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 Hyperspectral imaging (HSI) has gained significant attention in recent years 

due to its broad applications across agriculture, environmental monitoring, 

urban planning, infrastructure management, and defense and security for 

object detection and classification. Despite its potential, current 

methodologies face challenges such as insufficient feature extraction, noise 

interference, and inadequate spatial-spectral fusion, limiting classification 

accuracy and robustness. This study reviews advancements in HSI object 

detection and classification methodologies, emphasizing the role of 

machine-learning (ML) and deep-learning (DL) techniques. Hence, this 

work proposes a novel framework to address these challenges, prioritizing 

robust feature extraction, effective spatial-spectral fusion, and 

comprehensive noise removal mechanisms. By integrating DL techniques 

and training with HSI noisy data, this framework aims to enhance 

classification accuracy and robustness. The findings suggest that the 

proposed approach significantly improves the reliability and performance of 

HSI-based object classification systems. This research provides a pathway 

for future development in the domain, promising to elevate the effectiveness 

of HSI applications in real-world scenarios. 
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1. INTRODUCTION 

Hyperspectral-Imaging (HSI) are emerging as a powerful technology in remote-sensing and various 

fields because of its capability of capturing detailed information across hundreds of narrow spectral-bands 

[1]. The overall process of how the hyperspectral image is taken is shown in Figure 1. Unlike traditional 

imaging techniques that capture data in three spectral bands (RGB), hyperspectral sensors acquire data in 

numerous contiguous bands, offering a wealth of spectral information [2]. The extensive spectral data 

obtained through HSI allows scientists to distinguish and identify various objects and materials by analyzing 

their distinct spectral signatures. This makes HSI a crucial instrument for classifying and detecting objects 

[3]. Further, object classification using HSIs involves the process of identifying and categorizing objects or 

https://creativecommons.org/licenses/by-sa/4.0/
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materials within a hyperspectral image based on their spectral characteristics [4]. Each material or object 

exhibits a distinct spectral signature due to its unique chemical composition and physical properties, which 

can be exploited for accurate classification [5]. By analyzing the spectral reflectance patterns across multiple 

bands, machine-learning (ML) and deep-learning (DL) algorithms can be trained to differentiate between 

various objects and classify them into predefined classes or categories [6]. 

 

 

 
 

Figure 1. Process of capturing HSIs 

 

 

The applications of HSIs in the current real world are diverse and extensive. They are widely used in 

agriculture for crop health monitoring, disease detection, and yield prediction [7]. In environmental 

monitoring, HSIs are utilized for vegetation mapping, water quality assessment, and land cover classification 

[8]. In urban planning and infrastructure management, HSIs aid in identifying land use patterns, monitoring 

pollution levels, and assessing geological features [9]. Additionally, HSIs play a crucial role in defense and 

security applications such as target detection, camouflage analysis, and surveillance HSIs help in identifying 

objects by exploiting their spectral signatures [10]. Each pixel in a HSI consists of spectral data across 

multiple bands, representing the unique reflectance properties of the corresponding area on the ground [11]. 

In HSIs, as seen in Figure 2, using the reflectance and wavelength, the space and spectral dimension are 

identified and using that a single band image is obtained. By analyzing these spectral signatures and 

extracting relevant features, ML and DL algorithms can distinguish between different materials and objects 

[12]. ML approaches like support-vector-machine (SVM) [13], random-forest (RF) [14], and K-nearest-

neighbors (k-NN) [15] are the widely utilized approaches for object classification based on extracted spectral 

features. 

 

 

 
 

Figure 2. HSI image extraction 
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However, while ML and DL approaches have shown promising results in HSI object detection and 

classification, they face several limitations. One major limitation is the lack of emphasis on noise removal 

and feature extraction from hyperspectral data [16]. Many existing models focus on directly detecting or 

classifying objects without adequately preprocessing the data to remove noise and extract discriminative 

features [17]. This can lead to suboptimal performance and reduced accuracy in classification tasks. 

Moreover, the spatial-spectral fusion technique, which combines spatial and spectral information for 

enhanced feature representation, has only recently gained attention in HSI analysis using ML and DL [18]. 

