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 Parallel scientific workloads, often represented as directed acyclic graphs 

(DAGs), consist of interdependent tasks that require significant data 

exchange and are executed on distributed clusters. The communication 

overhead between tasks running on different nodes can lead to substantial 

increases in makespan, energy usage, and monetary costs. Therefore, there is 

potential to balance communication and computation to reduce these costs. 

In this paper, we introduce an energy and cost-aware workload scheduler 

(ECAWS) tailored for executing parallel scientific workloads, generated by 

the internet of things (IoT), in a heterogeneous cloud environment. The 

performance of the proposed ECAWS model is evaluated against existing 

models using the Inspiral scientific workload. Results indicate that ECAWS 

outperforms other models in reducing makespan, costs, and energy 

consumption. 
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1. INTRODUCTION 

Cloud computing [1], coupled with virtualization technology, opens up extensive research 

opportunities across numerous domains and applications. As global data expands, the need for automated 

data processing is increasingly apparent. This is particularly relevant in fields such as Bioinformatics and 

Astronomy, where substantial data is gathered for research purposes. Often, this data is managed as scientific 

workloads. 

Scientific workloads [2], which are frequently modeled as directed acyclic graphs (DAGs), involve 

interdependent tasks that communicate via file exchanges. The output from one task often serves as the input 

for another. These workloads can comprise thousands of tasks and are typically executed on large-scale 

parallel or distributed systems, including cloud computational platforms [3]. Such systems allow for parallel 

processing of independent tasks, thereby reducing overall costs and execution times (makespan). However, 

scheduling these tasks in cloud environments is a complex, non-polynomial problem [4]. To address this, 

platforms like cloudsim [5], [6], and edge-workload [7] schedulers have recently been employed to manage 

incoming tasks as shown in Figure 1. 

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 1. The architecture of workflow scheduling in a homogenous cloud platform [2] 
 

 

Various algorithms have been developed for task scheduling [8]. These include particle swarm 

optimization (PSO) [9], ant colony optimization (ACO) [10], heterogeneous earliest time first (HEFT) [11], 

enhanced HEFT [12], and energy-cost-aware [13] schedulers employing different optimization strategies. 

More details of different scheduling methods have been discussed in section 2. While these methods [14], 

[15] have improved performance, they often fall short when dealing with large scientific parallel workloads. 

They tend to struggle with reducing both cost and makespan during computations. In this paper, we introduce 

a new model: the energy and cost-aware workload scheduler (ECAWS). This model is designed for parallel 

workload execution in heterogeneous cloud environments. Its primary goals are to minimize energy 

consumption, reduce costs, and meet task deadlines (makespan).  

The significance of our research lies in its development of a scheduler model that enhances 

performance by lowering makespan, energy usage, and computational costs for scientific parallel workloads. 

We conduct a comparative analysis of various workload scheduler models that use different methodologies 

for managing scientific workloads. The results demonstrate that ECAWS significantly improves performance 

in terms of cost reduction, energy efficiency, and makespan reduction. 

The structure of the paper is as follows: section 2 reviews different models, algorithms, 

architectures, and methodologies applied to the execution of scientific workloads. Section 3 introduces our 

proposed architecture and resource provisioning model, focusing on resource allocation for handling data-

intensive scientific tasks. Section 4 presents an evaluation of the results and a comparison with existing 

models. Finally, section 5 offers a concise conclusion summarizing the research findings. 

 

 

2. RELATED WORK 

This section studies different workload scheduling for cloud and edge-cloud platforms [14], [15]. 

Yao et al. [16] introduced a task-duplication-based scheduling algorithm (TDSA) aimed at reducing costs 

and makespan within cloud environments. Their approach includes two primary methods and was tested on 

both random and scientific workloads. The results indicated a 31.6% reduction in cost and a 17.4% decrease 

in makespan. Sindhu et al. [17], additionally, the algorithm addresses energy consumption and overall 

computational costs, enhancing system performance in edge-fog computing environments. It utilizes DAGs 

for task scheduling and incorporates a Markov decision process for optimal resource allocation. The 

algorithm demonstrated superior performance compared to existing models. 

