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 This study tackles a critical challenge in converting two-dimensional (2D) 
images into three-dimensional (3D) representations, focusing on the precise 

detection of flat surfaces. The research utilizes a triangulation method 

involving laser and camera systems, emphasizing the optimization of laser 

shooting angles and camera positioning to accurately determine  
z-coordinates. The methodology employs hue, saturation, and value (HSV) 

color masking, which has proven superior to traditional red, green, blue 

(RGB) methods for isolating red line objects. Key findings indicate that the 

optimal laser angle, β1=70.65°, significantly minimizes root mean square 
(RMS) error, thereby enhancing the accuracy of 3D imaging. Additionally, 

the use of three laser lines at different angles enables a more comprehensive 

detection of z-coordinates by creating multiple reference points across the 

surface. This arrangement improves the robustness and precision of the 3D 
reconstruction process, as the intersecting laser lines generate detailed 

coordinate data that is critical for accurately mapping surface irregularities. 

These results not only support existing theories in digital feature extraction 

but also offer a robust framework for practical applications in manufacturing 
and quality control, particularly in surface defect detection. The study’s 

innovative approach advances the field of computer vision, providing new 

insights and methodologies for optimizing image conversion techniques. 
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1. INTRODUCTION 

In the domain of digital feature extraction [1]–[5], clustering methods based on content similarity 

[6]–[10] constitute a foundational approach for identifying features within image databases [11]–[15]. Each 

feature extraction process mathematically translates into a dimensional vector representation, known as a 

feature vector [16]–[25]. These vectors, derived from image processing and analysis techniques, enable the 

comparison of different images by analyzing data such as color composition to identify object markings. 

Despite the extensive research conducted in this field, significant opportunities remain, particularly in 

detecting concavities in defect detection systems and extracting color images from distance measurement 

conversions [26]. 

Continuous improvement in manufacturing product quality is crucial, especially as manufacturers 

adapt to the challenges posed by big data management [27]. Rapid decision-making based on quality analysis 

https://creativecommons.org/licenses/by-sa/4.0/
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results is vital for enhancing productivity and sustaining consistent quality in production systems [28]. 

Effective and prompt decisions rely heavily on accurate analytical methods [29]. Deep learning techniques 

leveraging big data [30] are increasingly utilized for defect detection in product manufacturing within 

Industry 4.0 [31]. However, current big data research primarily focuses on data acquisition, preprocessing, 

processing, and analysis, leaving other critical aspects underexplored [32]–[36]. For example, surface defects 

on flat surfaces are identified through data evaluation from sensor scans [37]. Eddy current calibration 

methods analyze sensor excitation frequency, identifying defects such as gaps 1 mm wide and 3 mm deep 

perpendicular to flat surfaces [38]–[40]. Nevertheless, none of the referenced studies address algorithms for 

extracting sensor detection results that specifically highlight flat surface defects. 

Despite advancements in digital color image extraction, particularly in capturing cross-sectional 

research objects such as thread diameters [41], a significant gap persists in the literature regarding the 

detection of defects in adjacent image capture points. Effective interpretation of image data requires 

extraction processes based on color composition. One color image extraction method [42] employs data 

clustering by leveraging visual gaps through agglomerative hierarchical clustering (AHC). This approach 

distinguishes between bottom-up agglomerative methods and top-down divisive methods [43]. Although 

these hierarchical clustering structures group data based on object color composition, they do not address the 

detection of adjacent image points as indicators of defects. 

Image quality in color object measurements is commonly evaluated using the structural similarity 

index metric (SSIM), which assesses the similarity between two images on a quantitative scale [44]. 

Additional quality metrics [45] include mean square error (MSE) and peak signal-to-noise ratio (PSNR).  

In computer vision, images are partitioned into distinct segments [46], with color pixels analyzed based on 

nearest-neighbor distances [47] through hierarchical agglomerative methods. Initially, each pixel is treated as 

an independent cluster, which are then progressively merged with neighboring clusters until a specified 

cluster count is reached. Although this research covers image quality assessment, evaluation methodologies, 

algorithms, and clustering techniques for nearest-neighbor groups in images/pixels, it does not address the 

capture and processing of camera data for defect detection. 