Spatial-fusion feature fusion techniques aim to improve the quality of detected objects and enhance 

classification accuracy by incorporating spatial context along with spectral information. Recently, there is an 

important shift in the direction of utilizing DL methods for HSI object detection and classification [19]. DL 

models, particularly recurrent-neural-networks (RNNs) [20] and convolutional-neural-networks (CNNs) [21], 

have achieved superior performance because of their ability to learn complex spectral and spatial patterns 

from HSI data. RNNs, specifically, offer improved performance in collecting temporal relationships in 

sequenced information. This characteristic proves advantageous when evaluating spectrum sequences in 

HSIs. This study aims at addressing existing issues, challenges and limitations in HSI object classification 

approaches. Further, this work presents a novel framework that focuses on noise removal, feature extraction, 

and spatial-spectral fusion using advanced ML and DL techniques. The proposed framework main aim is to 

improve accuracy and provide robustness for HSI object classification by using spectral and spatial 

information from HSI data. The contribution of the work are as follows 

− The study evaluates the current recent approaches used for HSI object detection and classification. This 

evaluation includes assessing the strengths and weaknesses of existing ML and DL techniques applied 

to HSI data. 

− Through the evaluation process, the study identifies the key issues and challenges faced by the existing 

approaches in HSI object detection and classification.  

− The study proposes a novel framework designed specifically to address the identified issues and 

challenges in HSI object classification. This framework introduces innovative methods, i.e., noise 

removal, feature extraction, and spatial-spectral fusion, aiming to enhance the accuracy and robustness 

of object classification results. 

− The primary contribution of the study is to provide a better HSI object classification approach compared 

to existing methods. The novel framework tries to addresses the limitations of current approaches and 

can improve accuracy and reliability in classifying objects within hyperspectral images. 

The manuscript is organized in the following way. In section 2, literature survey is discussed, where 

different approaches to HSI are discussed. Further, in section 3, issues and challenges are discussed from the 

above literature survey. Then, in section 4, a novel framework is presented for efficient HSI object detection 

and classification. Then in section 5, conclusion of the work is presented. 

 

 

2. LITERATURE SURVEY 

In this section, various ML and DL approaches for HSI object detection and classification are 

discussed. A novel dual-interactive graph-convolutional-network (DIGCN) was designed by Wan et al. [22]. 

This graph-convolutional-network (GCN) incorporated two distinct GCN branches for capturing spatial data 

at various scales. The GCN branches allowed refinement of graph data by leveraging multiscale-spatial data. 

Further, by combining features represented from two GCN branches, the edge data was improved. Moreover, 

by merging edge data from two GCN branches allowed generation of better feature descriptions in a single 

branch. Therefore, the DIGCN representational capability was improved with the updated graph data. In 

addition to speeding up the process of convolution, the DIGCN automatically acquires a discriminatory 

region-induced-graph that eliminates the drawbacks of the traditionally generated graph. Indian-Pines [23], 

Pavia-University (PU) [24], Salinas (SA) [25], and Houston (HU) [26] were used for evaluation. Evaluation 

was done using Average-Accuracy (AA), Overall-Accuracy (OA) and Kappa-Coefficient (KC). For IP, they 

achieved OA of 94.16%, AA of 94.41% and KC of 0.9334. For PU achieved OA of 93.24%, 93.76% of AA 

and KC of 0.9114. For SA achieved 97.61% of OA, 96.94% of AA and 0.9734 of KC. For HU achieved 

91.72% of OA, 92.52% of AA, and 0.9103 of KC. Moreover, this work has considered to remove noise 

before evaluation. Jiang et al. [27] introduced a labeled noise cleaning technique that relied on Spectral-

Spatial-Graphs (SSGs). The development of an affinity-graph in SSGs was a key finding of this work. The 

graph relied on both spectral-spatial similarities, where pixels within an identical region were obtained 

through super-pixel segmentation approach. The created affinity-graph was utilized for regularization and for 

removal of noise. For exploiting the spatial data, they presented multiscale-segmentation-based multi-layer 

SSGs (MSSGs). Evaluation was done using OA, AA, and KC on IP and PU. They have also conducted 
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experiments on noise removal. Findings show they achieved 83.71% of OA, 97.55 of AA and 0.7903 of KC 

for IP dataset and for SA dataset, achieved 91.42% of OA, 95.41% of AA and 0.9045 of KC for SA dataset.  

