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Abstract 
Extensive used traffic simulation systems are helpful in planning and controlling the traffic system. 

In traffic simulation systems, the state of each vehicle is affected by that of nearby vehicles, called 
neighbors. Nearest neighbor (NN) queries, which are multi 1-dimensional and highly concurrent, largely 
determine the performance of traffic simulation systems. Majority of existing traffic simulation systems use 
Linked list based methods to process NN queries. Although simple and effective they are, existing 
methods are neither scalable nor efficient. In this paper, we propose a B+-tree-based method to improve 
the efficiency of NN queries by borrowing ideas from methods used in databases. In particular, we create a 
linked local B+-tree, called LLB+-tree, which is a variation of Original B+-tree, to maintain the index of 
neighbors of each vehicle. We also build a mathematical model to optimize the parameter setting of LLB+-
tree according to multiple parameters for lanes and vehicles. Our theoretical analysis shows that the time 
complexity of the method is O(logN) under the assumption of randomly distribution of vehicles. Our 
simulation results show that LLB+-tree can outperform Linked list and Original B+-tree by 64:2% and 
12:8%, respectively. 
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1. Introduction 

The traffic simulation system is a mathematical modeling of transportation systems 
through the application of computer software, which leads to better understanding, planing, 
designing and optimizing the traffic system. Nearest neighbor (NN) queries play an important 
role in traffic simulation systems, because each vehicle needs to find nearby vehicles, called 
neighbors, and determine its state according to neighbors’ states. 

It is difficult to improve the performance of NN queries because NN queries have the 
following properties: 1) Multi 1-dimensional cases: if we consider a lane as a 1-dimensional 
case, then a road with multiple lanes can be seen as infrequent multi 1-dimensional cases. 2) 
High concurrency: the more vehicles exist in a simulation, the larger number of NN queries 
occur in each cycle. 

Existing traffic simulation systems, Paramics [16], Vissim [17], MITSim [18], SUMO [19] 
etc, adopt Linked list-based methods to process NN queries. Such methods, which are very 
easy to create and maintain, index the sequence of vehicles in each lane. However, those 
methods are not scalable, because they need to traverse the Linked list to find a vehicle. 
Videlicet, the time complexity of such methods is O(N). 

In this paper, we propose a B+-tree-based method, called LLB+-tree (linked local B+-
tree) by borrowing ideas from those methods for 1 or 2-dimensional NN queries in databases. In 
particular, we firstly index all vehicles in each road in a same direction, and implement the 
bidirectional order of leaf nodes of Original B+-tree. We then maintain links of neighbors for 
each vehicle in the same lane. We also build a mathematical model to optimize parameters 
setting for LLB+- tree. Such a model caculates the min value of the expect query length 
according to numbers of lanes and vehicles.  

Our theoretical analysis shows that the time complexity of the LLB+-tree method is 
O(logN). The optimal average query length can further improve the performance of the method. 
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Our simulation results show that LLB+-tree can outperform Linked list and Original B+-tree by 
64.2% and 12.8%, respectively. 

Overall, the main properties of LLB+-tree are listed as follows: 
a) LLB+-tree supports multiple query types, including range query and reverse nearest 

neighbor (RNN) query. 
b) LLB+-tree is efficient in NN queries in traffic simulation systems. The time 

complexity of LLB+-tree based method is O(logN). 
c) The maintenance overhead of LLB+-tree is acceptable, which is similar to that of 

the Original B+-tree. 
The rest of the paper is organized as follows. Section II gives an overview of the related 

work. Section III defines NN queries in traffic simulation systems and introduces the data 
structure of LLB+-tree. Section IV proposes algorithms for managing LLB+-tree. Section V 
analyzes the time complexity of the method and optimizes parameters. Section VI evaluates the 
performance of LLB+-tree through both experiments and statistical analysis. Section VII 
concludes this paper. 
 
 
2. Relative Work 

In this section, we firstly overview methods for NN queries in databases. We then 
describe methods for NN queries in traffic simulation systems. 

 
2.1. NN Queries in Databases 

NN queries, also know as proximity queries, similarity queries or closest point queries, 
can be divided into two categories: the query for static and moving objects. 