This study proposes an innovative approach to defect detection through digital feature extraction 

using a single camera and three laser lines. Unlike traditional methods that depend on relocating laser points, 

this method utilizes three laser lines strategically positioned within distinct areas of the camera's capture 

field. The goal is to improve the efficiency of converting two-dimensional (2D) image masks into three-

dimensional (3D) representations without the need to reposition the laser to select data points nearest to the 

reference point. The reference point is determined by the camera's detection distance to an ideal flat surface, 

with deviations from this distance indicating defects, such as concave (longer distance) or convex (shorter 

distance) anomalies. This novel approach addresses existing limitations in defect detection systems, offering 

a more efficient and accurate method for analyzing surface defects in manufacturing processes. The proposed 

solution not only enhances the precision of defect detection but also improves the overall efficiency of the 

quality control process in manufacturing. 

 

 

2. METHOD  

2.1.  Experimental setup 

The experiments in this study build upon previous research findings, incorporating variations in 

laser types and camera resolutions [48]. The method for 2D image conversion employed here, utilizing a 

single laser point and a camera, serves as the foundation of our approach. This method offers several 

advantages, including simplification of the process through a single laser point and camera setup, which 

results in cost savings and ease of implementation. Additionally, this method has proven successful in 

converting electroencephalogram (EEG) signals into image representations for mild depression recognition, 

demonstrating its effectiveness in signal classification tasks [48]. This underscores the value of innovative 

approaches when traditional methods face limitations, suggesting that this method, underpinned by deep 

learning techniques, can enhance performance in complex scenarios. The arrangement of the camera and 

laser, as depicted in Figure 1, generates a model described by the mathematical (1). 

 

𝑍 =
𝑎.𝑍𝐼.𝑆𝑖𝑛 (𝜂)

𝑏.𝑆𝑖𝑛 (𝛽)− 𝑍𝐼.𝑆𝑖𝑛 (𝛽+𝜂) 
 (1) 

 

Notes: 

z is the object point displacement on the measurand surface 

z’ is the image point displacement on the charge-coupled device (CCD) sensor 

ꞵ is the angle between the laser beam and axis of the receiving lens 
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η is the angle between the CCD sensor and optical axis of the receiving lens 

a is the distance between the camera lens and the laser shot 

b is the distance between the camera lens and CCD array (camera) 

 

2.1.1. Triangulation model diagram 

The placement of the camera and CCD sensor, as illustrated in Figure 1, is crucial for achieving 

accurate focus and effectively capturing the results of laser triangulation [49], [50]. This study modifies the 

concept depicted in Figure 1(a), which utilizes a single laser point and camera setup, to the arrangement 

shown in Figure 1(b), where K represents the camera, L1: Laser-1, L2: Laser-2, and L3: Laser-3. Li: 1,2,3 

denotes the distances of the camera position relative to the laser's shooting line. The objective is to optimize 

the dimensional aspects of the images captured by the camera. Similar research has involved projecting laser 

light onto the object's surface according to the camera lens focus [51], where the height measurement of the 

object, as captured by the camera, is influenced by the displacement of the laser beam, resulting in a series of 

points. 

 

 

  
(a) (b) 

 

Figure 1. Triangulation model to (a) modification of schematic diagram of the laser triangulation and  

(b) the setting of camera capture area and laser spotlight 

 

 

Table 1 presents the experimental configurations used for positioning the camera and laser at 

various shooting angles. The table includes the height and distance coordinates between the camera and the 

laser in centimeters, as well as the laser shooting angle (β) in degrees. In the first configuration, the camera is 

positioned at a height of 3 cm and a distance of 6 cm from the laser, resulting in a shooting angle of 

β1=70.65°. This angle is achieved by maintaining a constant camera height while varying the distance, 

allowing the laser beams intersecting within the camera's field of view to form a series of coordinate points. 

In the second configuration, the camera remains at the same height but is positioned 13 cm away 

from the laser, producing a shooting angle of β2=77.05°. The third configuration shows the camera at a 

height of 3 cm and a distance of 18.5 cm from the laser, resulting in a shooting angle of β3=80.78°. The 

purpose of these configurations is to demonstrate how varying the distance between the camera and the laser 

affects the laser shooting angle (β). By keeping the camera height constant, the changes in distance lead to 

different shooting angles, which is critical for collecting accurate coordinate data (x, y, z) during the 2D to 

3D transformation process. This table underscores the significant impact of experimental configuration on the 

accuracy and detail of 3D surface reconstruction. 