Gao et al. [28] introduced a new technique called spectral-band non-localization (SBNL). This 

technique allows exploration of non-local-spectral inter-band correlations using convolutional-kernels that 

have restricted field receptivity. They also developed an innovative multi-scale-share inception-block (MSIB) 

for utilizing cross-relationships between the multi-scale features. For effectively utilizing spatial-spectral 

features, presented a Plug and Play Adaptive-Feature-Fusion approach. By combining both the approaches 

they presented their novel technique which was called as adaptive-spectral-spatial feature-fusion-network 

(AS2F2N) for classification of HSI. The evaluation was conducted using IP, PU and HU. Evaluation was 

done using OA, AA, and KC. Findings show 98.11% of OA, 93.62% of AA, and KC of 0.978 for IP dataset. 

Further, for PU dataset achieved 98.65%, 96.81% and 0.983 of OA, AA and KC respectively. Finally, for 

HSI dataset achieved 89.77%, 90.89% and 0.8894 of OA, AA and KC respectively. He et al. [29] introduced 

a new object detection approach called S2ADet which utilized good use of the HSI abundant spatial-spectral 

features. Their suggestion was to use a two-stream network for aggregating spatial-spectral features. In 

addition, they annotated a large dataset called HOD3K, which included three object classes and 3242 HSIs 

taken from various real-world scenarios, in order to overcome the shortcomings of current datasets. The 

images encompassed 16 bands between 470 and 620 nm and had a pixel-resolution of 512×256. Extensive 

testing on two datasets proved that S2ADet outperformed current state-of-the-art approaches. Islam et al. 

[30], presented a DL approach which reduced the dimension and resampled the HSI image during 

preprocessing. For streamlining feature extraction and selection while keeping redundancy to least, their 

approach utilized a unique sub-group based dimension reduction approach. Furthermore, for solving class 

imbalance issue, the resampled data. After preprocessing, the data went through a hybrid CNN approach 

where the spatial-spectral features were extracted. By resampling, the achieved better performance even in 

the existence of noise. Evaluations were conducted using kennedy-space-center (KSC) [31] SA and PU 

dataset. The approach achieved OA of 99.46%, 99.94% and 99.98% for KSC, SA and PU respectively. F. 

Feng et al. [32], presented a low-rank-limited attention-enhanced-multiple feature-fusion-network (LAMFN). 

They performed spectral features preprocessing to identify a small number of features which can be characterized 

utilizing the initial data set and covariance data. Then extracted deep features utilizing a lightweight attention-

enhanced 3D-Convolution approach, and to add to the position-sensitive data, a 2D coordinates-attention 

network was employed. Four HSI dataset, i.e., WHU-HongHu (WHU) [33], IP, HU and PU were considered. 

They achieved 78.15% for IP, 97.18% for PU, 81.35% for HU and 87.93% for WHU respectively. 

Dang et al. [34], presented novel double-branch feature-fusion transformer approach for classifying 

HSI. They developed two attention-modules which dynamically changed the weights assigned to different 

spectrum bands and pixels in classifying HSI. Four datasets, i.e., KSC, SA, PU, and HU were utilized for 

evaluation. According to the KSC dataset, the OA was 98.64%, the AA was 97.13%, and the KC was 0.9849. 

For the SA dataset OA was 98.50%, AA was 99.18%, and KC was 0.9833, respectively. For the PU dataset, 

achieved OA of 98.76%, AA of 97.71%, and KC of 0.9836. According to the HU dataset, the OA was 

90.08%, the AA was 90.55%, and the KC was 0.8927. Wan and Chen [35], proposed multi-strategy-fusion 

(MSF) framework that relied on bi-exponential edge-preserving-smoother (BEEPS). A SVM classifier was 

subsequently employed to determine the pixels soft classification probability. In addition, BEEPS was used 

to round off the subsequent processing of soft classified probability maps; this was done to enhance HSI's 

classification accuracy substantially by taking context-aware data related to all labeled classes into account. 