NN queries for static objects use index structures, including B-tree, B+-tree, quad-tree 
and R-tree. Roussopoulos et al. [3] propose an influential method for finding the K-nearest 
neighbors (KNN) using R-tree; Haibo Hu et al. devise EXO-tree to speed up NN queries [6]; HV 
Jagadish et al. [7] propose a B+-tree based method, for KNN search in a high-dimensional 
space; GR Hjaltason et al. [2] devise a general framework and algorithms for performing search 
based on distance; a randomized algorithm for computing approximate nearest neighbor is 
proposed by Arya et al. [8]. Ling Hu et al. [9] propose a road network KNN query verification 
technique to prove the integrity of the query result. Seidl et al. [10] improve a KNN multi-step 
algorithm which is guaranteed to produce the minimum number of candidates. 

NN queries for moving objects mainly use similar index structures, including B+-tree 
and TPR-tree. Kollios et al. [1] generalize moving objects in a plane, the movements of which 
are restricted to a number of line segments, as a “1.5-dimensional” case [11]. Jensen et al. [12] 
develops algorithms for NN queries whose performance is better than TPR-tree. Tao et al. [13] 
solve the overhead problems in continuous nearest neighbor (CNN) queries. An algorithm which 
requires only one dataset lookup to deliver a complete predictive result for CNN queries, is 
devised by Lee et al. [14]. Xie et al. [15] provides a solution which supports different shapes of 
commonly-used imprecise regions using u-bisector. Benetis et al. [11] propose algorithms for 
responding RNN and NN queries for moving points in plane. 

 
2.2. NN Queries in Traffic Simulation Systems 

NN queries in traffic simulation systems aim to find at least 2 neighbors. When the 
vehicle has no adjacent lane, it only need to find 2 neighbors in the local lane; When the vehicle 
has one adjacent lane, it needs to find 4 neighbors: 2 in the local lane and 2 in the adjacent 
lane. When the vehicle has both left and right adjacent lanes, it needs to find additional 2 
neighbors in the other adjacent lane. 

Although there has minor difference in the definition of neighbors in different simulation 
systems (e.g., VISSIM [17] do not consider the nearest following vehicle in the local lane as a 
neighbor), existing traffic simulation systems adopt similar linear methods (Linked list-based 
methods) for NN queries. Paramics [16], a famous software which supports a simulation over 1 
million vehicles, store vehicles currently in linear queues, regardless of lane; While in MITSim 
[18], a simulator developed by MIT, vehicles are also stored in Linked list in each lane. SUMO 
[19], an open source, highly portable, microscopic and continuous road traffic simulation 
package, indexes vehicles in each lane in a linear queue.  
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Those Linked list-based methods, very cheap in creating and maintaining, are suitable 
to simulate sparse traffic conditions. However, such methods are not scalable because they 
need to traverse the Linked list to search a vehicle. Videlicet, the more vehicles in a simulation, 
the worse performance of those methods. 
 
 
3. Problem Statement and Data Structures 

In this section, we firstly analyze the applicability of traditional methods for 1 and 2-
dimensional NN queries in traffic simulation systems. We then propose formal descriptions of 
such NN queries. At last, we introduce the data structure of B+-tree, double Linked list, LLB+-
tree and compare the details of them. 

 
3.1. Applicability Analysis 

We use an example to explain why traditional methods for 1 or 2-dimensional NN 
queries are not suitable for traffic simulation systems. 
 
 

 
 

Figure 1. 8 vehicles in a three-lane road segment 
 
 

Figure 1 is a segment of a road. There are 8 vehicles distributed in 3 lanes: vehicles A 
and B in lane 1; vehicles C, D and E in lane 2; vehicles F, G and H in lane 3. When vehicle D 
launchs a NN query, called the initiator, it needs to find 6 neighbors: the nearest leading and 
following vehicles C and E in the local lane (lane 2); A and B in the left adjacent lane (Lane 1); 
G and H in the right adjacent lane (lane 3). 

If we adopt a method for 1-dimensional NN queries, we consider each lane as a linear 
space. In order to find the nearest vehicles in each lane, we create virtual initiators D′ and D′′ 
with the same displacement of D separately in the left and right adjacent lanes. Thus, the 
method find the 2 nearest vehicles of D, D′ and D′′ in the local, left adjacent and right adjacent 
lanes, respectively. However, these vehicles may not be the correct neighbors. The 2 nearest 
vehicles of D′′ in lane 3 are G and F, while the neighbors are G and H. 

