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 A smart home automation system (SHAS) utilizing data-driven learning is 

an advanced internet of things (IoT) application aimed to learn household 

behavior to prevent miniatur circuit breaker (MCB) trips due to overload. 

Unlike traditional deterministic methods, this study leverages a layered AI 

model, featuring real-time data collection, long short-term memory (LSTM) 

based learning, and an automatic control system. The LSTM classification 

model generates precise ON/OFF control signals sent to IoT smartplugs, 

optimizing appliance usage and reducing the risk of electrical overload. Data 

from smartplug sensors, including appliance status and environmental 

factors like power consumption, temperature, and humidity, were collected 

every minute over three months, yielding 80,818 data points. The system's 

performance was evaluated on three appliances: Air Conditioner, Television, 

and Water Pump Machine. Results showed high accuracy for Television at 

98% and Water Pump Machine at 97.6%, with slightly lower accuracy for 

Air Conditioner at 81.9%. This demonstrates the system's effectiveness in 

real-world applications. The scalability and adaptability of the Natural 

SHAS model to different appliances and environments mark a significant 

advancement in smart home automation, offering a practical solution for 

preventing electrical overload and improving household energy 

management. 
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1. INTRODUCTION 

Households in Indonesia are categorized into several customer groups by Perusahaan Listrik Negara 

(PLN), the state owned electricity company, in terms of electricity consumption [1]. For example, the R-1/TR 

category limit electricity consumption to a maximum of 1,300 VA with a tariff of Rp. 1,444.70 per kWh. 

This means that the total electricity consumption from all appliances should not exceed 1,300 watts, 

assuming a power factor (cos phi) of 1. However, in reality, many households have various electrical 

appliances with a total power consumption exceeding this subscription limit. Consequently, when multiple 

appliances are used simultaneously, exceeding the total power limit, it cause the miniature circuit breaker 

(MCB) to trip. When the MCB trips, the electrical connection from the main PLN line to the house is cut off, 

causing all electrical appliances in the house to shut down. This condition leads to the occurrence of inrush 

current in electrical appliances when the MCB is switched back on. The inrush current phenomenon is 

disadvantageous as it increases electricity consumption at the beginning of operation due to the large 

momentary current and can also damage electrical equipment because of the large starting torque required [2]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Additionally, frequent overloading and subsequent tripping of the MCB pose safety risks to the household 

[3], as electrical equipment may be damaged [4], potentially leading to dangerous situations [5]. Furthermore, 

this frequent ON-OFF cycling of electricity can disrupt energy management in the home, causing 

inefficiencies and inconvenience [6]. 

To address this issue, automatic control systems based on load prioritization [3] and the elimination 

of high-consumption appliances [7] have been implemented. However, these approaches are often static and 

lack adaptability to natural environmental factors. In contrast, homeowners who are aware of their total 

power consumption typically develop habits of turning appliances ON and OFF as needed to avoid exceeding 

the maximum load limit. This behavior reflects a more dynamic and responsive approach to energy 

management within the home. This study focuses on the behavior of household residents as the object of 

research to provide solutions for preventing overloads. The method uses an electrical approach by leveraging 

internet of things (IoT) technology to capture data on residents' behavior and AI deep learning technology to 

automatically control the ON-OFF state of electrical appliances based on the residents' behavior. 

The integration of AI and IoT known as AIoT has resulted in impressive technology where deep 

learning can derive new insights from continuously updated data from various sources. This advancement has 

brought progress to various fields, such as smart homes [8], smart cities [9], industry, healthcare [10], [11], 

and transportation [12]. In the context of smart homes, the application of this technology extends to 

enhancing the functionality and comfort of household residents. This includes the evolution from remote 

access and control to automatic system control based on learning data [13], thereby improving residents' 

comfort in using electrical appliances while achieving energy savings [14]. 