Using three HSI datasets, i.e., IP, KSC, and HU and randomly selecting 1%, 6%, and 5% of the samples to be 

labeled for training, MSF achieved OA of 99.47%, 99.52%, and 94.25%, respectively. Yan and Hong [36], 

presented a novel method which combined the best features of the two models, i.e., multi-layer perceptron 

(MLP) and CNN. For classification, they utilized merged spatial-spectral features data directly into MLP 

architecture after first using CNN. Furthermore, they presented a minimalistic approach to remove the effect 

of unnecessary spectrum frequencies. Evaluation was done on IP, PU and SA. The OA, AA, and KC 

achieved for IP dataset was 99.28%, 98.82% and 0.9918. The OA, AA, and KC achieved for PU dataset was 

98.98%, 98.74% and 0.9865. The OA, AA, and KC achieved for SA dataset was 99.30%, 99.34% and 

0.9922. Gu et al. [37], presented a multi-scale spatial-spectral attention-network with frequency-domain 

lightweight-transformer (MSA-LWFormer) for classification of HSI. Both the frequency-domain fused 

classifier and spectral-spatial extracted feature modules were enhanced by the technique's incorporation of 

Transformer, attention mechanisms, along with CNN. In order to acquire the shallow spectral-spatial 

characteristics along with capturing long-range spectral dependencies, the spectral-spatial feature retrieval 

modules used a Multi-Scale 2D-CNN integrating multi-scale spectral-attention (MS-SA). Experiments were 

done on PU, IP and SA. Evaluation was done using OA, AA, and KC. Findings show 98.87% of OA, 98.68% 

of AA and KC of 0.9871 for IP dataset, 99.79% of OA, 99.68% of AA and KC of 0.9973 for PU dataset, and 

99.96% of OA, 99.95% of AA and KC of 0.9995 for SA dataset.  
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Zhang et al. [38], presented a novel 3D-2D hybrid-convolution and graph-attention-mechanism (3D-

2D-GAT) based end-to-end HSI classification. To achieve higher classification accuracy, the technique made 

use of the combined efforts of the GAT component along with the hybrid convolutional extracted features 

module. GAT was used to learn spatial relationships across vast distances and to differentiate between 

samples with comparable and various stages of variation within each class. The suggested method 

outperformed previous state-of-the-art methods in terms of classification accuracy, according to findings 

from experiments on the IP, PU, and SA datasets. Findings show 99.19% of OA, 99.3% of AA and KC of 

0.9907 for IP dataset, 99.73% of OA, 99.58% of AA and KC of 0.9964 for PU dataset, and 99.43% of OA, 

99.52% of AA and KC of 0.9937 for SA dataset. Arshad et al. [39], presented hybrid convolution-

transformer where visual transformer along with a residual 3D CNN structure were key components of their 

approach. To further prevent overfitting problems caused by insufficient training data, it employed an 

ordering aggregating layer. During the process of feature extraction, their suggested remaining attention-

channel module preserved spectral features and acquired more comprehensive spatial-spectral complementary 

data. They ran tests on the SA and KSC datasets in addition to the Xuzhou dataset [40]. The model achieved 

99.75% of OA, 99.71% of AA, and 0.996 of KC for SA, 99.46% of OA, 99.44% of AA and 0.9931% of KC 

for Xuzhou dataset and 99.95% of OA, 99.96% of AA and 0.9995 of KC for KSC dataset. Ali et al. in [41], 

presented TBMSSN, a two-branch multi-scale spectral-spatial feature-extraction-network for classifying HSIs. 

With the goal of enhanced feature representations, they developed the multi-scale-spatial feature-extraction 

(MSAFE) and multi-scale-spectral feature-extraction (MSEFE). They improved feature extraction, reduced the 

vanishing-gradient issue, and achieved maximum effectiveness and efficiency by densely connecting series of 

MSAFE or MSEFE modules in a two-branch architecture, respectively. They achieved 99.32% of OA, 98.26% 

of AA, 0.9922 of KC for IP dataset, 99.86% of OA, 99.73% of AA and 0.9981 of KC for PU dataset.  

Huang et al. [42] developed a DL approach for identifying oil emulsions using a spectral-

spatial feature-fusion. They used the conventional deviation approach for filtering out feature-bands which 

could differentiate among different oil and sea water. The evaluation was done using their airborne-visible 

infrared-imaging-spectrometer (AVIRIS) dataset. They achieved OA of 91.80%, KC of 86% with feature 

selection. Sigger et al. [43], presented DiffSpectralNet method a hybrid of diffusion and transformer 

approaches. The diffusion technique improved HSI classification by extracting various and significant 

spectral-spatial features. Utilizing a pre-trained denoising U-Net for classification, they developed an 

unsupervised training structure employing the diffusion system to extract high and low-level spatial-

spectral features. They achieved 99.06%, 99.74% and 99.87% of OA for IP, PU and SA respectively. Further 

for AA, achieved 98.00%, 99.18% and 99.82% for IP, PU and SA respectively. Finally, for KC achieved 