Abohamama et al. [18], developed a task-scheduling algorithm for cloud-fog platforms, framing the 

scheduling problem as a permutation-based optimization challenge. They employed an enhanced genetic 

algorithm (GA) to allocate tasks to virtual machines with optimal resources and execution times. Their 

experiments, comparing the proposed algorithm with methods such as best-fit, first-fit, bees' life algorithm, 
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and GA, showed improvements in cost, total computation time, and failure rate. Movahedi et al. [19] 

proposed a task scheduling model designed to minimize energy consumption and execution time in fog 

computing platforms. Their approach includes an architecture for managing incoming tasks and employs 

integer-linear programming (ILP) alongside a chaotic whale optimization algorithm. Comparisons with GA, 

artificial-bee-colony algorithms, and PSO revealed that their model outperformed these existing systems. 

Shashank et al. [20] introduced a deep reinforcement learning (DRL) algorithm for IoT task 

scheduling in fog-based environments. Their method addresses task scheduling into virtual machines using a 

dual queuing technique, aiming to reduce cost, energy consumption, and makespan. Liu et al. [21] presented 

a PSO algorithm for task scheduling in edge computing environments. This algorithm aims to reduce 

computation costs and was evaluated using the CloudSim platform. Results indicated that their approach 

effectively optimized computation time and cost compared to four other task scheduling algorithms. Naveen 

and Annapurna [22] developed a scheduling algorithm and resource provisioning model to cut costs during 

task scheduling. Their method involves breaking down workload tasks into smaller sub-tasks to expedite 

execution and meet deadlines. Evaluations of their model, focusing on scientific workloads, showed faster 

virtual machine allocation and minimal cost. 

Konjaang and Xu [23] proposed a multi-objective workload optimization strategy (MOWOS) to 

reduce makespan and cost. They introduced two algorithms namely maximum virtual machine and minimum 

virtual machine, to manage workload tasks. The MOWOS approach achieved an 8% reduction in cost and a 

10% decrease in makespan. Masoudi et al. [24] tackled energy constraints through effective virtual machine 

allocation strategies. Studies [25], [26] underscored the role of edge computing in improving service quality 

and energy efficiency. Mangalampalli et al. [27] emphasized the need for multi-objective optimization using 

DRL to reduce makespan and energy consumption, though effective virtual machine placement according to 

quality-of-service (QoS) requirements remains an area for improvement, leading to potential delays and 

increased makespan.  

 

 

3. PROPOSED METHODOLOGY 

This section presents a novel scheduler named ECAWS for the execution of parallel workloads in 

the heterogeneous cloud platform. The section explains the workload and heterogeneous architecture adopted 

for scheduling optimization as shown in Figure 2. The ECAWS constructs different metrics namely 

computation cost, reconfiguration cost, and communication cost. Then, multi-objective minimization 

optimization metrics are presented and optimized using DRL to reduce overall energy with minimal time and 

cost.  
 

 

 
 

Figure 2. Architecture of heterogeneous cloud platform for energy and cost-aware workload scheduling 
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3.1.  Workload and heterogenous computational architecture classification 

The Inspiral workload significantly uses lots of memory and computational resources. The overall 

size of the Inspiral workload is represented through parameter 𝐿𝑏 measured in bits. According to 𝑛 

computational machines, the data is segmented into 𝑁 predefined numbers considering both idle and active 

computational machines. As the Inspiral workload is composed of multi-level QoS dependencies among tasks; 

thus, the task must complete the execution within time 𝑆𝑠. In meeting energy efficiency, the computational 

resource allocated considering the respective physical computational platform 𝑥 is obtained in (1). 

 

{𝑓𝑟𝑒𝑞𝑥
𝐼 , 𝑓𝑟𝑒𝑞𝑥

↑ , 𝐸𝑥
𝐼 , 𝑃𝑎(𝑥),  𝐶𝑒(𝑥)}, 𝑥 = 1,2,3, ⋯ , 𝑁 (1) 

 

In (1), 𝑓𝑟𝑒𝑞𝑥
𝐼  expresses the idle state frequency parameter, 𝑓𝑟𝑒𝑞𝑥

↑  expresses maximal operating frequency for 

the execution of Inspiral workload, 𝐸𝑥
𝐼 ,  𝑃𝑎(𝑥) defines non-idle state energy consumption of computational 

platform, 𝑃𝑎(𝑥) defines overall computational machines that are actively participating in Inspiral workload 

task execution and 𝐶𝑒(𝑥) expresses parameter defining load factor. In this work the parameter 𝑅𝑝
↑ defines 

maximal processing capability considering the heterogenous multi-core resource optimization nature; thus, 

𝑅𝑝
↑ = 𝑓𝑟𝑒𝑞𝑥

↑ . 