Referring to IoT technology, electrical appliances with smart sockets can transmit data on the status 

of an appliance, including power consumption, current, voltage, energy, power factor [7], [15], and ON/OFF 

status [16] to other devices and the cloud within an IoT network. Similarly, other smart home devices such as 

thermostats, PIR sensors for detecting human presence in a room, and water tank level sensors to trigger the 

water pump can serve as data sources for smart systems like the smart home automation system (SHAS) to 

understand household behavior patterns in operating electrical appliances. Furthermore, as to embedding AI 

technology in the IoT system, Deep learning models such as long short-term memory (LSTM) can be 

implemented as it suitable for learning datasets with time series data, like household behavior patterns that 

follow daily cycles [17]-[18]. Once patterns are identified through deep learning, or what is referred to as the 

model, SHAS will use this model to predict outputs in the form of automatic controls, such as turning an 

electrical appliance ON or OFF. Thus, automatic control happens naturally rather than deterministically [19], 

through conditioning or scheduling, such as the scheduled ON/OFF control of lights [20]. This adds value to 

SHAS with the application of AI in an IoT environment. 

Based on an AIoT system, this study contributes to the design of a layered SHAS model using the 

LSTM algorithm with datasets from IoT devices in a house, including the ON-OFF status of electrical 

appliances and other supporting sensor data. The following sections of this paper will cover the methodology 

of the built system and its workflow, followed by a discussion of the results, which will present the dataset 

characteristics and the performance evaluation of LSTM in predicting the ON or OFF status of electrical 

appliances using the confusion matrix parameter. 

 

 

2. METHOD 

This study proposes a SHAS layered model, as depicted in Figure 1, which integrates AI within an 

IoT environment. The SHAS developed in this research utilizes LSTM as the AI feature to control electrical 

appliances based on household behavior data. In the physical layer, sensors generate data such as the 

ON/OFF status of smartplugs or smart sockets for electrical appliances, total electricity consumption from 

smart power meters, air quality data including temperature and humidity, water tank level data indicating the 

percentage of water height in the tank, and motion data detecting human presence in a room. These sensors 

wirelessly transmit their data within an IoT network to an edge device, functioning as a sensor hub that 

aggregates all sensor data into a streaming dataset named the automation home electrical appliance control 

system (AHEACS). The dataset duration is per minute, collected over three months from February to April 

2024, totaling 80,818 data points. 

In the management layer, LSTM processes the dataset to learn, evaluate the model's performance, 

and produce the most optimal predictive model to be used in the proposed SHAS model. The model's 

prediction results, in the form of ON/OFF commands, are sent to the sensor devices, specifically the 

smartplugs containing relays connected to the electrical appliance sockets. This communication can be 

carried out through a local IoT network such as wireless local area network (WLAN) and by using machine-

to-machine communication protocols like message queuing telemetry transport (MQTT). In the case of 

communication between IoT devices, such as AI devices and smartplugs, they act as MQTT clients with an 

MQTT broker device that is also connected locally within the same WLAN. This AI process can be executed 
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at the edge, ensuring that the automatic control process does not rely on internet connectivity [21]. 

Meanwhile, the application layer resides in the cloud, providing users with the option to monitor sensor data 

and manually remote-control electrical appliances via the internet. 

This work presents the performance of LSTM as the AI component in the IoT SHAS application on 

the edge side of an IoT network, as shown in Figure 1. The methodology consists of three parts: the study of 

proposed dataset characteristics, the design of the LSTM model for each smartplug connected to an electrical 

appliance and also performance analysis of the LSTM algorithm in Google Colab environment using python. 

 

 

 
 

Figure 1. SHAS layered model 

 

 

2.1.  SHAS dataset streaming 

The role of the sensor hub in the SHAS layered model design of this research showed in Figure 1 is 

to form a streaming AHEACS dataset from various sensors in a smart home application. This study uses a 

smart power meter to generate total power (TP) data, indicating total electricity consumption. Five 

smartplugs provide ON/OFF status data for each electrical appliance, such as an air conditioner (S-AC), 

Refrigerator (S-K), Water Pump (S-WPM), Washing Machine (S-MC), and Television (S-TV). Additionally, 

environmental sensors that related to the home's condition are used as factors influencing the residents' 

decision to turn electrical appliances ON or OFF. These include sensors for temperature (T), humidity (H), 

motion in the bedroom (Pb), motion in the living room (Pg) where the television is located, and water tank 

level (W), indicating the water level in the water tank of the chosen house. 