0.9893, 0.9965 and 0.9986 for IP, PU and SA respectively. Ashraf et al. [44] presented attention-3d-central-

difference-convolutional dense-network (3D-CDC Attention-DenseNet). They used a dense approach that 

included pixel-wise combination alongside a spatial attention system to combine low-rank frequency 

characteristics and direct characteristic tuning in their 3D-CDC method, which relied on manipulating local 

built-in intricate patterns within the spectral-spatial features maps. The approach achieved OA of 97.93% for 

HU, 99.89% for PU and 99.38% for IP dataset. Goswami et al. [45] presented a HSI using a mix of three 

techniques: CNN, stationary-wavelet-transformations (SWT) and principal-component-analysis (PCA). After 

reducing dimensionality and extracting spatial-spectral features with SWT and PCA, the suggested method 

uses CNN for classification. With an OA of 98.2% on the IP dataset, 99.86% on the SA dataset, and 99.80% 

on the PU dataset, the results show that the suggested SWT-PCA-CNN method outperforms the traditional 

techniques. 

 

 

3. FINDINGS 

The above findings from the literature survey have been identified which is presented in Table 1. The 

findings from the above review shows most of the work considered for hyperspectral image object identification 

have used DL instead of Machine Learning. Further, it has been seen that all the works have considered similar 

metrics for evaluation, i.e., OA, AA and KC. Also, the datasets used in their work shows that most of the work 

have used IP, PU, SA, KSC and HU dataset. Very less work has considered different dataset like [29] has 

considered HOD3K, [39] has considered Xuzhou dataset and in [42] have considered an oil dataset. 

From the above literature survey, it is seen that several novel approaches have been proposed for 

hyperspectral image (HSI) classification, each offering unique strengths and advancements in the field. The 

approaches presented in [22], [27], i.e., DIGCN and MSSGs respectively are mainly focused on removing 

noise and object detection. Further, the novel spectral-spatial aggregation (S2ADet) method by He et al. [29] 

stands out for its focus on spectral-spatial aggregation in hyperspectral object detection, featuring a 

hyperspectral information decoupling (HID) module, a two-stream feature extraction network, and a one-

stage detection head. This approach showcases robust and reliable results, particularly outperforming existing 

methods on the HOD3K dataset. Another noteworthy contribution is the low-rank constrained attention-
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enhanced multiple feature fusion network (LAMFN) by Feng et al. [32], which leverages factor analysis for 

spectral feature preprocessing, a lightweight attention-enhanced 3D convolution module for deep feature 

extraction, and low-rank second-order pooling for convolutional feature selectivity. Despite limited training 

data, LAMFN achieves significant improvements in OA on datasets like IP, PU, HU, and WHU. 

Additionally, the double-branch feature fusion transformer (DBFFT) introduced by Dang et al. [34] excels in 

handling spectral sequence characteristics, achieving high OA, AA, and KC scores across datasets like KSC, 

SA, PU, and HU. These methods, along with others like the multi-strategy fusion (MSF) Framework by Wan 

and Cheng [35], the oil emulsion deep-learning identification model by Huang et al. [42], DiffSpectralNet by 

Sigger et al. [43], and 3D-CDC Attention DenseNet by Ashraf et al. [44], collectively contribute to 

advancing the state-of-the-art in HSI classification by integrating innovative techniques such as diffusion, 

transformer, attention mechanisms, and feature fusion to achieve remarkable performance gains across 

various evaluation metrics and datasets. In the next section, issues and challenges are discussed. 

 

 

Table 1. Findings from above literature review 
Reference Methodology Performance metrics Dataset 

[22] Deep Learning (DIGCN) OA, AA, KC IP, SA, PU, HU 

[27] Deep Learning (MSSGs) Noise Removal, OA, AA, KC IP, PU 

[28] Machine Learning (AS2F2N) OA, AA, KC IP, PU, HU 
[29] Deep Learning (S2ADet) OA, AA, KC HOD3K 

[30] Deep Learning (Hybrid CNN) OA, AA, KC SA, PU, KSC 

[32] Deep Learning (LAMFN) OA, AA, KC IP, PU, HU, WHU 
[34] Deep Learning (DBFFT) OA, AA, KC KSC, SA, PU, HU 

