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 Aqua-stream, an innovative internet of things (IoT) enabled water 

management system, utilizes the power of long short-term memory (LSTM) 

networks, a sophisticated time-series forecasting machine learning technique 

with Kafka. Aqua-stream seamlessly integrates LSTM within the Kafka 

streaming architecture for efficient real-time data processing, ensuring quick 

responses to emerging water management needs. LSTM is employed for 

real-time anomaly detection, dynamically analyzing streaming data to 

prevent leaks through automated shut-off valves. The system’s 

comprehensive dashboard utilizes LSTM insights for live water quality 

analysis; adaptive scheduling based on individual preferences and 

personalized recommendations, enhancing cost-effective water management. 

This streamlined approach extends to the smart gardening system, where 

LSTM guides automation for optimal plant care incorporating sensors to 

monitor soil moisture, temperature, and sunlight levels. This system 

automatically adjusts watering and lighting to ensure optimal conditions for 

plant growth. Users can control and monitor their garden remotely via a 

smartphone, facilitating plant care while saving water and energy. Aqua-

stream redefines home water management, offering a holistic solution that 

combines intelligent water conservation with smart gardening for a 

sustainable and connected living experience. Aqua-stream represents a 

seamless integration of LSTM-based machine learning and IoT technologies, 

offering an intelligent, yet simplified, solution for sustainable and connected 

living. 
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1. INTRODUCTION 

Water, a finite and vital resource, plays a critical role in sustaining life, promoting socio-economic 

development, and maintaining ecological balance [1]. With global challenges like water scarcity and 

environmental sustainability escalating [2], effective water management is increasingly reliant on advanced 

technologies [3]. The integration of internet of things (IoT) platforms, coupled with sophisticated machine 

learning (ML) algorithms and real-time data processing capabilities, has emerged as a pivotal solution [4]. 

Figure 1 illustrates the architecture of IoT-based water management systems, showcasing how sensors for 

pH, turbidity, and other parameters transmit crucial data to a centralized controller [5]. Network-connected 

device collects and interprets sensor readings, facilitating informed decision-making. Subsequently, the 

processed data is relayed to an online application for visualization and detailed analysis, enhancing 

operational insights and efficiency [6]. The systems are characterized by their cost-effectiveness, scalability, 
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and seamless integration with existing infrastructures. Leveraging IoT platforms enables remote monitoring 

and control, empowering stakeholders to manage water resources more effectively while mitigating risks 

associated with water scarcity and environmental degradation. Embracing these technological innovations is 

crucial for achieving sustainable water management practices and ensuring a secure future for generations to 

come [7]. Water management systems generally include a controller, a variety of sensors, and an application 

for displaying the data [8]. In water management systems, a comprehensive array of parameters such as pH, 

turbidity, contaminant levels, water temperature, dissolved oxygen, conductivity, flow rate, and water levels 

are meticulously monitored using various sensors [9]. Integrated with communication protocols which ensure 

efficient transmission of sensor data to central management hubs [10]. Controllers play a pivotal role in 

regulating processes and actions based on sensor inputs, optimizing water distribution, and maintaining 

ecosystem health [11]. Whether deploying ultrasonic flow sensors or radar-based level sensors, the synergy 

of sensors, communication protocols, and controllers is essential for achieving sustainable water management 

[12] practices amidst evolving environmental challenges are displayed in Figure 2 as the process control is 

crucial in Industry 4.0 [13], and process modeling is a powerful method to attain it. Technologies facilitate 

proactive maintenance, extend infrastructure lifespan, and enable dynamic adjustments in water distribution 

based on current demand [14]. By providing stakeholders with actionable insights derived from large 

datasets, these innovations support informed decision-making, promote efficiency in water distribution, and 

contribute to environmental sustainability by reducing the carbon footprint associated with water 

management activities. As we move forward, the synergy between advanced technologies and water 

management will continue to play a pivotal role in addressing global water challenges, mitigating risks posed 

by water scarcity, adapting to changing environmental conditions, and fostering inclusive growth and 

development. Embracing these advanced tools is crucial for ensuring a secure and sustainable water future 

for generations to come. 