 

 

Table 1. The placement of camera height and laser line shooting distance 
No Coordinates (height, distance) 

of laser and camera (cm) 

Angle (0) Noted 

1 (3, 6) 𝛃1=70.65 The variation in angles (𝛃i, i=1, 2, 3) is derived from a fixed camera 

height position (3 cm) while altering the distance. This adjustment causes 

the intersection of the laser beam lines within the camera's capture area to 

form a series of points corresponding to the laser beam paths. 

2 (3, 13) 𝛃2=77.05 

3 (3,18.5) 𝛃3=80.78 

 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 1, January 2025: 111-122 

114 

2.1.2. Modified triangulation scheme 

According to Figure 1 in the study [48], the original CCD array in the camera was designed to 

capture the points of incoming light from the laser spot. In this research, the function of the CCD array was 

modified by incorporating a Logitech Brio Camera. This modification aimed to enable the camera to capture 

incoming light as it intersects with the laser line. 

Other related studies involved capturing road markings using a camera and converting the images 

into a region of interest (RoI), which highlights the observed object based on the markings captured along the 

road [52]. The optical system in the laser scanning process reveals the use of laser triangulation sensors. 

Schlarp et al. [53] explains that marking is achieved by adjusting the intensity of the laser light. The marking 

process involves scanning with laser movement, differing from Kong et al. [52], which focused on moving 

objects. In the latter case, the reflection of the laser beam results from moving objects and is associated with 

an electric motor. 

 

2.2.  Research procedure 

The research methodology involves setting the camera position and laser angle to acquire coordinate 

points (pixels) for marking. A series of markings are identified (marked) by selecting only the red pixels. The 

masking results reveal the coordinates of the examined object, specifically a flat surface. Li et al. [48] 

concept, any unevenness on the flat surface indicates concave or convex point coordinates. These concave or 

convex coordinates are derived by comparing the pixel coordinates captured by the camera with the laser 

scan results against reference coordinates. The reference coordinates are based on data captured by the 

camera and the ideal coordinates (x, y), which produce new coordinates that form a three-dimensional image 

(x, y, z). The data processing of the captured images intersects with the laser scan results, forming a series of 

points using OpenCV-Python [54], [55]. This data processing involves conversion results and color selection 

based on pixel coordinate references for comparison. Differences in pixel values compared to reference 

points indicate anomalies or coordinate mismatches, which suggest the height of the object, whether concave 

or convex. 

 

2.3.  Data acquisition and testing 

To ensure scientific rigor and acceptance, the research provides a comprehensive and detailed 

description of the experimental methods. The camera and lasers are strategically positioned at specific angles 

to capture the necessary coordinates. Red pixels are tagged, and masking techniques are applied to emphasize 

the object's coordinates, which are subsequently compared with reference coordinates to identify concave or 

convex points. Data is meticulously processed using OpenCV-Python to analyze and detect anomalies or 

mismatches, ensuring the accuracy and reliability of the results. This systematic approach, from precise 

experimental setup to detailed data analysis, ensures the validity and accuracy of the 3D surface 

reconstruction, thereby making the findings robust and scientifically credible. 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Implementation trial concept 

The execution of this research follows the logic depicted in Figure 2. The execution is as follows: 

from a 2D image with column (x) and row (y) information, it is transformed into a 3D image to form 

coordinates (x, y, z), where z is obtained from engineering the coordinates (x, y) [56], [57]. The experimental 

procedure using the triangulation method with a laser involves several key stages. First, the camera and laser 

positions are set according to the camera's capture area, with three different position laser heights and 

distance: (3, 6), (3, 13), and (3, 18.5) in Table 1. Second, data marking and masking are performed by 

identifying red pixels and applying masking to emphasize the object coordinates. The masking process in 

OpenCV generates coordinates (x, y) with the origin at (0, 0), allowing the coordinates of the processed 2D 

image to be identified. Third, coordinate comparison is carried out by comparing the captured coordinates 

with the reference coordinates to determine concave or convex points. Finally, data processing is conducted 

using OpenCV-python to analyze the data, identify anomalies, and correct mismatches. This process ensures 

accurate and reliable results in converting 2D images into comprehensive and detailed 3D models. 