If we use a method for 2-dimensional NN queries, we consider a whole road as a plane. 
Such a method can find the 6 nearest vehicles of the initiator D. While these vehicles may not 
be the neighbors either. As shown in Figure 1, the 6 nearest vehicles are A, B, C, F, G and H. 
Vehicle F is more closer to D than vehicle E, but F is not a correct neighbor. 

 
3.2. Problem Statement 

We denote V as the set of all vehicles in a L-lanes road,  is the th vehicle. We can 

further use two properties, the displacement of a vehicle in the road and the lane 
where the vehicle located  to describe each vehicle. That is,  can be described 

in a tuple . To find neighbors of , we divide V into two sets according to the 

displacement . One is the set of leading vehicles: ; The other is 

the set of following vehicles: . The neighbors of vi include the 
nearest leading and following vehicles in the local and two adjacent lanes. 

That is, a NN query contains following 3 steps: 
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1) We find the neighbors of the vehicle in the local lane. The nearest leading vehicle of 
vi in the local lane is the element with the minimize  in the set : the vehicle 

. The nearest following vehicle of vi in the local lane is the element with the 
maximize  of the set : the vehicle . 

2) If there exists a left adjacent lane, we find the neighbors in that lane. The nearest 
leading vehicle of  in the left adjacent lane is the element with the minimize  in the set 

: the vehicle . The nearest following vehicle of vi in the left adjacent 
lane is the element with the maximize  of the set : the vehicle 1). 

3) If there exists a right adjacent lane, we find the neighbors in that lane. The nearest 
leading vehicle of  in the right adjacent lane is the element with the minimize  in the set 

: the vehicle . The nearest following vehicle of vi in the right adjacent 
lane is the element with the maximize  of the set : the vehicle 1). 

 
3.3. Data Structure of LLB+-tree 

The LLB+-tree (Linked local B+-tree), a variation of B+- tree, is a combination of B+-tree 
and Linked list.  

Linked list-based methods index vehicles in each lane, while B+-tree based methods 
index vehicles in each road. Using an example of a road segment shown in Figure 1, we can 
build three Linked lists. As shown in Figure 2, each Linked list stores vehicles orderly in a same 
lane. Figure 3 tells the mapping scheme of LLB+-tree using the same road segment. According 
to the displacement of vehicles in the road, we can map the distribution of the 8 vehicles into a 

1-dimensional queue: . 
 
 

  
 

Figure 2. An example of double Linked list Figure 3. Mapping vehicles into 1-dimensional 
coordinate 

 
 

LLB+-tree mainly modifies the structures of internal nodes and leaf nodes. In internal 
nodes, we implement the bidirectional order of each node to facilitate multi query types. In 
particular, we create 2 pointers to link the previous and next internal nodes, denote as  
and , respectively. Each internal node has  key values and  + 1 children. The 

structure of each internal node is printed below, where  denotes the ith key value, Pi points 
the ith child: 

 

 
 
In leaf nodes, we maintain the thread of the neighbors of each entity (vehicle). In 

particular, we create 2 pointers in each entity to link the vehicle’s neighbors in the local lane, 

denote as  and . Thus, each entity has 4 domains: the ith key value , the 

vehicle data , neighbors  and . Each leaf node is formed by entities and 
two pointers:  and  , which point to the previous and next leaf nodes. The structure 
of each leaf node is of the form: 
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Using the sample of the distribution of 8 vehicles, the 1-dimensional queue 

, we build a LLB+-tree, shown in Figure 4. 
 
 

 
Figure 4. An example of a LLB+-tree 

 
 

As a combination of B+-tree and Linked list, LLB+-tree inherits a lot of advantages: data 
points are stored only at the leaf nodes. These leaf nodes are similar to the first (base) level of 
an index. Internal nodes of B+-tree correspond to the other levels of a multilevel index [20]. B+-
tree implementation retains the logarithmic cost properties for operations by key, but gains the 
advantage of requiring at most 1 access to satisfy a next operation [21]. Just like Linked list, 
LLB+-tree also maintains the threads of the nearest leading and nearest following neighbors of 
each vehicle in the local lane, which facilitate NN queries in that lane. 