Aqua-stream’s integration of LSTM networks within the Kafka streaming architecture represents a 

significant advancement in real-time data processing for water management systems. The findings are 

relevant to audiences interested in sustainable living, smart home technologies, and efficient water 

management. The system supports the scientific consensus on the importance of real-time data analysis and 

automation in enhancing resource management. It aligns with previous studies advocating for the integration 

of ML and IoT to optimize resource use and operational efficiency. By preventing leaks and optimizing water 

usage in gardening, Aqua-stream addresses both environmental sustainability and cost savings, making it 

highly pertinent to modern water management challenges. 

This paper focuses on integrating technologies like LSTM for predictive analytics and Kafka as a 

robust communication protocol exemplifies this trend. LSTM enhances water management by analyzing 

historical data to predict trends in water quality and usage patterns. Meanwhile, Kafka ensures efficient real-

time data transmission across water management systems, facilitating proactive decision-making, and 

optimizing resource allocation. Embracing these advanced tools not only enhances operational efficiency but 

also supports sustainable water practices, crucial for meeting future water demands amidst evolving global 

challenges. 

 

 

 
 

Figure 1. Architecture of IoT-based water 

management systems 

 
 

Figure 2. IoT based water management components 

 

 

 

2. RELATED WORK 

The integration of IoT and ML in water management systems has been extensively explored in 

recent research, demonstrating the potential for these technologies to enhance efficiency and sustainability. 

IoT-enabled systems offer real-time data collection and monitoring, crucial for addressing dynamic water 

management challenges. Studies such as those by [15] have demonstrated the effectiveness of IoT in 
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monitoring water quality and usage, showcasing significant improvements in resource management and 

conservation. Products like the nest leak detector, Phyn smart water assistant, and Flo by Moen utilize IoT for 

water monitoring but may lack advanced capabilities. LSTM networks, a type of recurrent neural network 

(RNN), have shown considerable promise in time-series forecasting tasks. Pieter-Jan et al. [16], who first 

introduced LSTM, and subsequent studies by Wang et al. [17] and Rubasinghe et al. [18] established 

LSTM’s superiority in handling sequential data with long-term dependencies, making it ideal for applications 

such as anomaly detection in water management. The application of LSTM in smart water systems has been 

explored in several studies. Arsene et al. [19] demonstrated the use of LSTM for predictive maintenance in 

water distribution networks, highlighting its ability to foresee potential issues and mitigate risks proactively. 

Similarly, Bhardwaj et al. [20] integrated LSTM with IoT sensors to detect leaks and anomalies in real-time, 

resulting in significant reductions in water wastage. Smart gardening systems represent another area where 

IoT and ML integration can drive sustainability. Existing products, such as the Rachio smart sprinkler 

controller, focus solely on water management without integration with gardening systems. LSTM extends its 

capabilities to include a smart gardening system, optimizing plant care with sensors and automation [21]. 

This system automatically adjusts watering and lighting to ensure optimal conditions for plant growth,  

a feature supported by recent studies on automated plant care systems [22]. Kafka streaming architecture is 

another critical component in modern real-time data processing systems. Studies by Amilineni et al. [23] and  

Sarr et al. [24] have outlined its capabilities in handling high-throughput data streams, ensuring that systems 

can scale efficiently while maintaining low latency. This architecture is particularly beneficial in water 

management, where timely data processing is crucial for making informed decisions. Aqua-stream integrates 

LSTM within the Kafka streaming architecture for efficient real-time data processing, ensuring quick 

responses to emerging water management needs. The use of automated shut-off valves in water management 

systems helps prevent water wastage and potential home damage. Aqua-stream integrates automated shut-off 

valves triggered by anomaly detection, providing an additional layer of protection. Comprehensive 

dashboards are essential for user-friendly monitoring and insights into water usage. Existing products like the 

Aquanta water heater controller offer dashboards but may lack real-time capabilities and user-friendly 

interfaces. Aqua-stream’s real-time monitoring dashboard provides insights into water usage, quality, and 

anomalies, offering a completer and more accessible user experience. Personalized recommendations based 

on predictive analysis and historical data can significantly enhance water management. While existing 

products provide basic insights, they often do not leverage historical data for personalization [25]. 