 

3.2.  Algorithm programming 

The algorithm for processing 2D images into 3D involves using line lasers to detect changes in laser 

markings when encountering a flat object's surface. The 2D images captured by the camera are converted into 

hue, saturation, and value (HSV) color space, and the data conversion process is conducted using OpenCV. 

Transforming 2D images into 3D includes engineering a series of marking points and masking the red color 

as a reference. Masking results from these marked points, with coordinates (x, y) selected along the red line. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Optimizing 2D-to-3D image conversion for precise flat surface … (Bernadeta Siti Rahayu Purwanti) 

115 

Measurements are categorized into those close to the reference coordinates and those with significant 

deviations from the reference. 

The process, outlined in the flowchart in Figure 3, involves several steps for object extraction and 

3D reconstruction. Initially, images of a flat object's surface are captured using a camera, followed by data 

collection from both camera captures and laser line scanning to obtain point coordinates [18]. The collected 

data is then sorted or masked based on color using the HSV method to isolate red objects from other colors 

on the same object [36], [57]–[63]. This color-based sorting helps identify the series of points forming the red 

line on the flat object's surface, serving as a reference. 

Subsequent steps involve identifying reference points that show anomalies from the reference line, 

distinguishing the coordinates of a flat test object from the reference line to determine concavity or 

convexity, and calculating the z coordinate using a triangulation algorithm to introduce a third dimension. By 

comparing the surface coordinates of the test object with the reference line, pixel differences are computed to 

derive the z coordinate, thereby transforming the object into a 3D representation. Finally, XYZ coordinates 

are obtained based on the logic in Figure 3, enabling the visualization of 3D images of objects that either 

match or deviate from the reference. 

The utilization of the HSV method in the color-based sorting process is crucial for accurately 

extracting red objects from the background, enhancing the precision of the subsequent 3D reconstruction 

process [36], [57], [64]. By leveraging the strengths of color-based methods and integrating them into the 

object extraction and 3D reconstruction workflow, researchers can achieve more accurate and detailed 

representations of objects, particularly in scenarios where color plays a significant role in distinguishing 

features. 
 

 

 
 

Figure 2. Logic of engineering 2D into 3D 

 

 

 
 

Figure 3. Flowchart of triangular methods 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 1, January 2025: 111-122 

116 

3.3.  The flat surface as test object 

Flat surface objects with uniform dimensions (width=4 cm, thickness=1 cm, length=2 cm) generate 

coordinate point markings when images are captured by the camera as shown in Figure 4. To convert these 

2D images into 3D representations, the triangulation method is applied to the captured 2D images. A single 

image capture only provides the two-dimensional surface of the flat object, represented by coordinates (x, y). 

Therefore, multiple image captures are necessary to establish the three-dimensional coordinates (x, y, z). 

The 3D image is obtained by converting the color data from the 2D image captured by the camera 

into spatial coordinates. This conversion process generates coordinate points, which are refined through 

distance shifting to achieve accurate pixelation of the image data. The shift distance per segment is set at 

n=0.5 cm, allowing for precise selection of red pixels along the laser line as shown in Figure 5. 

 

 

  
 

Figure 4. Flat surface as testing object for 3D illustration 

 

Figure 5. The result of red color masking using  

HSV 

 

 

Color-based object extraction has been extensively researched in the field of computer vision. 

Various color spaces, such as HSV and red, green, blue (RGB), have been explored to enhance the accuracy 

of object extraction. The integration of HSV and RGB methods has demonstrated superior results in object 

extraction [65]. Notably, the HSV method has been regarded as more effective than RGB in these tasks [66]. 

This preference for the HSV method stems from its closer alignment with the human visual system, making it 

more efficient in extracting primary colors from the background [66]. Masking involves sorting images based 

on color according to specified parameters (HSV) and/or base colors (RGB). To obtain HSV color 

characteristics, a color conversion process is carried out from RGB to HSV as seen in Figure 6. After 

normalizing the RGB image, it is then converted into an HSV image. 