 

3.2.  Computation, reconfiguration, and communication cost metrics 

In reducing the energy consumption and meeting makespan minimization to reduce the overall cost 

of execution of Inspiral workloads this work employs the dynamic voltage and frequency scaling (DVFS) 

model [11] according to the multi-core resource availability. The parameter 𝑓𝑟𝑒𝑞𝑑𝑖𝑠𝑐  expresses both lower 

and higher operating frequency and the maximal frequency of the idle-state computational node is measured 

in (2).  
 

𝑓𝑟𝑒𝑞↑ ≜ 𝑓𝑟𝑒𝑞𝑍 > 𝑓𝑟𝑒𝑞𝑧−1 > 𝑓𝑟𝑒𝑞𝑍−2 > ⋯ > 𝑓𝑟𝑒𝑞1 > 𝑓𝑟𝑒𝑞𝐼 ≜ 𝑓𝑟𝑒𝑞0 (2) 

 

The current method cannot satisfy dynamic frequency optimization considering multi-level service 

optimization. Performing dynamic optimization is challenging as it needs to measure different parameters 

like storage, memory, and computational processing elements considering both idle and active states. Thus, 

the dynamic energy consumption 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐  is measured through (3). 

 

𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑃𝑎 ∗ 𝐶𝑒 ∗ 𝑓𝑟𝑒𝑞 ∗ 𝑣𝑠2 (3) 

 

In (3), 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐  expresses the parameter to measure processor dynamic energy consumption 

operating on a physical computational platform, 𝑓𝑟𝑒𝑞 defines the physical computational platform frequency 

level, and 𝑣𝑠2 represents corresponding voltage; the association between voltage and frequency is obtained in (4).  
 

𝑓𝑟𝑒𝑞 = ℂ ∗ [
𝑣𝑠−1

(𝑣𝑠−𝑣𝑠𝜏)−2] (4) 

 

In (4), ℂ defines the weight optimization parameter which remains static throughout the Inspiral 

workload task execution, 𝑣𝑠𝜏 expresses lesser weighted voltage than required input voltage 𝑣𝑠. Throguh 

optimization of (3) and (4), the idle state task computation cost 𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑥) by considering 𝐸𝐼 ≥ 0 

is measured in (5).  
 

𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑥) ≜ ∑ 𝑃𝑎
′ ∗𝑍

𝑦=0 𝐶𝑒 ∗ 𝑠𝑥𝑦 ∗
1

𝑓𝑟𝑒𝑞𝑦
−3 , 𝑥 = 1, 2, … , 𝑁 (5) 

 

In (5), 𝑃𝑎
′ = ℂ−1 ∗ 𝑃𝑎, 𝑠𝑥𝑦  defines the overall makespan when executed in a physical computational 

platform operating at frequency 𝑓𝑟𝑒𝑞𝑦 . The parameter 𝑍 defines the available frequency level in the 

respective processing element considering 𝑍 + 1 bounds when 𝑥 in 𝑠𝑥𝑦  ranges between 1 to 𝑁 and 𝑦 ranges 

between 0 to 𝑍. Let's assume that the frequency changes from 𝑓𝑟𝑒𝑞1 to 𝑓𝑟𝑒𝑞2 to meet the Inspiral workload 

task deadlines; the reconfiguration cost 𝑆𝑈𝑀𝐶−𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛  is measured through (6).  