 
 

4. Algorithms Optimization 
In this section, we adopt the replacement of a vehicle in the road as its search key value 

in a LLB+-tree. we propose three sub-algorithms for the management of the LLB+-tree, 
including searching, inserting and deleting. 

 
4.1. Searching 

This sub-algorithm searches neighbors of a vehicle in the local lane and adjacent lanes. 

The search key value of vehicle i is , the lane of vehicle i is . In LLB+-tree, data points are 

stored only at leaf nodes. Thus, we use a function  to implement the searching 
process from root node to the objective leaf node. The sub-algorithm includes two NN queries: 

the NN queries in the adjacent lane  and in the local lane . Neighbors in 

the local lanes indicate the nearest leading vehicle  and the following vehicle . 

 and  are respectively the nearest leading and following vehicles in the adjacent 
lane. 

The sub-algorithm mainly contains following two steps: 1) It searches the leaf node and 
find the neighbors of a vehicle in the local lanes; 2) It searches related leaf nodes and find the 
neighbors of a vehicle in the adjacent lane if needed. The pseudo-code of the algorithm is 
shown in Algorithm 1. 
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4.2. Inserting 
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This sub-algorithm illustrates the procedure for inserting a record (vehicle) with a search 

field value  in LLB+-tree. Algorithm 2 gives a detailed pseudo-code of the subalgorithm. We 

denote  and  as the pointers  and  of the nearest 
following and leading vehicles of i, respectively. 
We can further divide this sub-algorithm into two parts: 1) It create entry of vehicle i in correct 
leaf node and updates relative pointers; 2) It updates internal nodes to maintain the right 
structure of LLB+-tree. When a node is full it will split and when the parent node also be full, the 
splitting can propagate all way up to create a new level for LLB+-tree. 
 
4.3. Deleting 

This algorithm illustrates deleting a record with a search field value  from a LLB+-
tree. When deleting an entry, we should always remove it from the leaf level. If the entry is in an 
internal node, we must also remove it from there. 

The algorithm contains three parts: 1) It searches internal nodes recursively to find the 
path according to the search field value Ki. When the search field value occur in an internal 
node, we use a left (or right) entry to replace it; 2) It deletes the entry of the vehicle in correct 
leaf node and updates relative pointers; 3) It updates the leaf node by merging and 
redistributing sibling nodes when there exists node underflow; 4) When the merge and 
redistribute in leaf nodes leads to an underflow of a internal node, the internal node will also 
merge and redistribute to maintain the structure of the LLB+-tree. We give the pseudo-code of 
the algorithm in Algorithm 3.  

 
 

 
 
 

5. Parameters Optimization 
In this section, we firstly analyze those parameters that effect on the hit rate of NN 

queries. We then analyze the time cost of LLB+-tree based method and build a mathematical 
model to optimize the node size of the LLB+-tree. 

 
5.1. Hit Rate Analysis 

In a LLB+-tree, data pointers are stored in leaf nodes. For better understanding, we call 
vehicles in a leaf node as a “platoon”. Under the assumption of randomly distribution of vehicles, 
the performance, the expect query length ϵ of a NN query is determined by the hit rate of a 
query P in a platoon. Further, the hit rate P is influenced by the average amount of vehicles in a 
platoon q. Thus, we compute the optimized value of q to minimize the expect query length ϵ of a 
NN query. 

To calculate P, we assume that there are N vehicles randomly distributed in L lanes. 
We can use a q×L matrix A to describe possible distributions of q vehicles. Each element in the 
matrix is a possible position for a vehicle. In example, aij is the ith position in the jth lane. 
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When we query neighbors of vehicle aij in adjacent lanes, there exist two different 

situations while the road has at least 3 lanes. 

The first situation is, vehicle aij is in an edge lane of a road (the  or  
when ). It needs to query neighbors in the only adjacent lane, that are vehicles in 

. 
In this case, we calculate PA, the possibility of finding a neighbor in the adjacent lane of 

vehicle aij in the platoon. We can compute the possible distributions of all other q − 1 vehicles 

(except vehicle aij in the edge lane) that are not distributed in the adjacent lane: . 