Research has underscored the critical role of color in various computer vision tasks, including object 

detection, segmentation, and tracking. When combined with other features, such as texture and depth 

information, color features have been shown to enhance the performance of object detection and tracking. 

Furthermore, color histograms have proven to be effective cues for indexing colorful objects in large 

databases, highlighting the strength of color-based approaches in image retrieval tasks [67]. Consequently, 

this study concludes that the HSV method outperforms RGB in object extraction. Variations in HSV 

parameters significantly influence the clarity of the red line object. Figure 6(a) depicts the initial results of 

red color masking using the HSV method with parameters H=0-19, S=110-240, V=153-255. The red color is 

detected quite well, but some interference from similar colors persists. Subsequently, Figure 6(b) illustrates 

the results of modifying the HSV parameters to H=0-179, S=110-240, V=153-255. The detection of the red 

color becomes more extensive, yet there remains some background interference. Figure 6(c) employs HSV 

parameters H=0-179, S=54-240, V=153-255, with detection results showing an improvement in the red area, 

though slight interference is still present. Conversely, Figure 6(d) with parameters H=0-179, S=0-255, 

V=252-255, exhibits very clear red color detection with significantly reduced background interference. 

Finally, Figure 6(e) demonstrates the best results using HSV parameters H=0-179, S=0-255, V=224-255, 

where the red area is detected exceptionally well without background interference. These images 

conclusively show that variations in HSV parameters critically impact the clarity and accuracy of red object 

detection. The optimal parameters were identified as H=0-179, S=0-255, and V=224-255, yielding the best 

detection results with minimal background interference. This range of minimum-maximum HSV values 

serves as the foundation for selecting color masking values in subsequent experiments. 
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(a) (b) (c) 

   

  
(d) (e) 

 

Figure 6. Red color masking results using HSV: (a) red color detection is quite good, (b) red color detection 

is more extensive, (c) red color detection is more extensive with improvements, (d) red color detection is 

very clear, and (e) red color detection is excellent without interference 

 

 

3.4.  Test results 

The number of marking lines in Figure 7 varies with each shooting angle, within a sample range of 

0-100. For the x-coordinate where the pixel value is 0, the corresponding y-coordinate count at that point is 6, 

with subsequent x-coordinates showing inconsistency in the number of y-coordinates. In the context of object 

extraction and 3D reconstruction, such data fluctuations can significantly affect the accuracy of reference 

point determination using the triangle method. To mitigate these fluctuations, it is crucial to implement an 

averaging system for each pixel coordinate when forming marker points (x, y, z) [68]. This averaging 

approach stabilizes the data, reduces the impact of variations, and enhances the reliability of reference points 

in the reconstruction process as shown in Figure 8. Furthermore, the selection of red coordinate conversion 

results as reference points should be tested under varying ambient light intensities to ensure stability and 

consistency [69]. The influence of ambient light intensity on the stability of the laser line, as shown in Figure 8, 

indicates potential instability under different lighting conditions, such as 25 lux, 50 lux, and 64 lux. Ideally, 

reference coordinates should remain stable, which necessitates either conditioning the test chamber to 

exclude light or considering the use of a laser type with adjustable intensity to address this issue. 

 

 

 
 

Figure 7. The number of pixels detected based on the camera shooting angle 
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Figure 8. The reference point array as reference coordinates based on changes in light intensity 

 

 

The 3D surface marking and masking results in Figure 9 illustrate the influence of varying laser 

shooting angles on the accuracy and detail of 3D reconstructions. At β1=70.65° (Figures 9(a) and 9(b)), the 

marking lines are distinct, and the 3D surface is well-defined, leading to optimal pixel detection and a highly 

detailed reconstruction. This narrower shooting angle facilitates a higher number of detected pixels, thereby 

enhancing the precision of the 3D model [61]-[70]. In contrast, at β2=77.05° (Figures 9(c) and 9(d)), the 

marking lines are less dense, indicating fewer detected pixels and a slight reduction in surface detail. At 

β3=80.78° (Figures 9(e) and 9(f)), the marking lines become sparse, resulting in the least detailed 3D surface 

and the lowest number of detected pixels. As the shooting angle increases, pixel detection decreases, which 

negatively impacts HSV color classification and z-coordinate determination, leading to less accurate 3D 

reconstructions. Variations in external light can cause intensity discrepancies between reference and test data, 

thereby affecting the accuracy of z-axis calculations. To mitigate this, tests are conducted in a controlled 

lighting environment at 2 lux. The optimal angle, β1=70.65°, yields the most accurate results with the 

smallest average root mean square (RMS) error, offering the best balance between detail and precision [71]. 