  

𝑆𝑈𝑀𝐶−𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑓𝑟𝑒𝑞1; 𝑓𝑟𝑒𝑞2) = ℇ𝑐 ∗
1

(𝑓𝑟𝑒𝑞1−𝑓𝑟𝑒𝑞2)−2     …    𝐽𝑜𝑢𝑙𝑒 (6) 

 

In (6), ℇ𝑐  𝐽𝑜𝑢𝑙𝑒𝑠/𝐻𝑧2 expresses the computational cost for changing the frequency levels according 

to task deadline requirements. During the reconfiguration process, extensive communication cost is involved 
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to perform data exchange considering trannfer rate 𝑇𝑟𝑛𝑠𝑅𝑎𝑡𝑒𝑥. Therefore, the communication cost 𝐸𝑥
𝐶−𝑐𝑜𝑚𝑚 

is measured in (7): 

 

𝐸𝑥
𝐶−𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ≡ 𝐸𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒

𝐶−𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥) + 𝐸𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒
𝐶−𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥) (7) 

 

where 𝐸𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒
𝐶−𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥) expresses the parameter defining switching energy cost and 

𝐸𝑇𝑟𝑛𝑠𝑅𝑎𝑡𝑒
𝐶−𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥) expresses the parameter defining communication energy. The network may induce a 

certain load and delay; however, considering optimal communication the total computation cost is measured 

in (8). 

 

𝐸𝑥
𝐶−𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑥) = 𝛿𝑥(𝒯�̅� ∗ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑥)2 + 𝐸𝑥

𝐼 , 𝑥 = 1 𝑡𝑜 𝑁(8) 

 

In (8), the parameter 𝛿𝑥 is measured in (9): 

 

𝛿𝑥 ≜ (𝑅𝑔𝑎𝑖𝑛)
−1

∗ (𝒦−1 ∗ √
2∗𝜃

3
)

2

, 𝑥 = 1 𝑡𝑜 𝑁  (9) 

 

where parameter 𝒦 defines the maximum segmentation level considering noisy coding gain 𝑅𝑔𝑎𝑖𝑛. Thus, 

considering the transfer delay is measured in (10): 

 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐷𝑒𝑙𝑎𝑦(𝑥) = ∑ 𝑅𝑝𝑦
𝑠𝑥𝑦 ∕ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑥

𝑍
𝑦=1  (10) 

 

Using (10), the 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐷𝑒𝑙𝑎𝑦(𝑥), the communication cost can be finally established in (11). 

 

𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥) ≜ 𝐸𝑥
𝐶−𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑥) ∗

(∑ 𝑅𝑝𝑦
𝑠𝑥𝑦 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑥⁄𝑍

𝑦=1 ) (11) 

 

3.3.  Energy and cost-aware workload scheduler model 

This section introduces a novel ECAWS employing multi-objective optimization. The computation 

cost in (5), reconfiguration cost in (6), and communication cost in (11) are optimized through the below 

minimization function 𝒞 defined in (12).  

 

𝒞 = min[𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑥) + 𝑆𝑈𝑀𝐶−𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑓𝑟𝑒𝑞1; 𝑓𝑟𝑒𝑞2) +

𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥)] (12) 

 

The 𝒞 denotes the multi-objective optimization parameter; the overall cost of the computation in a 

heterogenous cloud platform through the usage of a machine learning model [28], [29] adopting deep 

learning evolutionary optimization model [30], [31] namely the enhanced DRL model [27] for efficient 

scheduling of workload tasks and achieving better performance and reducing cost as shown in the result 

section. 

 

 

4. RESULT AND ANALYSIS 

The proposed ECAWS was tested using the Inspiral scenario to assess its performance regarding 

makespan, energy consumption, and cost. The ECAWS algorithm was evaluated against two other models: 

the energy-minimized scheduling (EMS) [11] and the multi-objective DRL-based workload scheduler 

(MODRLWS) [27]. The evaluation involved four tasks from the Inspiral dataset, including Inspiral 30 and 

Inspiral 100. All experiments were conducted on a system equipped with an Intel® core i7 processor, 16 GB 

of RAM, and running Windows 10 (64-bit). The cloudsim platform was utilized to simulate and assess the 

performance of the proposed ECAWS model alongside the state-of-the-art scheduling algorithms. 

 

4.1.  Makespan performance 

Figures 3 and 4 illustrate the makespan for Inspiral 30 and Inspiral 100, respectively. The results 

reveal that the EMS model resulted in a longer makespan compared to the MODRLWS model. The ECAWS 

model demonstrated a substantial reduction in makespan—42.12% for Inspiral 30 and 61.44% for Inspiral 

100—when compared to MODRLWS. The overall makespan of execution is reduced employing (5) and later 
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the parameter is optimized using an enhanced DRL model contributing to a significant reduction of 

makespan using ECAWS in comparison with EMS and MODRLWS. This reduction is attributed to the 

enhanced optimization provided by the DRL model used in ECAWS. 
 