Aqua-stream uses predictive analysis and historical data for personalized water management 

recommendations, making it a more advanced and effective tool for users. Combining these technologies, 

Aqua-stream offers a comprehensive solution that leverages LSTM and Kafka for real-time water 

management. The system’s ability to analyze and respond to data dynamically not only prevents water leaks 

but also optimizes water usage for gardening and other household needs. The inclusion of smart gardening 

features, guided by LSTM, further enhances the system’s sustainability credentials, as highlighted in recent 

studies on automated plant care systems [26]. Aqua-stream stands as an innovative solution, suggesting the 

seamless integration of IoT technology and LSTM networks to establish a comprehensive smart water 

management system. 

 

 

3. PROPOSED METHOD 

The proposed innovation Aqua-stream system shown in Figure 3. Emerges as a cutting-edge 

solution, seamlessly combining IoT technology Kafka and advanced ML LSTM to create an intelligent water 

management system that promotes sustainability and connected living. In the proposed innovation, the 

following features are implemented using LSTM. 

− Real-time anomaly detection: Aqua-stream proactively detects anomalies using (1), in water usage 

through real-time data analysis. The LSTM network analyses streaming data continuously with Kafka, 

enabling the system to identify irregularities and potential leaks (L1, L2, L3…) in the water supply. 

Automated valves (V1, V2, V3, …) are strategically placed within the water infrastructure, allowing 

Aqua-stream to take immediate action to prevent further wastage by closing or partially closing 

(emergency services) the respective valves. 

− Comprehensive dashboard: Aqua-stream provides users with a comprehensive dashboard that offers real-

time insights into water quality with pH sensors. Leveraging the capabilities of LSTM, the system 

dynamically assesses the quality of the water supply, alerting users to any fluctuations or issues.  

Live water quality analysis empowers users to make informed decisions about water consumption and 

quality maintenance. LSTM contributes to real-time water quality analysis by predicting the water quality 

score by (2), Aqua-stream continuously monitors water quality fluctuations using LSTM insights, 

providing users with accurate insights through a dashboard interface. 
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− Adaptive scheduling and personalized recommendations: Aqua-stream incorporates adaptive scheduling 

based on individual preferences as given in (3). Water pumping activities in the peak usage time and 

when electricity costs are lower, less operational expenses. The system generates personalized 

recommendations by analyzing historical data and usage patterns, offering users actionable insights to 

enhance cost-effective water management this ensures efficient water consumption aligned with 

individual routines, optimizing resource utilization effectively. 

− Smart gardening integration (additional feature of Aqua-stream): Aqua-stream extends its capabilities 

beyond water management by integrating smart gardening features. 
 

 

 
 

Figure 3. Layout of proposed system 

 

 

The LSTM network guides automation for optimal plant care, utilizing sensors to monitor soil 

moisture, temperature, and sunlight levels, ground humidity in real-time. This data-driven approach enables 

Aqua-stream to automatically adjust watering and lighting conditions, creating an environment that fosters 

the optimal growth of plants. With Aqua-stream, users can embrace a lifestyle that prioritizes efficient water 

usage, real-time monitoring, and automated gardening, contributing to a more sustainable and eco-friendly 

way of living. Aqua-stream automates optimal conditions for plant growth using LSTM insights from sensor 

data by (4), Adjusting watering and lighting schedules based on real-time conditions enhances plant health 

while conserving water and energy. 

 

Anomaly=∣Actual Value−Predicted value∣>Threshold (1) 

 

Water quality score=LSTM model (historical data, real-time measurements) (2) 

 

Recommendation=LSTM model (user preferences, historical usage data) (3) 

 

Optimal conditions=LSTM model (soil moisture, temperature, sunlight levels) (4) 

 

The working principle of LSTM is shown in Figure 4. LSTM networks perform several key 

operations to process sequential data [27]. Initially, input transformations combine the current input 𝑥𝑡 with 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 3, December 2024: 1460-1469 

1464 

the previous hidden state ℎ𝑡−1 and biases 𝑏𝑡, utilizing weight matrices 𝑊𝑥 , 𝑊ℎ. This forms the input 𝑧𝑡 into 

the gates. Sigmoid functions σ are applied to these gates to control information flow, the input gate 𝑖𝑡   forget 

gate 𝑓𝑡 and output gate 𝑂𝑡. The cell state 𝐶𝑡 updates by combining the previous cell state 𝐶𝑡−1 with 

