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Abstract 
Particle swarm optimization (PSO) is a new intelligent search technique, which is inspired by 

swarm intelligence. Although PSO has shown good performance in many benchmark optimization 
problems, it suffers from premature convergence in solving complex multimodal problems. In this paper, 
we propose a novel PSO algorithm, called PSO with a simulated binary crossover operator (SCPSO), to 
improve the performance of PSO. Experimental results on several benchmark problems show that SCPSO 
achieves better performance than standard PSO.  
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1. Introduction 
Many real-world problems can be formulated as optimization problems in continuous or 

discrete variable space. In the passed decades, some intelligent algorithms inspired by nature 
have been proposed to solve optimization problems, such as Genetic Algorithms (GAs) [1], 
Particle Swarm Optimization (PSO) [2], Differential Evolution (DE) [3], etc.  PSO is one of the 
most popular intelligent optimization algorithms, which has shown good search abilities in find 
solutions.  

For PSO’s simple concept, easy implementation, and efficiency, it has attracted much 
attention. The research of PSO becomes a hot spot in optimization algorithms. Shi and Eberhart 
introduced a parameter w called as inertia weight into the original PSO to balance the global 
and local search abilities [4]. A large w is better for global search, and a mall w is fitter for local 
search. It has been pointed out in [4] that a linearly decreasing w over the evolutionary process 
is efficient. Afterwards, the version of PSO with inertia weight is called standard PSO. 
Suganthan proposed a neighborhood technique, which used the local best particle instead of 
the global best, where the best local particle indicates the best particle in the neighborhood of 
each particle. For each particle, a predefined number of particles were considered as its 
neighbors. If the predefined number is equivalent to the swarm size, the local best becomes the 
global best [5]. Wang et al. [6] introduced opposition-based learning and Cauchy mutation for 
standard PSO. The proposed approach (OPSO) estimates not only the current particle but also 
the corresponding opposite particle. This is helpful to provide more chances for finding better 
solutions. In addition, OPSO also employs a Cauchy mutation operator conducting on the global 
best particle. It is to hope that the long tail of the Cauchy mutation could help trapped particles 
escape from local minima. Liang [7] proposed a comprehensive learning particle swarm 
optimizer (CLPSO) for global optimization of multimodal functions. The CLPSO uses a novel 
learning strategy whereby all other particles’ historical best information is used to update a 
particle’s velocity. This strategy enables the diversity of swarm to be preserved to discourage 
premature convergence. The presented simulation results show that CLPSO outperforms other 
eight recently proposed PSO variants. Li and He [8] proposed a novel PSO algorithm (GMPSO), 
which employs a Gaussian mutation and a dynamic adaptation inertia weight. The presented 
results showed that GMPSO outperforms LOWPSO and PSODR for all benchmark functions.  

In this paper, we propose an improved PSO variant (SCPSO), called PSO with a 
simulated binary crossover operator. In SCPSO, we generate two trail particles based on the 
simulated binary crossover operator. And then, the better trail particle competes with the worst 
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particle in the current population, and the fitter one is selected as the new particle. In order to 
verify the performance of SCPSO, we test it on several function benchmark problems. 
Experimental results show that SCPSO outperforms standard PSO in all test cases.   

The rest of the paper is organized as follows. In section 2, we briefly introduce the 
standard PSO. In Section 3, the proposed approach HCPSO is proposed. In Section 4, 
simulated studies are conducted, including test problems, parameter settings, results and 
discussions. Finally, the work and future work are given in Section 5. 

 
 

2. Particle Swarm Optimization 
Explaining research chronological, including research design, research procedure (in 

the form of algorithms, Pseudocode or other), how to test and data acquisition [1, 3]. The 
description of the course of research should be supported references, so the explanation can be 
accepted scientifically [2, 4]. 