 

 
 

Figure 3. Makespan for inspiral 30 

 
 

Figure 4. Makespan for inspiral 100 

 

 

4.2.  Energy consumption performance 

Figures 5 and 6 display the energy consumption for Inspiral 30 and Inspiral 100. The EMS model 

showed higher energy consumption than both MODRLWS and ECAWS. Although MODRLWS consumed 

less energy than EMS, the ECAWS model achieved a reduction of 3.8% for Inspiral 30 and 3.15% for 

Inspiral 100 in energy consumption compared to MODRLWS. The overall energy of execution is reduced by 

employing (6) and later the parameter is optimized using an enhanced DRL model contributing to a 

significant reduction of energy using ECAWS in comparison with EMS and MODRLWS. The improvements 

are attributed to the efficient optimization techniques employed in ECAWS.  

 

 

 
 

Figure 5. Energy consumption for inspiral 30 

 
 

Figure 6. Energy consumption for inspiral 100 

 

 

4.3.  Computation cost  

Figures 7 and 8 depict the computation costs for Inspiral 30 and Inspiral 100. The results indicate 

that the proposed ECAWS model offers a significant cost advantage over existing models. Specifically, 

ECAWS reduced computation costs by 64.95% and 70.66% compared to MODRLWS for Inspiral workloads 

of sizes 30 and 100, respectively. The overall cost of execution is reduced by employing (10) and later the 
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parameter is optimized using an enhanced DRL model contributing to a significant reduction of cost using 

ECAWS in comparison with EMS and MODRLWS. This cost reduction is a result of the effective 

optimization strategies incorporated into ECAWS. 
 

 

 
 

Figure 7. Computation cost for inspiral 30 

 
 

Figure 8. Computation cost for inspiral 100 
 

 

5. CONCLUSION 

In summary, the ECAWS model shows superior performance in reducing makespan, energy 

consumption, and cost compared to EMS and MODRLWS. EMS, while focusing on energy and cost 

reduction, did not effectively address makespan reduction. The MODRLWS model provided improvements 

but fell short in overall cost reduction across different workload sizes. The ECAWS model successfully 

tackles these issues, offering better overall performance in makespan, energy, and cost reduction. Looking 

ahead, this research can be extended to other scientific workloads such as Montage and Sipht. Since parallel 

scientific workloads, which are typically represented as DAGs, involve significant data exchanges and are 

executed across distributed clusters, optimizing communication and computation remains a key area for 

future exploration. The ECAWS model, tailored for IoT-generated parallel scientific workloads in 

heterogeneous cloud platforms, has demonstrated its effectiveness through the Inspiral workload, 

highlighting its potential for broader applications. 
 
 

REFERENCES 
[1] S. Qin, D. Pi, Z. Shao, Y. Xu and Y. Chen, “Reliability-aware multi-objective memetic algorithm for workload scheduling 

problem in multi-cloud system,” in IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 4, pp. 1343-1361, 2023, 

doi: 10.1109/TPDS.2023.3245089. 

[2] H. Lahza, B. R. Sreenivasa. H. F. M. Lahza, and J. S. Shreyas, “Adaptive multi-objective resource allocation for edge-cloud 
workflow optimization using deep reinforcement learning,” Modelling, vol. 5, pp. 1298-1313, 2024, doi: 

10.3390/modelling5030067. 

[3] M. Menaka and K. Sendhil, “Workload scheduling in cloud environment – challenges, tools, limitations and methodologies: a 
review,” Measurement: Sensors, 24, p. 100436, 2022, doi: 10.1016/j.measen.2022.100436.  

[4] H. Ma, P. Huang, Z. Zhou, X. Zhang, and X. Chen, “GreenEdge: joint green energy scheduling and dynamic task offloading in 

multi-tier edge computing systems,” in IEEE Transactions on Vehicular Technology, vol. 71, no. 4, pp. 4322-4335, 2022, doi: 
10.1109/TVT.2022.3147027. 

[5] J. Perez-Valero, A. Banchs, P. Serrano, J. Ortín, J. Garcia-Reinoso, and X. Costa-Pérez, “Energy-aware adaptive scaling of server 

farms for NFV with reliability requirements,” in IEEE Transactions on Mobile Computing, vol. 1, pp. 1, 2024, doi: 
10.1109/TMC.2023.3288604. 