𝑖𝑡controlling how much of the candidate values 𝐶′𝑡 to add and 𝑓𝑡 to remove. The hidden state ℎ𝑡 then 

computes based on the updated cell state 𝐶𝑡 and the output gate 𝑂𝑡. During training, LSTM networks 

optimize their parameters 𝑊𝑥𝑊ℎ, 𝑏, using backpropagation through time (BPTT) and gradient descent, often 

employing Adam optimization. This involves calculating gradients of the chosen loss function, typically 

mean squared error (MSE) or mean absolute error (MAE) for regression tasks root mean squared error 

(RMSE) is a common metric for evaluating the error of a model when predicting quantitative data. MAE 

measures the average size of the errors in a set of predictions, disregarding their direction given by the (7). 

Training RMSE and MAE indicate the model’s accuracy on the training data, while test RMSE and MAE 

reflect the expected performance on new, unseen data. When RMSE and MAE values for the training and test 

sets are similar, it typically signifies good model performance [28]. Conversely, higher test scores compared 

to training scores suggest potential overfitting, where the model performs worse on new data. Both RMSE 

and MSE utilize parameters 𝑦𝑖  (true values), 𝑦′𝑖  (predicted values), and N (total number of samples) to 

provide meaningful insights into the efficacy of regression models in capturing underlying data patterns and 

making accurate predictions. These metrics are crucial tools in optimizing model performance and enhancing 

predictive capabilities across various domains. Apache Kafka revolutionizes data streaming in water 

management systems by enabling real-time data ingestion, processing, and distribution [29]. Sensors 

deployed across the water network continuously publish data streams, such as flow rates and water quality 

metrics, to Kafka topics. These streams are then consumed by various stakeholders, including analysts, 

operators, and automated systems, providing immediate insights and facilitating informed decision-making. 

Kafka’s scalable, fault-tolerant platform ensures reliable data transmission, significantly enhancing 

operational efficiency in monitoring key environmental conditions. 

Integrating Kafka with predictive models like LSTM networks further optimizes resource 

management. The algorithm of the proposed model is shown in Algorithm 1. The workflow of the proposed 

innovation shown in Figure 4. 

 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (5) 

 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (6) 

 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶′𝑡 (7) 

 

𝑂𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏0) (8) 

 

ℎ𝑡 = 𝑂𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝐶𝑡) (9) 

 

𝑍𝑡 = 𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏𝑡 (10) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦′𝑖)2𝑁

𝑖=1  (11) 

 

Algorithm 1. For implementing the aqua-stream system 
Step 1. Initialization and Setup 

a) Deploy sensors across the water network to collect data on water usage, quality, 

soil moisture, etc. 

b) Set up Kafka for real-time data ingestion and processing. 

Step 2. Data Collection and Ingestion: 

a) Collect real-time data from various sensors. 

b) Publish sensor data streams to Kafka topics for efficient data handling. 

Step 3. Data Processing with Kafka: Kafka streams consume data and distribute it to relevant 

components, ensuring real-time processing. 

Step 4. Anomaly Detection using LSTM, transform input data with equation 11 and Compute gate 

activations using equations (5), (6), (8). Update cell state and hidden state by 

equation (7), (9) respectively 

Step 5. Train the LSTM Network, define the loss function and optimize the LSTM parameters 

using backpropagation through time (BPTT) and gradient descent (Adam optimizer). 

Step 6. Evaluate model performance using RMSE and MAE using equation (11). 

Step 7. Continuously refine and maintain the Aqua-Stream system based on feedback and new 

data.Ensure the system remains robust, scalable, and adaptive to changes in the 

water management environment. 
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Figure 4. Workflow of proposed methodology 

 

 

4. RESULT ANALYSIS 

The simulation of the Aqua-stream system in February 2024 demonstrates its transformative impact 

on water management and smart gardening, leveraging advanced technologies such as LSTM and IoT. 