Particle swarm optimization (PSO) was firstly developed by Kennedy and Eberhart, 
which is motivated from the social behavior of bird flocks or fish schooling [2]. It is a stochastic 
optimization algorithm which maintains a swarm of candidate solutions, referred to as particles. 
In PSO, each particle has two vectors, position (X) and velocity (V). Particles fly through the 
search space by flowing the previous best particles and the global best particles. Based on this 
model, the position and velocity of particles are updated from generation to generation. There 
are several main versions of the PSO algorithms, and the following version modified by Shi and 
Eberhart [4] is used in this paper.  
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Where Xi and Vi are the position and velocity of the ith particle, pbesti and gbest are 

previous best particle of the ith particle and the global best particle found by all particles so far 
respectively, and w is an inertia factor [4], and rand1() and rand2() are two random numbers 
independently generated within the range of [0,1], and c1 and c2 are two learning factors which 
control the influence of the social and cognitive components.  

In Equation (1), the first part is momentum vector, which represents the inertial motion 
of current velocity. The second part is the cognitive vector, which indicates the previous 
experiences and help particle find better positions. The third part is the social vector, which 
shares the information of the global best particle among particles.  

 
 

3. PSO with a Simulated Binary Crossover Operator 
In this section, it is explained the results of research and at the same time is given the 

comprehensive discussion. Results can be presented in figures, graphs, tables and others that 
make the reader understand easily [2, 5]. The discussion can be made in several sub-chapters. 

Like other evolutionary algorithms (EAs), PSO is also based population random search 
algorithm. Although they have some commons in search solutions, they have differences for 
evolutionary operators. For a general EA, it has three evolutionary operators: selection, 
crossover and mutation. While in PSO, there is not any operator except for the velocity and 
position updating models. In this paper, we propose a novel PSO algorithm, which employs a 
simulated binary crossover operator to achieve good performance.  

The simulated binary crossover operator is proposed by Deb and Beyer, which has 
been successfully applied to GAs [9]. In the simulated binary crossover operator, two offspring,

 , , ...,1 1,1 1,2 1,Y y y y D and  , , ...,2 2,1 2,2 2,Y y y y D , are generated based on two parent vectors 

 , , ..., ,1 1,1 1,2 1,X x x x D  and  , , ..., ,2 2,1 2,2 2,X x x x D  as follows: 

 

   1, 1 1, 1 2 ,

1
1 1

2j j jy x x                                                  (3) 
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   2 , 2 1, 2 2 ,

1
1 1

2j j jy x x                                                 (4) 

 
Where ( 1, 2)kk   is a random number and generated as follows [9]. 
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Where u(0,1) is a normally distributed random number within (0,1), and  is a 

parameter, which is set 5.0 in this paper. 
In our proposed SCPSO, we use the above crossover operator to generate two trial 

particles 1Y and 2Y . And then, we select the fittest one among 1Y , 2Y  and the worst particle Pw as 

the new Pw. For each particle Xi, we use the modified simulated binary crossover as follows: 
 

   1, 1 , 1

1
1 1

2j i j jy x B es t      
                                           (6) 

 

   2 , 2 1, 2

1
1 1

2j j jy x Best                                                (7) 

 
In order to search better solutions, we introduce the information of the global best 

particle Best for the simulated binary crossover operator. The main steps of SCPSO are 
described in Algorithm 1, where ps is the population size, where rand(0,1) is a normally 
distributed random number within [0,1], pc is the crossover rate,  FEs is the number of function 
evaluations, and MAX_FEs is the maximum number of function evaluations. 