[6] X. Wang, H. Xing, F. Song, S. Luo, P. Dai, and B. Zhao, “On jointly optimizing partial offloading and SFC mapping: a 

cooperative dual-agent deep reinforcement learning approach,” IEEE Transactions on Parallel and Distributed Systems, vol. 34, 
no. 8, pp. 2479–2497, 2023, doi: 10.1109/tpds.2023.3287633. 

[7] X. Jia, D. Ran, L. Xiao, L. Xuejun, G. John, and Y. Yun, “EdgeWorkload: One click to test and deploy your workload 

applications to the edge,” Journal of Systems and Software, vol. 193, pp. 111456, 2022, doi: 10.1016/j.jss.2022.111456.  
[8] R. Farahani, A. Bentaleb, C. Timmerer, M. Shojafar, R. Prodan, and H. Hellwagner, “SARENA: SFC-enabled architecture for 

adaptive video streaming applications,” ICC 2023 - IEEE International Conference on Communications, Rome, Italy, pp. 864-

870, 2023, doi: 10.1109/ICC45041.2023.10279262. 
[9] S. A. Alsaidy, A. D. Abbood, and M. A. Sahib, “Heuristic initialization of PSO task scheduling algorithm in cloud computing,” Journal of 

King Saud University - Computer and Information Sciences, vol. 34, no. 6, 2370-2382, 2023, doi: 10.1016/j.jksuci.2020.11.002. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Energy and cost-aware workload scheduler for heterogeneous cloud … (Manjunatha Shivanandappa) 

553 

[10] L. Ye, L. Yang, Y. Xia, and X. Zhao, “A cost-driven intelligence scheduling approach for deadline-constrained IoT workload 
applications in cloud computing,” in IEEE Internet of Things Journal, vol. 1, pp. 1, 2024, doi: 10.1109/JIOT.2024.3351630. 

[11] B. Hu, Z. Cao, and M. Zhou, “Energy-minimized scheduling of real-time parallel workloads on heterogeneous distributed 

computing systems,” in IEEE Transactions on Services Computing, vol. 15, no. 5, pp. 2766-2779, 2022, doi: 
10.1109/TSC.2021.3054754. 

[12] P. K. Thiruvasagam, A. Chakraborty, A. Mathew, and C. S. R. Murthy, “Reliable placement of service function chains and virtual 

monitoring functions with minimal cost in softwarized 5G networks,” in IEEE Transactions on Network and Service 
Management, vol. 18, no. 2, pp. 1491-1507, 2021, doi: 10.1109/TNSM.2021.3056917. 

[13] R. Lin, H. Liu, S. Luo, and M. Zukerman, “Energy-aware service function chaining embedding in NFV networks,” IEEE 

Transactions on Services Computing, vol. 16, no. 2, pp. 1158–1171, 2023, doi: 10.1109/tsc.2022.3162328. 
[14] Z. Ahmad, A. Jehangiri, M. Ala'anzy, M. Othman, R. Latip, and A. Umar, “Scientific workflows management and scheduling in 

cloud computing: taxonomy, prospects, and challenges,” IEEE Access, vol. 9, pp. 53491-53508, 2022, 

10.1109/ACCESS.2021.3070785. 
[15] B. Nidhi and S. Ajay, “Effective task scheduling algorithm in cloud computing with quality of service alert bees and grey wolf 

optimization,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 25, pp. 550, 2022, doi: 

10.11591/ijeecs.v25.i1.pp550-560.  
[16] F. Yao, C. Pu, and Z. Zhang, “Task duplication-based scheduling algorithm for budget-constrained workloads in cloud 

computing,” in IEEE Access, vol. 9, pp. 37262-37272, 2021, doi: 10.1109/ACCESS.2021.3063456. 

[17] V. Sindhu, M. Prakash, and P. Mohan, “Energy-efficient task scheduling and resource allocation for improving the performance 
of a cloud–fog environment,” Symmetry, vol. 14, pp. 2340, 2022, doi: 10.3390/sym14112340. 