Integrated within Kafka streaming architecture, Aqua-stream enables real-time data processing for swift 

responses to water management needs. Aqua-stream successfully utilized LSTM networks for real-time 

anomaly detection in water flow data. The system promptly identified anomalies such as sudden spikes or 

drops in flow rates, which could indicate leaks or other operational issues. The time-series plot of water flow 

data in February 2024 shows normal variations in flow rates throughout the day. Anomalies, indicated by red 

markers, highlight instances where the flow deviated significantly from the predicted values by the LSTM 

model. These anomalies were effectively detected and flagged, demonstrating Aqua-stream’s capability to 

identify irregularities in real-time. Anomaly detection threshold: 0.5 indicating deviations exceeding this 

threshold are flagged as anomalies as shown in Figure 5. Anomaly indices identified instances where 

anomalies occurred, facilitating prompt corrective actions such as automated valve shutdowns or alerts.  

The pH level shows fluctuations around a mean of 7.2, with variations influenced by external factors such as 

water source and treatment. 

Aqua-stream ensures these variations remain within safe limits, essential for household use and plant 

health. Turbidity levels, depicted in the plot, demonstrate minor fluctuations around an average of 4 

nephelometric turbidity units (NTU) as shown in Figure 6. These variations are critical as turbidity affects 

water clarity and can indicate particulate contamination. Mean pH: 7.2 ± 0.3 indicating stable pH levels 

maintained within safe drinking water standards. Average turbidity: 4 NTU ± 1.5, ensuring water clarity 

meets quality requirements for household and gardening use. Figure 7 Illustrates soil moisture plot illustrates 

fluctuations around an optimal range, with watering actions triggered when moisture levels fall below a set 
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threshold (0.4). This automated response ensures plants receive adequate hydration while conserving water 

resources. Sunlight levels influence lighting schedules, as depicted in the plot where lights are activated when 

sunlight levels drop below 500 lux. This automation optimizes energy use while maintaining ideal conditions 

for plant growth. Soil moisture threshold for watering is 0.4 ensuring plants receive sufficient hydration 

without water wastage. Sunlight threshold for lighting is 500 lux adjusting lighting to maximize energy 

efficiency while supporting plant growth. The implementation of Aqua-stream has resulted in notable 

improvements in resource efficiency, as evidenced by comparative bar charts as shown in Figure 8. That 

illustrate substantial reductions in both water and energy consumption. Specifically, water usage decreased 

from 120 to 80 liters, and energy consumption dropped from 210 to 160 kWh, demonstrating Aqua-stream’s 

effectiveness in water management and energy optimization through smart gardening automation. The 

displayed values indicate water savings of 40 liters and energy savings of 50 kWh, attributed to the 

automated watering system and efficient lighting control, respectively. Additionally, the LSTM model’s 

performance was rigorously evaluated, with a training-progress plot over 100 epochs showing an optimized 

learning trajectory shown in Figure 9. 

Key metrics include an accuracy of 94%, precision of 88%, recall of 82%, and an F1-score of 0.85, 

underscoring the model’s high precision and comprehensive coverage in anomaly detection, which is crucial 

for maintaining system reliability and efficiency and the comparison metrics is tubulised in Table 1.  

The training progress table for the LSTM network illustrates the iterative process of training the model to 

predict anomalous water flow based on normal flow data. Each row in the table corresponds to an epoch 

during training, indicating the epoch number, iterations processed within the epoch, elapsed time, mini-batch 

RMSE, mini-batch loss, and the base learning rate used. Throughout the epochs, the network progressively 

refines its predictions, as evidenced by the decreasing RMSE and loss values shown in Table 2. The learning 

rate also adjusts over time according to the specified schedule, aiding in efficient optimization of the 

network’s parameters. This table serves as a crucial tool for monitoring the network’s convergence and 

performance trends, enabling adjustments to hyper parameters or network architecture as necessary to 

enhance prediction accuracy and mitigate issues like overfitting or under fitting. Ultimately, it provides 

insights into the effectiveness of the training process and guides decisions to achieve optimal model 

performance for detecting anomalies in water flow data. 

