by a variogram that describes the 

spatial correlation between the variable at different locations. The selection of the variogram to be used in 

kriging for a particular variable, say, SST data is influenced by a number of variables, including the spatial 

scale of the SST variability, the sampling density of the data, and the underlying physical processes that 

produce the SST variability. In this implementation, anisotropic variogram is chosen, as the SST data varies 

in different directions [19], [20]. The anisotropic variogram is expressed as (3). 

 

𝛾(ℎ) = 1/2 ∗  𝐸[(𝑍(𝑥) − 𝑍(𝑥 + ℎ))^2] (3) 

 

where h is the lag distance, Z(x) is the variable of interest at location x, and E [21] denotes the expected value 

operator. The lag distance, h, can be replaced by a lag vector h=(h₁, h₂, h₃) and the covariance between two 

locations is a function of the lag vector and the orientation of the anisotropy. A rotation matrix R can be used 

to transform the lag vector, h, into a new coordinate system as (4). 

 

𝛾(ℎ) = 1/2 ∗ 𝐸[(𝑍(𝑥) − 𝑍(𝑥 + 𝑅ℎ))^2] (4) 

 

where Rh is the lag vector in the new coordinate system.  

Thus, with kriging, the sampling step of ray casting algorithm results in less artifacts. The 

visualization layer also provides multivariate visualization of the oceanographic data, which helps to 

understand the causal relationship between the different parameters under consideration. The multivariate 

visualization [22], [23] provides the simultaneous visualization of multiple variables. For example, the 

foundation layer of a multivariate map might be the SST, with additional layers showing bathymetry, ocean 

currents, and chlorophyll concentration. This would give a complete picture of where h is the lag distance, 

Z(x) is the variable of interest at location x, and the ecological and physical characteristics of the ocean in a 

particular area. An extensive perspective of the vertical structure of the ocean can be obtained by utilising a 

vertical profile map or a contour plot, where the various characteristics are stacked on top of one another 

[24], [25]. 

 

 

3. RESULTS AND DISCUSSION 

Python is used to implement the system since it has an adequate data processing package. Python 

modules like Matplotlib, Basemap, and Numpy are essential components of the program. Users have the 

option to select from a variety of plot types for a single variable study, including contour plots, vector plots, 

stream line plots, and color maps. Plots can be customized in a variety of ways, including location and color 

selections. The framework offers alternatives for multivariate visualization by overlaying the many 

fundamental plots. The initial launch page of the framework which provides the data converter is given in 

Figure 3. The interface of the system provides options to import data into the framework and provides an 
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interface for data management. The framework is tested on the system with specification of 8 GB RAM and a 

graphics card of NVIDIA GeForce GTX 1650 4 GB GDDR6 on an i5-11300H, 3.1 to 4.4 GHz processor. 

 

 

 
 

Figure 3. Data converter in data management layer 
 

 

3.1.  Basic plots 

The basic plots implemented in this framework include profile plots, vector plots, color maps, and 

streamline plots. Users are provided with different options to customize the plots. Sample examples of 

customization frames for plots are displayed in Figure 4. The vector plot interface includes options for 

providing, time and depth index, as well as location specifications. The arrow settings provide the user 

options to customize the scale, shaft and head width and head length, and head axis length for the vector plot. 

The color setting options are also provided for the vector plot. Similarly, the contour plot offers 

customization in terms of time and depth indices, as well as location preferences. Users can select the 

relevant parameter and specify the parameter’s range through the contour plot interface. The contour lines 

can be customized in terms of color, style, and thickness. The color map also provides similar choices along 

with options to extend the color bar range according to the user’s preference. A sample plot generated by the 

data rendering engine in the proposed framework, utilizing the CPU implementation, is depicted in Figure 5. 

The basic 2D plots thus provide a continuous spatial understanding of the parameter under study. 

Additionally, a sample 3D plot for the variable under investigation is presented in Figure 6, which is 

implemented using the octree concept mentioned earlier. Users can enhance the visualization smoothness 

using the interaction techniques provided by the Python interface. 
 

 

 
 

Figure 4. Customization options for basic plots 
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Figure 5. Basic 2D plots-contour plot, vector plot, and colour map 
 

 

 
 

Figure 6. 3D plot for temperature 
 

 

3.2.  Overlay plots 

Multiple data sets are displayed on one graph in an overlay plot, enabling direct comparison and the 

detection of trends, patterns, and correlations between variables. With the use of overlay plots, numerous 

datasets or variables can be compared visually at once. The charts aid in examining the relationships between 

various factors. We can see correlations, dependencies, or causal links by overlaying two or more basic 

graphs. Figure 7 represents the example overlay plots. Figures 7(a) and 7(b) displays sample graphs of wind 

overlaid on temperature anomaly and salinity overlaid on temperature. 
 
 

  
(a) (b) 

 

Figure 7. Examples of overlay (a) wind overlaid on temperature anomaly and (b) salinity overlaid on 

temperature 
 

 

4. CONCLUSION 

The main challenge in analyzing large volumes of ocean data is its inherent complexity. To address 

this, an interactive and adaptable multi-scale, multivariate visualization system is essential. This study 

introduces a novel Python-based interactive tool designed for visualizing multivariate data in both 2D and 3D 

formats. The tool supports various data formats and allows for single-variable visualizations like vector plots 

and color maps, as well as multivariate visualizations. It processes and refines data using multiple pre-

processing techniques and accommodates octree representation and kriging interpolation for improved 3D 

plots. Overlay plots enable comparisons and the identification of patterns, trends, and correlations among 

diverse variables, making the system adaptable for visualizing different types of scientific data. 
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This study presents an interactive application for multivariate visualisation of ocean characteristics, 

using advanced 3D visualisation techniques and customisable overlays, based on Python. The technology 

makes it easier to identify patterns, trends, and anomalies, integrates a variety of data sources, and facilitates 

thorough data processing-all of which contribute to a better knowledge of marine processes. By adding real-

time data integration and analysis to the tool’s capabilities, future research can build on these discoveries and 

provide more dynamic and instantaneous insights into ocean conditions. 
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