[18] A. S. Abohamama, A. El-Ghamry, and E. Hamouda, “Real-time task scheduling algorithm for IoT-based applications in the 

cloud–fog environment,” Journal of Network and Systems Management, vol. 30, pp. 54, 2022, doi: 10.1007/s10922-022-09664-6. 
[19] Z. Movahedi, B. Defude, and A. M. Hosseininia, “An efficient population-based multi-objective task scheduling approach in fog 

computing systems,” Journal of Cloud Computing, vol. 10, pp. 53, 2021, doi: 10.1186/s13677-021-00264-4. 

[20] S. Shashank, M. S. Elhadi, and A. Yasar, “Energy efficient task scheduling in fog environment using deep reinforcement learning 
approach,” Procedia Computer Science, vol. 191, pp. 65-75, 2021, doi: 10.1016/j.procs.2021.07.012. 

[21] L. Liu, H. Wang, Y. Liu, and M. Zhang, “Task scheduling model of edge computing for AI flow computing in internet of things,” 

2022 Global Conference on Robotics, Artificial Intelligence and Information Technology (GCRAIT), pp. 256-260, 2022, doi: 
10.1109/GCRAIT55928.2022.00061. 

[22] C. Naveen and D. Annapurna, “Resource provisioning model for executing realistic workload in heterogenous internet of things 

environment,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 32, pp. 318, 2023, doi: 
10.11591/ijeecs.v32.i1.pp318-327. 

[23] J. K. Konjaang and L. Xu, “Multi-objective workload optimization strategy (MOWOS) for cloud computing,” Journal of Cloud 

Computing, vol. 10, pp. 11, 2021, doi: 10.1186/s13677-020-00219-1. 
[24] J. Masoudi, B. Barzegar, and H. Motameni, “Energy-aware virtual machine allocation in DVFS-enabled cloud data centers,” in 

IEEE Access, vol. 10, pp. 3617-3630, 2022, doi: 10.1109/ACCESS.2021.3136827. 

[25] L. Rui, S. Chen, S. Wang, Z. Gao, X. Qiu, W. Li, and S. Guo, “SFC orchestration method for edge cloud and central cloud 
collaboration: QoS and energy consumption joint optimization combined with reputation assessment,” in IEEE Transactions on 

Parallel and Distributed Systems, vol. 34, no. 10, pp. 2735-2748, 2023, doi: 10.1109/TPDS.2023.3301670.  

[26] N. Bacanin, M. Zivkovic, T. Bezdan, K. Venkatachalam, and M. Abouhawwash, “Modified firefly algorithm for workload 
scheduling in cloud-edge environment,” Neural Computing and Applications, vol. 34, no. 11, pp. 9043–9068, 2022, doi: 

10.1007/s00521-022-06925-y. 

[27] S. Mangalampalli, S. S. Hashmi, A. Gupta, G. R. Karri, T. Chakrabarti, P. Chakrabarti, K. V. Rajkumar, and M. Margala, “Multi 
objective prioritized workload scheduling using deep reinforcement based learning in cloud computing,” in IEEE Access, vol. 12, 

pp. 5373-5392, 2024, doi: 10.1109/ACCESS.2024.3350741. 

[28] S. Manjunath, P. Malini, M. D. Swetha, and S. S. P. Vijay, “Tampering detection and segmentation model for multimedia 
forensic,” International Journal of Advanced Computer Science and Applications, vol. 14, pp. 878-887, 2023, doi: 

10.14569/IJACSA.2023.0140992. 
[29] M. D. Swetha and C. R. Aditya, “Noise invariant convolution neural network for segmentation of multiple sclerosis lesions from 

brain magnetic resonance imaging,” International Journal of Online and Biomedical Engineering (iJOE), vol. 18, no. 13, pp. 38–

55, 2022, doi: 10.3991/ijoe.v18i13.34273. 
[30] S. Manjunath and P. Malini, “Efficient resampling features and convolution neural network model for image forgery detection,” 

Indonesian Journal of Electrical Engineering and Computer Science, vol. 25, pp. 183, 2022, doi: 10.11591/ijeecs.v25.i1.pp183-190. 

[31] S. Manjunath and P. Malini, “Extraction of image resampling using correlation aware convolution neural networks for image 

tampering detection,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, pp. 3033, 2022, doi: 

10.11591/ijece.v12i3.pp3033-3043. 
 