The total possible distributions of q−1 vehicles is . Thus, we can calculate PA using the 
following formula: 

 

 
 
The second situation is, vehicle aij is in a mid lane (the lane 1 < j < L when L > 2). In 

this case, vehicle aij has both left and right adjacent lanes. Therefore, we need to query 

neighbors in two adjacent lanes, that are vehicles in  and 

. 
We denote PB as the probability of finding neighbors of vehicle aij in both adjacent 

lanes. To calculate PB, we also define P′B, the probability of all other q − 1 vehicles that are not 
distributed in those adjacent lanes. When we do not consider distributions of vehicles in one 

adjacent lane, The distributions of vehicles exist in another adjacent lane is: . 
According to principle of inclusion-exclusion, the general form of which is shown as follow: 

 

 
 

P′B can be given by excluding the overlap distributions : 
 

 
 
Thus, we can compute PB as follow: 
 

 
 
In general, we can conclude the hit rate P of a NN query in adjacent lanes in 3 cases: 1) 

When the road has only 1 lane, vehicles don’t have to query neighbors in adjacent lanes. 2) 
When the road has 2 lanes, vehicles only have to query neighbors in one adjacent lane. 3) 
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When the road has more than 2 lanes, we need to consider two situations: vehicles in edge 
lanes and in mid lanes. We list the formula of P as follow: 
 

 
 

We also summarise the relationship among the hit rate P, average number of vehicles 
in a platoon q and number of lanes L, which is shown in Figure 5. The observation shows that in 
common roads conditions, a road with L lanes 1 < L ≤ 10, The rate of convergence of P is 
diminishing with the increasing of L. 
 

 
Figure 5. The relationship among L, q and P 

 
 
5.2. Time Cost Analysis 

Being a variation of B+-tree, we can find vehicle i in LLB+-tree spending O(logz N) time, 
where N is the number of vehicles in the road; z is the minimize number of children in each 
internal node.  

When querying neighbors of vehicles i in the local lane, we can directly obtain them by 

pointers  and . That is, we can find neighbors of vehicle i in the local lane 
also in O(logz N) time. 

When querying neighbors of vehicle i in the adjacent lanes, we use the expect query 
length ϵ to measure the efficiency of the query. Such a query search neighbors by traversing all 
vehicles in each platoon. The expect query length of finding a vehicle in a platoon by traversing 

is  . The expect query length of finding the object neighbor in the local platoon is:  and in 

the next platoon is:  . We can summarize the expect query length ϵ of finding 
the object vehicle in the kth platoon is: 
 

 
 

The number of leaf nodes (platoons) in a LLB+-tree can be express by . We can 
describe the expect query length ϵ of finding neighbors in all platoon as follow: 
 

 
 
We can simplify the formula using following methods: 
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By using geometric series, we can find: 

 

 
 

Thus, the expect query length ϵ can be simplified as follow: 
 

 
 
For a certain road, L is a constant, and P is rapid convergence to 1 with the increasing  

of the number of vehicles in the platoon q. For a certain L, we can get an acceptable P with 
limited q. Therefore, q is also considered as a constant in this case. Thus, the limitation 

, and we can also calculate the limitation of ϵ: 
 

 
 

As a result, we can also find the neighbor of vehicle i in the adjacent lane in logz N time, 
under the assumption of randomly distribution of vehicles. The relationship among the number 
of lanes L, expect (average) number of vehicles in one platoon q and the expect query length of 
finding neighbors in the adjacent lanes ϵ with an enough large N (we adapt N = 1000 in this 
case) is shown in Figure 6. The curve called skyline is a line connecting every points, the 
minimum value of ϵ of all curves, shows the optimal choice and the variation trend of q with the 
increasing number of lanes L. 
 

 
Figure 6. The relationship among L, q and ϵ 

 
 

We also analyze the impact of the number of vehicles N, our research shows that there 
exists threshold values of N for a certain pair of amount of lanes L and average amount of 
vehicles in a platoon q. When N is larger than the threshold value, the expect query length ϵ for 
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NN queries in the adjacent lanes are converging to fixed values. Otherwise, the query length is 
decreasing with the lower amount of N. That is, the threshold line divide N into two intervals. 
The upper interval indicates that the query can be responded in constant time no matter how 
large the N is. While the lower interval shows that the query can be responded much quicker 
when N is smaller than the threshold value. The relationship among N, L and ϵ with the 
corresponding optimal q is shown in Figure 7. The value of thresholds of N and the skyline of q 
for each L is shown in Table 1. Note that the expect query length ϵ in Table 1 do not contain the 
query length from the root node to the leaf node. 
 