Table 1 shows the design of the streaming dataset columns, where the timestamp (TS) represents the 

data collection time, set per minute. S-X represents smartplug status which contain S-AC, S-K, S-WPM, S-

MC, and S-TV, with the possibility of adding other electrical appliances in the future. In this study, TS is 

detailed to reflect the influence of weekdays (Monday-Friday) and weekends (Saturday-Sunday), as well as 

operational hours (morning-afternoon-evening). Thus, TS is extracted into year, month, day, hour, minute, 

and second values, which are converted into numeric form. Year and month remain numeric, while the day is 

represented as (D), where Monday=1, Tuesday=2, and so on until Sunday=7. Hours, minutes, and seconds 

are converted into the number of seconds since midnight (NSM), a value that repeats daily. To distinguish 

between weekdays and weekends, the variable (WS) is used: 0 for weekdays and 1 for weekends. 
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Table 1. Dataset labeling 
Variable Description Type of data 

TS Timestamp Date and Time 
NSM Number of Seconds since Midnight, convert all time in 

a day to become number of second 

Numerical 

WS Weekday status Boolean (weekday=0, weekend=1) 
D The Day from Monday to Sunday Numerical (Monday=1 until Sunday=7) 

HR Date Date 

WK Time Time 
TP Total Power (Watt) Numerical 

S-X The state of electrical appliance operation Boolean (on=1, off=0) 

T Temperature (°C) Numerical 
H Humidity (%) Numerical 

Pb Present people in bedroom Boolean (present=1, empty=0) 

Pg Present people in television room Boolean (present=1, empty=0) 
W Water tank level Numerical 

 

 

2.2.  LSTM based for SHAS 

The role of IoT technology is highly beneficial in collecting real-time usage data of electrical 

appliances in homes, which can be compiled into a dataset. This data is then processed and analyzed to 

understand user usage habits, leading to actions based on new insights obtained, as demonstrated in the 

SHAS application. This concept is known as the internet of behavior (IoB) [22].  

In the context of SHAS, which focuses on the time-dependent usage behavior of household 

electrical appliances, a recurrent neural network (RNN), an extension of a Neural Network model specifically 

for learning sequential data over time, can be applied [23]. The expectation from an RNN is to capture long-

term dependencies so that all past inputs can influence the output. However, RNNs face challenges with 

inputs that are too distant in the past. Fortunately, these problems can be addressed by applying an evolution 

of the RNN known as the LSTM model [24]. The LSTM model includes specialized units called memory 

cells, which can store information for an extended period, acting like a conveyor connecting LSTM blocks. 

These units involve three types of gates: input, forget, and output, which control the flow of information. 

These gates are crucial as they determine whether to allow new input, erase the current cell status, or let the 

status influence the output at a specific time step. 

This paper does not explain the general workings of LSTM in detail, as LSTM itself is not new in 

Deep Learning algorithms. For more details, refer to previous literature on LSTM related to smart home 

applications [18], [25]. Here, the focus is on the detailed LSTM model for the streaming dataset case as 

previously explained. The LSTM architecture in this study, as shown in Figure 2, consists of one input layer, 

two hidden layers, and one output layer with fully connected layer. 

 

 

 
 

Figure 2. LSTM architecture for SHAS 
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In the input layer of the LSTM model, the number of input features is determined by various factors 

that influence the ON/OFF operation of each electrical appliance. For example, in the case of controlling an 

Air Conditioner (AC), relevant input features might include Total Power (TP), Temperature (T), Humidity 

(H), Bedroom Motion (Pb), and Water Pump Status (S-WPM). Thus, for the smartplug connected to the AC, 

the LSTM model receives 5 input features. However, within the LSTM neural network, the input layer is 

structured to take in one timestep or input dimension at a time. This is because all input features are measured 

simultaneously at a specific time or timestep. The input data, represented as 𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑡 in the diagram, 

corresponds to these features for each electrical appliance. 

In this study, the input features for different appliances vary based on their operational context. The 

notation S-X in the Table 2 o the specific smartplugs connected to different appliances, such as Air Conditioner 

(S-AC), Water Pump (S-WPM), Refrigerator (S-K), Washing Machine (S-MC), and S-TV (Television). The 

diagram illustrates how these inputs feed into the LSTM cells sequentially, with each cell learning from the 

input data and passing the learned information forward through the network, ultimately leading to the binary 

classification output that controls the appliance's ON/OFF state. This process is captured in the LSTM 

architecture shown in Figure 2, where the input layer feeds the data into a series of LSTM cells, each 

maintaining and updating the cell state 𝐶(𝑡) and hidden state ℎ(𝑡). The final hidden state after processing all 

timesteps is then used for binary classification, which determines the operational control status of the appliance. 