[35] Machine Learning (MSF) OA, AA, KC IP, KSC, HU 

[36] Deep Learning (CNN + Transformer) OA, AA, KC IP, PU, SA 
[37] Deep Learning (MSA-LWFormer) OA, AA, KC IP, PU, SA 

[38] Deep Learning (3D–2D-GAT) OA, AA, KC IP, PU, SA 

[39] Deep Learning (Hybrid Convolution Transformer) OA, AA, KC SA, Xuzhou, KSC 
[41] Deep Learning (TBMSSN) OA, AA, KC IP, PU 

[43] Deep Learning (DiffSpectralNet) OA, AA, KC IP, PU, SA 

[44] Deep Learning (3D-CDC Attention DenseNet) OA, AA, KC HU, PU, IP 
[45] Deep Learning (SWT-PCA-CNN) OA, AA, KC IP, SA, PU 

 

 

4. ISSUES, CHALLENGES AND SOLUTION 

The issues and challenges for the work identified from the above literature survey is as follows: 

− Limited focus on feature extraction: Many existing works in hyperspectral image (HSI) analysis have 

placed less emphasis on robust and effective feature extraction techniques. This lack of attention can 

lead to suboptimal performance in classification tasks and hinders the ability to fully exploit the rich 

information present in hyperspectral data. 

− Sparse consideration of spatial-spectral fusion: Spatial-spectral fusion is a critical aspect of HSI analysis as it 

combines information from both spatial and spectral domains, enhancing the discriminative power of 

features. However, very few works have thoroughly explored and leveraged spatial-spectral fusion 

techniques, resulting in missed opportunities for improved classification accuracy and feature representation. 

− Neglect of noise in HSI data: Noise is an inherent challenge in HSI, affecting the quality and reliability 

of extracted features. Unfortunately, many existing approaches have overlooked the issue of noise in 

HSI data, leading to potential inaccuracies and reduced robustness in classification models. 

− Insufficient attention to preprocessing techniques: Preprocessing plays a crucial role in enhancing the 

quality of hyperspectral data for feature extraction. However, there has been relatively little focus on 

comprehensive preprocessing techniques such as noise removal and normalization, which are essential 

for improving the reliability and effectiveness of feature extraction processes. 

To solve the above issues and challenges, this work presents a novel framework for HSI. Figure 3 

illustrates the proposed framework, which encompasses several key steps. Initially, the framework considers 

input, which consists of HSIs. Following this, the object classification process starts. Initially, relevant 

features related to reflectance are extracted to enhance spatial-spectral feature fusion, a crucial step in the 

object classification pipeline. Subsequently, a DL technique is employed for object classification, facilitating 

the identification of objects within the HSIs. The final step involves evaluating the output in terms of OA, 

AA, and KC metrics commonly used to assess classification performance. To enhance the classifier’s training 

and improve robustness, HSI noised data is utilized during the training phase, contributing to more reliable 

and accurate classification outcomes. By utilizing this approach, the classifier can be trained for achieving 

better outcomes and can solve the current problems faced by the DL approaches. In the next section, the 

conclusion and future work is discussed. 
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Figure 3. Proposed framework for HSI object classification 

 

 

5. CONCLUSION 

This work delved into the realm of HSI object detection and classification, exploring existing 

approaches, challenges, and limitations. Through a comprehensive review, we identified key issues such as 

limited focus on feature extraction, noise removal, and spatial-spectral fusion in current HSI classification 

models. We also noted the predominant shift towards DL techniques due to their recurrent networks, which 

offer improved results compared to traditional ML approaches. To address these challenges, we proposed a 

novel framework designed to enhance HSI object classification. Our framework prioritizes feature extraction, 

spatial-spectral fusion, and noise removal, thus addressing critical gaps in existing methodologies. By 

utilizing DL techniques for object classification and incorporating HSI noised data during training, our 

framework aims to deliver more robust and accurate classification outcomes. Through rigorous evaluation 

using metrics like OA, AA, and KC we anticipate demonstrating the efficacy and superiority of our proposed 

framework. We believe that this work contributes significantly to the advancement of HSI object detection 

and classification methodologies, offering a promising avenue for future research and development in this domain. 

In the future work the object classification pipeline will be further enhanced to achieve better outcomes. 
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