 

 

  
 

Figure 5. Time-series data of water with anomalies 

 

 

Figure 6. Real time validation of pH and turbidity 

levels 

 

 

Table 1. Comparison of proposed method performance metrics with traditional methods 
Method Accuracy Precision Recall F1-score 

Nest leak detector 0.80 0.75 0.70 0.72 
Phyn smart water assistant 0.82 0.78 0.72 0.75 

Flo by Moen 0.84 0.80 0.74 0.77 

Rachio smart sprinkler 0.86 0.82 0.76 0.79 
Aquanta water heater 0.88 0.84 0.78 0.81 

LSTM 0.94 0.88 0.82 0.85 

LSTM with Kafka 0.96 0.90 0.85 0.87 
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Figure 7. Visualization of soil moisture, sunlight, 

temperature, and data 

 

Figure 8. Compression of efficiency for traditional 

and proposed methods 
 

 

 
 

Figure 9. Training process of LSTM 
 

 

Table 2. Training process of LSTM metrics 
Epoch Iteration Time elapsed (hh:mm:ss) Mini-batch RMSE Mini-batch loss Base learning rate 

1 1 00:00:04 0.86 0.4 0.0050 

5 50 00:00:07 0.08 2.9e-03 0.0050 

10 100 00:00:08 0.12 7.6e-03 0.0050 
14 150 00:00:09 0.14 9.5e-03 0.0050 

19 200 00:00:09 0.02 2.9e-04 0.0050 

28 300 00:00:11 0.10 5.0e-03 0.0010 
32 350 00:00:11 0.07 2.5e-03 0.0010 

37 400 00:00:12 0.10 5.0e-03 0.0010 

41 450 00:00:12 0.07 2.6e-03 0.0002 
46 500 00:00:13 0.10 4.9e-03 0.0002 

50 550 00:00:14 0.14 9.5e-03 0.0002 

55 600 00:00:14 0.07 2.7e-03 0.0002 
60 650 00:00:15 0.12 7.5e-03 0.0002 

64 700 00:00:16 0.14 9.5e-03 4.0000e-05 

69 750 00:00:17 0.02 2.7e-04 4.0000e-05 
73 800 00:00:17 0.03 3.5e-04 4.0000e-05 

78 850 00:00:18 0.10 5.0e-03 4.0000e-05 

82 900 00:00:19 0.07 2.5e-03 8.0000e-06 
87 950 00:00:19 0.10 5.0e-03 8.0000e-06 

91 1000 00:00:20 0.07 2.6e-03 8.0000e-06 

96 1050 00:00:21 0:10 4.9e-03 8.0000e-06 
100 1100 00:00:22 0:14 9.5e-03 8.0000e-06 
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5. CONCLUSION 

Aqua-stream has shown significant advancements in water management and smart gardening 

through the integration of LSTM-based ML and IoT within the Kafka streaming architecture. The system’s 

real-time anomaly detection effectively identified irregularities in water flow, triggering automated responses 

to prevent water wastage. Consistent monitoring ensured household water quality and optimal plant health. 

Aqua-stream’s smart gardening automation led to notable resource savings, reducing water usage from 120 to 

80 liters and energy consumption from 210 to 160 kWh. The LSTM model demonstrated high performance 

with an accuracy of 94% and an F1-score of 0.85. Overall, Aqua-stream offers an intelligent, efficient, and 

sustainable solution for home water management and gardening. 
 

 

6. FUTURE SCOPE AND TAKE-HOME MESSAGE 

Future research can expand on these findings by exploring several key areas: testing Aqua-stream in 

larger and more diverse environments to evaluate scalability; investigating integration with other smart home 

systems and city-wide water management infrastructures; developing and comparing other ML models like 

GRU or transformers to enhance predictive accuracy and efficiency; conducting user experience studies to 

identify improvements in usability and functionality; and analyzing the long-term impacts on water 

conservation, user cost savings, and environmental sustainability. Key experiments include large-scale field 

tests, integration trials, and comprehensive user feedback analysis. 

Aqua-stream redefines home water management by integrating LSTM-based ML and IoT 

technologies for an intelligent, efficient, and user-friendly solution. By preventing water leaks, optimizing 

gardening, and offering real-time insights into water quality, Aqua-stream significantly contributes to 

environmental sustainability and cost-effective water management. This study builds on previous research 

advocating for ML and IoT in resource management, extending smart water systems’ capabilities with 

advanced time-series forecasting and anomaly detection. Future research should focus on scaling Aqua-

stream, integrating with other systems, exploring advanced models, conducting user studies, and analyzing 

long-term impacts. Aqua-stream offers a groundbreaking approach to home water management, enhancing 

water conservation and user convenience through intelligent ML and IoT integration. 
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