The determination of input features is based on the threshold value of the correlation coefficient 

with the (1): 
 

𝑟𝑥𝑦 =
∑(𝑥−�̅�)(𝑦−�̅�)

𝑁.𝑆𝑥𝑆𝑦
) (1) 

 

The Pearson correlation coefficient 𝑟𝑥𝑦  ranges from -1 to 1. If 𝑟𝑥𝑦  is positive, the input feature variables tend 

to move in the same direction, indicating a positive correlation. Conversely, if 𝑟𝑥𝑦  is negative, the correlation 

is negative, meaning the variables move in opposite directions. If 𝑟𝑥𝑦  approaches 0, there is no linier 

relationship between the two input feature variables. Meanwhile 𝑁 represent the total number of data samples 

and 𝑆𝑥𝑆𝑦 represent the standard deviation from two variable. 

The correlation level between input features is detailed in the exploratory data analysis (EDA) 

section of this paper. From the input layer, a fully connected network is created to the first hidden layer, 

which consists of 25 LSTM cells. In this layer, the general LSTM process occurs, where memory cells with 

three gates are designed to read, store, and update past information. Each LSTM cell connects to the next 

LSTM cell through the cell state 𝐶(𝑡) and hidden state ℎ(𝑡) with the (2) and (3): 

 

𝐶(𝑡) = 𝑓(𝑡). 𝐶(𝑡−1) + 𝑖(𝑡). �̃�(𝑡) (2) 

 

ℎ(𝑡) = 𝑜(𝑡). tanh(𝐶(𝑡)) (3) 

 

Where is: 

𝑓(𝑡)= forget gate 

𝑖(𝑡)= input gate 

𝑜(𝑡)= output gate 

�̃�(𝑡)= candidate gate 

The selection of 25 LSTM cells, as shown in Figure 2, is based on the complexity of the input 

feature variables and the dimensions of the data [26]. As previously mentioned, this study employs a single 

input dimension for time-series data, aiming to keep the model simple and suitable for implementation on the 

edge side of an IoT network. The LSTM network then connects to the second hidden layer, which mirrors the 

first layer in terms of parameters, such as the use of a dropout layer and the return sequence setting. The 

dropout layer is applied to prevent overfitting during training, with a dropout rate of 0.1 or (10%) of the total 

25 neurons per hidden layer. The return sequence parameter in the first hidden layer is set to "true" to ensure 

that the output sequence at each timestep aligns with the input conditions. For the second hidden layer, this 

parameter is set to "false" so that the output dimension becomes singular, matching the desired final output. 

In the output layer, the LSTM model performs binary classification, predicting whether each smartplug 

connected to an electrical appliance should be turned ON (1) or OFF (0). 

 

2.3. SHAS environment 

This study uses Google Colab to run the LSTM algorithm with Python programming to measure its 

performance in SHAS. The TensorFlow module serves as the framework for training the deep learning 
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model, with Keras as the integrated neural network API. Additionally, the Pandas library is used for the EDA 

process to determine the number of features in the input layer for each smartplug electrical appliance of the 

developed SHAS in this study. Data is imported from the sensor hub in .csv format and collected weekly, 

with dimensions of (80,818; 12), representing 80,818 rows of data and 12 columns or input features. The TS 

column is then extracted into NSM, WS, D, HR, and WK, as shown in Table 1, changing the dimensions to 

(80,818; 16). In this system, which uses an AI technology, the LSTM training data is taken weekly, assuming 

the household residents' habits repeat each week on normal days and not during long holidays. The dataset is 

then normalized to speed up computation and avoid large value ranges between input features [13] using the 

scikit-learn library in Google Colab. This normalization process involves removing data with NaN or null 

values originating from the sensor data sources. The occurrence of such values depends on the quality of the 

sensor readings and the data network during transmission to the sensor hub. After this process, the data is 

considered clean, with an equal number of entries for each column or feature variable. Min-Max scaling is 

performed during the preprocessing phase in EDA, with a range of -1 to 1 for all input feature values. The 

purpose of the Min-Max function is to ensure data consistency and accelerate the performance of algorithms 

during the learning process. This normalization technique transforms data from all features to a range of -1 to 1 