 
Figure 7. The relationship among L, N and ϵ 

 
 

Table 1. The Threshold Of N And Skyline Of Q For Minimum ϵ 

 
 
 
5.3. Node Size Optimization 

In order to reduce the frequency of the spliting/merging process and maintain the time 
complexity of the LLB+-tree method, we need to optimize another important parameter of LLB+-
tree: the minimize number of children (subtrees) in internal nodes z. It is important because z 
determines the value range of q. In particular, the value of q must larger than the lower bound of 
the leaf node’s size z − 1 and lower than the upper bound 2z − 1 according to the rule of B+-tree 
based method. 

For each optimized q, we need to calculate the optimal value of the corresponding z. 
We can find that for each q, there exist multi possible values of z. Thus, we need to calculate 
the optimal value of the corresponding z for each optimized q. Here we compare the expect 
query length ϵ for each possible z using following method: 

For a certain q, we can find the value range of the corresponding 

; For each zi, we can find the value range 

of the possible  . Thus, we can calculate the 
expect query length of qij , denoted as ϵ(qij). By comparing ϵi, the average value of the sum of 
ϵ(qij) for each zi, we can compute out the optimized zi, whose ϵi has the minimized value. The 
formula is shown as follow: 
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The optimal z with minimum ϵ when N = 250 and N = 1000 is shown in Table 2. We can 

see that the the optimal value of z is only a little influenced by N, and the expect query length ϵ 
as a minor increasing with the increasing of N, which shows the strong scalability of LLB+-tree. 
We also find that the lower the number of L, the more obvious the impact of N. Nevertheless, 
there exist load limitations of each road, which is not mentioned in our study. That is, the 
extreme case that a astronomical number of vehicles congest in a limit L road will never 
happen. 

 
 

Table 2. The Optimal Z with Minimum ϵ when N = 250 and N = 1000 

 
 
 

6. Performance Experiments 
In this section, we process simulation experiments to evaluate the performance of 

Original B+-tree, Linked list and LLB+-tree. 
 

6.1. Experiments Setting 
Our experiment is based on a simulation using the backbone network of a section of 

Chengdu city with 22 roads, the network of which is shown in Figure 8. To facilitate 
experiments, the simulation network is set to be closed, which means the amount of vehicles is 
fixed. In our simulation, vehicles have only 4 operations in a simulation cycle: 1) The NN query 
in the local lane. 2) The NN query in the objective adjacent lane. 3) The operation of leaving a 
lane. 4) The operation of joining in a lane (the leave and join operations are used both in 
lanechanging and road-switching process). 

 

 
(a) Objective section 

 
(b) Simulation network 

 
Figure 8. The objective section and corresponding simulation network 
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There exist three uncorrelated variable parameters in our experiments: the number of 
vehicles in each road N; the number of lanes L and the lane-changing rate Pc. Note that Pc does 
not refers to the rate of successful lane-changes or lane-changing processes, Pc means the 
average possibility of a vehicle query neighbors in the objective adjacent lane in one simulation 
cycle. In this paper, we consider the average time cost (response time) of the simulation of each 
vehicle in one cycle (Tresponse) as an indicator to evaluate the performance of different methods. 
Ti denotes the simulation time cost of each vehicle i, and Tresponse is the time cost in average. 
Thus, the formula of Tresponse is described as follow: 
 

 
 
To reduce the error of the simulation, we adopt the average Tresponse  from 100 

simulation results. The time cost Tresponse is affected by N, L and Pc, thus we can describe it in 
this form: Tresponse = f(Pc,N,L). Due to the difficulty of analyzing the variation of Tresponse 
through three variable parameters simultaneously, we adopt two sets of empirical values (a 
lower and an upper set of values according to common traffic conditions) for these three 
parameters: the lane-changing rate Pc ∈ {30%, 60%}; the number of lanes L ∈ {3, 6}, the 
number of vehicles in each road N ∈ {250, 1000} (both larger than corresponding threshold 
values). To facilitate experiments, we assume that the number of vehicles in each road are all 
N. 