These findings underscore the critical importance of selecting an appropriate laser shooting angle and 

maintaining consistent external lighting conditions to achieve accurate and detailed 3D reconstructions. 

 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 9. Results of variations on 3D surfaces: (a) marker line at angle β1=70.65°, (b) pixel detection at angle 

β1=70.65°, (c) marker line at angle β2=77.05°, (d) pixel detection with angle β2=77.05°, (e) marker line at 

angle β3=80.78°, and (f) pixel detection with angle β3=80.78° 
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The smallest average RMS error for object height and width was achieved at 𝛃1=70.65°, ensuring 

accurate z-coordinate determination. This selection is grounded in test data and simulations conducted using 

the OpenCV program. While OpenCV offers limited features in responding to instructions, its performance is 

also impacted by the accuracy of image capture sharpness [54]. This research has successfully met its 

objectives and can be further advanced by incorporating instruments or software that offer greater 

compatibility. Future developments should focus on enhancing image capture sharpness (pixels) and 

expanding the simulator's feature set to provide more comprehensive instructional capabilities. 

Based on Table 2, the smallest average RMS error for height and width was achieved at β1=70.65°, 

providing accurate z-coordinate measurements. This selection is supported by test and simulation data within 

the OpenCV program [54], where image sharpness accuracy and the program's limited response to 

instructions played significant roles. The research has successfully met its objectives and can be further 

refined by adopting more compatible instruments or software. Future enhancements should focus on 

achieving sharper image capture (pixels) and expanding the simulator's feature set to offer more 

comprehensive instructional capabilities. 

 

 

Table 2. The calculation results of coordinate points for the z and y axes with variations in the laser shooting 

angle (𝛃o) 

Segment The reference average height -z (cm) 

Z-coordinate (cm) 

𝛃1=70.65 𝛃2=77.05 𝛃3=80.78 
Error RMS 

𝛃1=70.65 𝛃2=80.78 𝛃3=80.78 

0 

1 

1.17 0.78 0.50 0.17 0.22 0.52 

1 1.17 0.78 0.49 0.17 0.22 0.53 

2 1.18 0.81 0.49 0.18 0.19 0.53 

3 1.17 0.81 0.49 0.17 0.19 0.53 

4 1.18 0.81 0.49 0.18 0.19 0.53 

5 1.17 0.78 0.50 0.17 0.22 0.52 

Average 1.17 0.80 0.49 0.17 0.21 0.53 

0 

4 

3.90 3.79 3.79 0.10 0.21 0.21 
1 3.90 3.79 3.79 0.10 0.21 0.21 

2 3.90 3.79 3.79 0.10 0.21 0.21 

3 3.90 3.79 3.79 0.10 0.21 0.21 

4 3.90 3.79 3.79 0.10 0.21 0.21 

5 3.90 3.79 3.79 0.10 0.21 0.21 

Average 3.90 3.79 3.79 0.10 0.21 0.21 

 

 

4. CONCLUSION  

This study successfully implemented a triangulation method utilizing laser and camera systems to 

convert 2D images into 3D representations. The findings demonstrate that adjusting laser shooting angles and 

camera positions is crucial for accurately determining z-coordinates, thereby enabling precise 3D imaging of 

flat surfaces. The optimal laser angle, yielding the smallest RMS error, was identified as β1=70.65°, 

corroborating the method's accuracy and consistency with previous research. Additionally, the study 

confirms that the HSV color masking method outperforms the RGB method in object extraction, particularly 

in effectively isolating red line objects. These results align with existing literature, deepening the 

understanding of digital feature extraction and providing a robust framework for future research in this 

domain. This research advances the scientific knowledge of 3D imaging techniques, offering practical 

applications for manufacturing and quality control processes that demand precise surface defect detection. 

The study supports existing theories while introducing new insights into optimizing image conversion 

methods, thereby making a significant contribution to the fields of computer vision and digital feature 

extraction. 
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