[27]. The equation used in this research is as follows, where 𝑋𝑚𝑎𝑥  is the highest value and 𝑋𝑚𝑖𝑛 is the lowest 

value in the sample data. 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
× (1 − (−1)) + (−1) (4) 

 

After normalizing all data within the range of -1 to 1, the next step is to separate the input and output 

data for each smartplug electrical appliance based on the correlation coefficient 𝑟𝑥𝑦  (1). In this study, the 

LSTM training process is set with the following parameters: 25 cell or neurons in each hidden layer (see 

Figure 2) with 10% of overfitting, 75% of the data is used for training, 25% for testing, 25 epochs, a learning 

rate of 0.0001, and the optimization algorithm used is Adam. 

 

 

3. RESULTS AND DISCUSSION 

This research investigates the impact of household behavior on the SHAS to prevent electrical 

overload. While previous studies also aimed to prevent overload, their approaches relied on deterministic 

factors without considering environmental conditions that influence household behavior. This section 

presents a detailed analysis of the research findings, starting with exploratory data analysis (EDA), which 

preprocesses raw data into a usable dataset. It then identifies key input variables for the LSTM model for 

each smart plug. The performance of SHAS is evaluated by comparing results from different devices, such as 

S-AC, S-TV, and S-WPM, using real-world data. 

 

3.1.  SHAS data preprocessing 

In this study, data preprocessing begins with extracting the AHEACS dataset in CSV format from 

the dataset repository. The data is then transformed and normalized to ensure it is clean, with no null or NaN 

values, and consistent in size, meaning each feature contains the same number of data points. Afterward, 

correlation analysis is performed to identify the input features for the desired smartplug output using a 

heatmap visualization based on (1). Figure 3 shows the heatmap results of all dataset features or variables. In 

this heatmap, a value close to 1 (dark-red) indicates a strong positive correlation, while a value close to -1 

(dark blue) indicates a strong negative correlation. 

For the smartplug connected to the AC (S-AC), 15 candidate input features were identified, with an 

absolute correlation value 𝑟𝑥𝑦  of |0.03|. This value was chosen to account for the time variable, influencing 

the S-AC output. It is not set smaller to avoid involving too many variables and overly complex model. 

Based on the heatmap in Figure 3, the input features are [TP, S-TV, S-WPM, S-MC, T, H, W, Pb, Pg, WS] 

where WS is the time variable. In addition to S-AC, this study also evaluates the S-TV and S-WPM 

smartplugs. For these, an 𝑟𝑥𝑦 of |0.1| was choosen. The input features for S-TV are [TP, S-AC, T, H, W, Pg, 

NSM, WK], and for S-WPM, the input features are [TP, S-AC, S-MC, T, W].  

We found that time variables (WK, HR, D, WS, and NSM) have an influence on control variables 

such as S-AC, S-TV, and S-WPM. Although the correlations are small, ranging from 0.01 to 0.17, time 

variables extracted from the time series data are particularly significant due to their impact on household 

appliance usage, which is influenced by time-based patterns. The residents' specific routines for using 

appliances like air conditioners or washing machines are crucial for accurate energy consumption predictions. 

Although the correlations may appear low, capturing these temporal patterns enhances analysis depth 

compared to static deterministic control methods [19], [20]. The flexibility in determining the 𝑟𝑥𝑦 value 

allows for adjustments according to the desired model behavior and design. 
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Figure 3. Coefficient correlation between feature in AHEACS dataset 

 

 

After determining the variables to be used as input features for each smartplug (S-AC, S-TV, and S-

WPM), the LSTM model learns from the dataset to build a classification model with outputs of either 'ON' or 

'OFF' for each smartplug. Table 2 shows the results of the learning process conducted in the Google Colab 

environment. The correlation between Figure 2, which depicts the LSTM design, and Table 2, which presents 

the results of the implementation using Python, shows that this model has three layers: LSTM, Dropout, and 