 

BIOGRAPHIES OF AUTHORS 
 

 

Dr. Manjunatha Shivanandappa     has 21 years of academic experience. Presently 

he is working as Professor in the Department of Computer Science and Engineering, BNM 

Institute of Technology, Bengaluru, Karnataka, India. He obtained his Ph.D. from VTU, 

Belagavi, Karnataka, India. His research area is Image Processing, Data Analytics. He has 

published more than 15 research articles in reputed international journals and conferences  

in India. He is a member of professional societies. He can be contacted at email: 
manjunaths@bnmit.in, manjunaths.dvg@gmail.com. 

https://orcid.org/0000-0002-0330-5411
https://scholar.google.com/citations?user=PHN6hP8AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57215917212


                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 546-554 

554 

 

Dr. Naveen Kumar Chowdaiah     completed Ph.D. from Visveswaraya 

Technological University (VTU) in the area of Internet of Things in 2023, received his MTech 

degree in 2011 from VTU and currently working as Associate Professor in the Department of 

Computer Science and Engineering at Global Academy of Technology, Bangalore. Scholar has 

published research papers in the areas of IoT. He holds professional body membership from 

ISTE and his research area includes sensor networks, IoT, and cloud computing. He can be 

contacted at email: naveenphd872@gmail.com, naveenkc31@gmail.com.  

  

 

Dr. Swetha Mysore Devaraje Gowda     has 12 years of Academic Experience. 

Awarded Ph.D. in 2023 from VTU, Belagavi, Karnataka. Her research interests in Image 

Processing, Machine Learning. She is working as an Associate Professor in the Department of 

Computer Science and Engineering at BNM Institute of Technology, Bengaluru. She has 

published 10 + research articles in referred journals and also a member of professional society 

(ISTE). She can be contacted at email: swetha.md@bnmit.in. 

  

 

Dr. Rashmi Shivaswamy     is an Incharge Head in Department of Computer 

Science and Engineering (Data Science) at Dayananda Sagar College of Engineering, 

Bengaluru. Her main research interests include Cloud Computing, Blockchain Technology, 

IOT, Machine Learning and Cyber security. She has earned Ph.D. in Computer Science and 

Engineering from VTU, Belgaum for her work in the area of Cloud Computing, in Jan 

2019.She is an IEEE Senior member and has worked as a Managing Committee Member of 

Computer Society of India, Bangalore chapter for the year 2019-2020. She has published 2 

Indian Patents and 20+ referred publications. email: rashmineha.s@gmail.com. 
 

  

 

Dr. Vadivel Ramasamy     is working as an Associate Professor in the Department 

of Artificial Intelligence and Data Science at Nitte Meenakshi Institute of Technology, 

Bangalore, Karnataka, India. He received Bachelor of Engineering Degree in Anna University, 

Chennai, India. He received Master of Engineering Degree in Sathyabama University, 

Chennai, India. He received Ph.D. Degree in Hindustan Institute of Technology  

and Science, Chennai, India. He has published more than 15 publications in the reputed 

Indexed Journals and International Conferences. His research areas are cloud computing, 

networking and advanced computing. He can be contacted at email: vadivel.r@nmit.ac.in, 

vadivelcse@gmail.com. 

  

 

Subramani Suryakumar Prabhu Vijay     is the research analyst and senior 

software developer at navshya technologies. Areas of interest includes wireless sensor 

networks, internet-of-things, cloud computing, network security, wireless communication 

network, image processing, image forensic. He has assisted in technical content writeup  

and software development various academics and industrial projects. Attented as as a  

guest lecturer and trainer in various workshops. He can be contacted at email: 

navshyatechnologies@gmail.com and prabhu.vijay23@gmail.com. 

 

mailto:vadivelcse@gmail.com
mailto:navshyatechnologies@gmail.com
https://orcid.org/0000-0002-4313-7942
https://scholar.google.com.pk/citations?user=5wy4H3wAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57223019472
https://orcid.org/0000-0002-9513-8779
https://scholar.google.com/citations?user=IeZfaooAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57779822800
https://orcid.org/0000-0002-6966-5647
https://scholar.google.com/citations?user=fo0R6-cAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57159929000
https://orcid.org/0000-0001-5351-2518
https://orcid.org/0009-0006-4081-2347
https://www.scopus.com/authid/detail.uri?authorId=57212481206