 
Algorithm 1: SCPSO 
Begin 
While FEs < MAX_FEs do 
      For i=1 to ps do 

            Calculate the velocity of Xi according to (1); 
             Calculate the position of Xi according to (2); 
             Calculate the fitness value of Xi; 

          FE++; 
          If rand(0,1) < pc then 

              Generate 1Y and 2Y according to (6) and (7); 

              Calculate the fitness values of 1Y and 2Y ; 

              FEs=FEs+2; 
              Find the worst particle Pw in current population; 

              Select the fittest one among 1Y , 2Y  and Pw as the new Pw; 

          End If 
      End For 
    End While 
End 
 
 

4. Experimental Studies 
4.1. Benchmark Problems 

In this paper, ten well-known benchmark functions are selected in the experiments. 
According to the properties of functions, we divide then into two classes: unimodal functions (f1-
f4) and multimodal functions (f5-f10). These functions were chosen from an early study in [10]. All 
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the functions used in this paper are to be minimized. The description of the benchmark functions 
and their global optima are listed as follows: 
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Where [ 100,100]xi   , D=30, and the global optimum is 0. 
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Where [ 10,10]xi   , D=30, and the global optimum is 0. 
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Where [ 100,100]xi   , D=30, and the global optimum is 0. 
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Where [ 1.28,1.28]xi   , D=30, and the global optimum is 0. 
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Where [ 500, 500]xi   , D=30, and the global optimum is -12569.5. 
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Where [ 5.12, 5.12]xi   , D=30, and the global optimum is 0. 
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Where [ 32, 32]xi   , D=30, and the global optimum is 0. 
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Where [ 600, 600]xi   , D=30, and the global optimum is 0. 
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Where [ 50, 50]xi   , D=30, and the global optimum is 0. 
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Where [ 50, 50]xi   , D=30, and the global optimum is 0. 
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4.2. Results 
In the experiment, we compare SCPSO with standard PSO on the ten test problems. 

For the sake of fair competition, we use the same parameter settings for both PSO and SCPSO. 
For the common parameters, population size (ps), w, c1, and c2 are set as 10, 0.72984, 1.49618 
and 1.49618, respectively. For SCPSO, the probability of crossover pc is set 0.05. For all test 
problems, the maximum number of function evaluations MAX_FEs is set 150,000. Both PSO 
and SCPSO are run 25 times, and the mean fitness value and the standard deviation are 
recorded. 

Table 1 presents the comparison results of standard PSO and SCPSO on the test suite, 
where ‘Mean’ indicates the mean best function values. As seen, SCPSO achieve better results 
than standard PSO on all test functions. Especially for f2, f3, f4, f8 and f10, SCPSO significantly 
improves the results. It demonstrates that the proposed crossover operator is effective. Figure 1 
shows the evolutionary processes of PSO and SCPSO shows the convergence curves of HCDE 
on f1 and f4. As seen, HCDE converges very fast over the evolution.  

 
 

Table 1. The results achieved by standard PSO and SCPSO 

Functions 
Standard PSO SCPSO 

Mean Std Dev Mean Std Dev 

f1 2.64e-10 3.17e-09 8.89e-13 5.58e-13 

f2 0.133 0.74 2.43e-06 6.82e-06 

f3 8.00 5.93 0 0 

f4 0.329 0.69 4.92e-03 3.96e-03 

f5 -6646.3 725.2 -7149.7 531.6 

f6 58.7 39.3 46.6 29.7 

f7 8.19 3.89 4.17 2.32 

f8 0.58 0.42 1.40e-09 3.62e-09 

f9 0.62 0.59 0.31 0.17 

f10 0.02 3.11e-03 8.90e-09 6.35e-09 

 

Figure 1. The evolutionary processes of standard PSO and SCPSO on four functions 
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4. Conclusion 
This paper presents an improved PSO algorithm, called PSO with a simulated binary 

crossover operator. The proposed approach SCPSO employs a modified simulated binary 
crossover operator. First, we generate two trail particles based on current particle and the global 
best particle. Then, the better one between the two trail particles is compared the worst particle 
in current swarm. The fitter one is replaced with new worst particle. Simulation results show that 
SCPSO achieves better results than standard PSO in all test cases. It demonstrates that the 
proposed strategy is effective. In our future work, we will apply SCPSO to solve some real-world 
problems 
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