Dense (Output). For example, the implementation for S-AC is explained as follows: 

a) lstm_1: This is the first LSTM layer in the model, with an output shape of (None, 10, 25). This means 

that the layer has 25 units (or memory cells), and it produces a sequence of 10 output vectors, where 

each vector has 25 elements. These output vectors are equivalent to the number of input features: S-AC 

has 10 input features, S-TV has 8 input features, while S-WPM has 5 input features. The LSTM layer 

receives input from the input layer and processes it by updating its internal state, which consists of a cell 

state and a hidden state. The LSTM layer can learn to keep or discard information from the previous 

time steps, depending on its relevance for predicting the output. 

b) dropout_1: This is a dropout layer, which is used to prevent overfitting by randomly setting a fraction of 

the input units to zero during training. The dropout rate is denoted by 10% or 0.1, as mentioned before 

in the previous section. The output shape of the dropout layer is the same as the input shape, which is 

(None, 10, 25) in this case. 

c) lstm_2: This is the second LSTM layer in the model, with an output shape of (None, 25). This means 

that the layer has 25 units, and it produces a single output vector for each input sequence. This LSTM 

layer receives input from the previous layer and processes it by updating its internal state, which 

consists of a cell state and a hidden state. 

d) dropout_2: This is another dropout layer, which is used to prevent overfitting by randomly setting a 

fraction of the input units to zero during training. The dropout rate is denoted by 10% and the output 

shape of this dropout layer is the same as the input shape, which is (None, 25) in this case. 
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e) dense: This is the output layer of the model, which is a fully connected layer with 1 unit (or neuron). 

The output shape of the dense layer is (None, 1), which means that it produces a single scalar value for 

each input sequence. The activation function of the dense layer is tanh, which is used for binary 

classification tasks. 
 

 

Table 2. Summary LSTM classification model 

Layer 
S-AC S-TV S-WPM 

Output Shape Param # Output Shape Param # Output Shape Param # 

lstm_1 (None, 10, 25) 2700 (None, 8, 25) 2700 (None, 5, 25) 2700 

dropout_1 (None, 10, 25) 0 (None, 8, 25) 0 (None, 5, 25) 0 

lstm_2 (None, 25) 5100 (None, 25) 5100 (None, 25) 5100 
dropout_2 (None, 25) 0 (None, 25) 0 (None, 25) 0 

dense (None, 1) 26 (None, 1) 26 (None, 1) 26 
       

Total params: 7826  

Trainable params: 7800 

Non-trainable params: 26 

 

 

The total number of parameters in the model is 7,826, which includes 7,800 trainable parameters and 

26 non-trainable parameters. The trainable parameters are the weights and biases of the LSTM and dense 

layers, which are learned during training. The non-trainable parameters are the dropout masks, which are 

randomly generated and fixed during training. These results demonstrate the reliability of LSTM as one of 

the best-performing deep learning algorithms, particularly in handling large-scale data such as in this study 

which uses a model with 5 layers (1 input layer, 3 hidden layers, and 1 output layer) [28]. However, the 

LSTM design in this study, as previously explained, maintains simplicity to ensure its applicability on edge 

devices within IoT networks. Further refine LSTM architectures to reduce computational complexity while 

maintaining or even improving accuracy. Research could focus on pruning techniques, quantization, and 

efficient memory management to make LSTM models even more suitable for edge devices with limited 

resources. 

 

3.2.  SHAS performance analysis 

This study uses LSTM in a SHAS application to produce output in the form of ON or OFF 

classifications. These ON or OFF messages are then forwarded to the smartplug via the MQTT protocol, 

where they are translated by the relay in the smartplug into an ON or OFF switch to control the power flow to 

the electrical appliance. 

To evaluate the performance of the LSTM model in this SHAS, the confusion matrix method is 

used, which is a standard approach in classification modeling. The confusion matrix 𝑀 = (
𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁

)  

provides insight into the model's accuracy [29]. Here, True Positive (TP) represents cases where the 

smartplug is correctly predicted to be ON, False Negative (FN) represents cases where the plug is predicted 

to be OFF when it is actually ON, True Negative (TN) represents correct predictions that the plug is OFF, 

and False Positive (FP) represents incorrect predictions where the plug is predicted to be ON when it is OFF. 

All the predicted data from the LSTM model, ordered by time, will be classified into these four variables. 

Below are the results of the confusion matrix from the LSTM model with a total of 80,818 data points on the 

dataset for each S-AC, S-TV, and S-WPM, which were run in the Google Colab environment using Python:  

 

𝑀𝑆−𝐴𝐶 = (
40594 4339
10418 25467

) 𝑀𝑆−𝑇𝑉 = (
22273 450
1155 56940

) 𝑀𝑆−𝑊𝑃𝑀 = (
5728 1044
952 73094

) 

 

Next, the confusion matrix parameters are calculated using the (5)-(8) [30]:  

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
  (5) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (8) 
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The performance evaluation of the SHAS using (5)-(8) is summarized in Table 3 and visually 

represented in Figure 4. The evaluation indicates that the LSTM model's learning of the household behavior 

is quite successful, achieving high accuracy for the smartplug TV (S-TV) at 98% and the smartplug Water 

Pump Machine (S-WPM) at 97.6%, but slightly lower for the smartplug AC (S-AC) at 81.9%. For S-TV, 

precision and recall are both very high at 95% and 98%, respectively. This indicates that the LSTM model 

accurately predicts the ON/OFF status of the TV, with minimal false positives (FP) and false negatives (FN). 

S-WPM also demonstrates good performance, with a precision of 85.7% and recall of 85%, meaning that 

most instances are correctly detected, though a few are missed. In contrast, S-AC shows a lower precision of 

79.5% compared to a recall of 90.3%, suggesting that while the model correctly predicts most S-AC 

instances, there are more false positives. The performance gap between S-TV and S-AC could be due to 

various factors affecting appliance usage patterns. The accurate prediction of smartplug operations, 

particularly for S-TV and S-WPM, directly contributes to preventing electrical overloads. This prevention is 

crucial for maintaining household safety by reducing the risk of MCB trips, which can lead to equipment 

damage or safety hazards. Additionally, the system ensures energy management is optimized by only 

activating appliances when necessary, based on learned user habits. 

Future research could explore contextual and environmental factors, such as weather conditions, 

time of day, and user behavior patterns, that impact appliance usage. Additionally, the accuracy of sensors, 

like those detecting room occupancy, could be another key factor contributing to this gap. Improving sensor 

accuracy or using sensor fusion techniques could enhance model predictions, especially for appliances like 

AC that are sensitive to room occupancy. 

 

 

Table 3. The SHAS performance 

Performance Metrics 
Smartplug 

S-AC S-TV S-WPM 

Accuracy (%) 81.9 98 97.6 
Precission (%) 79.5 95 85.7 

Recall (%) 90.3 98 85 

F1 Score (%) 85 97 85 

 

 

 
 

Figure 4. SHAS Confusion matrix performance with comparison of three smartplugs 

 

 

3.3.  SHAS performance evaluation with real-world data 

The performance of the above model was further tested with out-of-sample data or external 

validation data, specifically data outside the range February to April 2024 as described in the methodology 
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section. This study used external validation data from the period of May 14-21, 2024, with a total of 5,520 

data points. After pre-processing, 5,109 data points remained, as shown in Figure 5. Figure 5(a) shows the 

first 6 rows of the dataset, indicating some NaN values. Following pre-processing, including transformation 

of the TS column and normalization, the data became consistent across all columns as describe in Figure 5(b) 

dan 5(c). 

 

 

  
(a) 

 

(b) 

 

 
(c) 

 

Figure 5. Pre-processing external validation data: (a) initial of external validation data, (b) external validation 

data with extracted TS, and (c) external validation data after normlization and cleaning 

 

 

The LSTM model was then tested on this external validation data for each smartplug (S-AC, S-TV, 

and S-WPM), with accuracy results shown in Table 4 and Figure 6. The test was divided into three 

categories: weekdays (Monday to Friday), weekends (Saturday and Sunday), and all days combined. 

Accuracy for S-AC was lower compared to S-TV and S-WPM, particularly during weekdays, where S-AC 

achieved 51%, S-TV 66.1%, and S-WPM 83.3%. Interestingly, the accuracy of smartplug S-AC increases 

during weekends compared to weekdays, reaching 67.3%, while for S-WPM, it remains relatively stable at 

around 82.2%. Another interesting observation is that S-TV achieving its lowest accuracy of only 47.5% on 

weekends but fair in weekdays at 66.1%. When considering all days, S-WPM consistently shows higher 

accuracy compared to S-AC and S-TV at an average score 82.8%. This suggests that the model may be better 

at predicting the behavior of the water pump machine compared to the air conditioner and television. 

Additionally, the modeling of S-WPM is not influenced by time factors, as evidenced by the low correlation 

coefficient values 𝑟𝑥𝑦  for S-WPM with input feature variables in the time category such as [WK, HR, D, WS, 

NSM], with a value of |0.01| (refer back to Figure 3). These variations in accuracy, particularly for S-AC and 

S-TV, highlight the importance of considering time-based user habits in preventing overloads. During 

weekends, when usage patterns are less predictable, the system's ability to adjust to these changes becomes 

critical for both safety and energy efficiency. By dynamically adapting to different scenarios, the system 

ensures that appliances are not left running unnecessarily, thereby reducing the risk of overloads and 

optimizing power consumption. 

 

 

Table 4. SHAS performance using external validation data 

Performance metrics Type of data 
Smartplug 

S-AC S-TV S-WPM 

Accuracy (%) 

Weekdays 51 66.1 83.3 

Weekend 67.3 47,5 82.2 
All Days 55 60.8 83 

Average of accuracy (%) 57.8 58.1 82.8 
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Figure 6. SHAS automation performance comparation using external validation data 

 

 

To conclude, this study reveals variability in prediction accuracy among smart plugs, with air 

conditioners (S-AC) showing less consistency compared to water pumps (S-WPM) and televisions (S-TV). 

The stable accuracy of S-WPM indicates less sensitivity to temporal factors, while S-AC and S-TV are more 

influenced by user behavior and timing. These findings underscore the importance of considering appliance-

specific characteristics and contextual factors such as user habits, environmental conditions, device 

interactions, usage priorities, and energy availability in predictive models for SHAS.  

Recent observations indicate that SHAS can naturally adapt to household behavior, enhancing safety 

by preventing electrical overloads. This ability not only safeguards appliances from potential damage caused 

by power surges but also classifies energy usage for better management. By minimizing unnecessary energy 

consumption, the system supports more sustainable and cost-effective power use in the long term. These dual 

benefits highlight the effectiveness of the system in technical performance and practical applications, 

emphasizing the need for future research to further refine these models to improve accuracy and power 

management. 

 

 

4. CONCLUSION 

The Natural SHAS has been successfully implemented in this study. The use of LSTM deep learning 

is highly relevant to sequential time-based data like the AHEACS dataset. This study highlights the 

importance of preventing overloads that can cause MCB trips by automatically controlling electrical 

appliances based on awareness of household habits. This approach addresses a crucial issue for enhancing 

household safety and optimizing energy management. The LSTM model classification yields excellent 

results in automating the Television (S-TV) and Water Pump Machine (S-WPM) smartplugs, achieving 

accuracies of 98% and 97.6%, respectively, though slightly lower for the Air Conditioner (S-AC) at 81.9%. 

The proposed layered model SHAS concept performs exceptionally well when tested with new or upcoming 

data, as discussed in the evaluation external validation data, spanning from May 14 to 21, 2024, with a total 

of 5,109 data points. This evaluation divides the data into three types: weekdays, weekends, and all data, to 

observe differences in accuracy across different behaviors. Unlike other intelligent SHAS systems that rely 

on static datasets, the natural SHAS concept dynamically profiles and controls each electrical appliance 

based on varying household behaviors. Interestingly, the system's accuracy fluctuates across different 

smartplugs depending on the day. For instance, the S-AC plug achieves the lowest accuracy of 51% during 

weekdays but improves to 67.3% on weekends. Similarly, the S-TV plug exhibits the lowest accuracy of 

47.5% on weekends, with better performance during weekdays. Meanwhile, the S-WPM demonstrates 

consistent performance, with an average accuracy of 82.8% across all conditions. This stability in S-WPM 

suggests that the system effectively controls the water pump machine, regardless of time-based variations. 

These variations are attributed to changes in operational conditions, such as the system's response to less 

predictable usage patterns during holidays, rather than user behavior directly influencing the system. Future 

research should focus on enhancing the natural SHAS model by incorporating advanced AIoT techniques. 
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This could involve using more sophisticated deep learning for precise control and integrating IoT to account 

for additional factors such as appliance priorities and contextual conditions. Developing methods to manage 

complex household energy use and adapt to varying scenarios could further improve the system’s accuracy 

and efficiency in preventing overloads. 
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