In our experiments, the simulation platform is a self developed microscopic simulation 
system called DMTSS. The car-following model we adapted is Pipes model and the platform is 
running on a Acer Veriton D430 computer with i3 CPU 3.40GHZ and 4GB DDR3 SDRAM. 
 
6.2. Contrast Experiments 

In this part, we plan three sets of experiments using relative empirical high and low 
parameters to evaluate the performance of three methods. 1) Linked list: a typical linear index 
structure widely adopted in simulation systems. 2) Original B+-tree: B+-tree with bidirectional 
sorting in leaf nodes. 3) LLB+-tree: a variation of B+-tree proposed in this paper for multi 1-
dimensional cases with optimal parameters. 

1) The impact of lane change rate: The lane-changing rate Pc, the possibility of a 
vehicle querying neighbors in adjacent lanes in one simulation cycle, is an important parameter 
in traffic simulation systems. This set of experiments is to show the performance of three 
methods with the increasing of Pc using different combinations of empirical high and low 
parameters N ∈ {250, 1000} and L ∈ {3, 6}. The contrast experiments of the impact of Pc are 
shown in Figure 9, 10, 11 and 12.  
 
 

 
 

 

Figure 9. Tresponse with N = 250, L = 3 and 
variable Pc 

Figure 10. Tresponse with N = 250, L = 6 and 
variable Pc 
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Figure 11. Tresponse with N = 1000, L = 3 and 
variable Pc 

Figure 12. Tresponse with N = 1000, L = 6 and 
variable Pc 

 
 

Figure 9 shows the response time Tresponse with low N and low L. In this condition, 
Linked list has a well performance when the lane-changing rate Pc ≤ 30%. When Pc reaches to 
50%, the performance of Linked list is getting worse compared with other methods. The 
performance of LLB+-tree is better than that of Original B+-tree when Pc ≤ 80%, after that the 
Tresponse of Original B+-tree is better. Figure 10 shows Tresponse with the low N and high L. In 
this condition, the advantage of Linked list is more distinctly: the lower Pc, the better 
performance of Linked list. Besides, the performance of Original B+-tree and that of LLB+-tree 
are less effected by the increasing Pc, and the performance of LLB+-tree is better than that of 
Original B+-tree when Pc ≤ 70%. Figure 11 shows the Tresponse with the high N and low L. 
Compared with Figure 9, we can see that with the same L, the increasing Pc leads to the worse 
performance of Linked list compared with that of other two methods. Figure 12 shows Tresponse 
with the high N and high L. With the same N in Figure 11, Linked list is getting better in high L, 
because vehicles in each lane are stored in one list, the higher L, the less number of vehicles in 
one list. 

The result of this set of experiments shows that in most conditions of Pc, the 
performance of LLB+-tree is better than that of Original B+-tree. Only in some very high Pc 
cases, Original B+-tree is better. Besides, the efficiency of Linked list in some low Pc cases is 
unsurpassable. 

2) The impact of the number of vehicles: We evaluate the performance of three 
methods with the variation of the number of vehicles N. In a simulation, the number of vehicles 
N is limited by the length and the number of lanes L of the road. We use similar method to 
analyze the impact of the number of vehicles N using the combination of the high and low 
parameters Pc and L. The contrast experiments of the impact of N are shown in Figure 13, 14, 
15, and 16. 
 

Figure 13. Tresponse with Pc = 30, L = 3 and 
variable N 

Figure 14. Tresponse with Pc = 60, L = 3 and 
variable N 
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Figure 15. Tresponse with Pc = 30, L = 6 and 
variable N 

Figure 16. Tresponse with Pc = 60, L = 6 and 
variable N 

 
 

Figure 13 shows the Tresponse with the low Pc and low L. We can see that the 
performance of LLB+-tree is completely better than that of Original B+-tree in this condition. 
Besides, for majority values of N, LLB+-tree is the most efficient method. Figure 14 shows the 
Tresponse with the high Pc and low L. Linked list in this case has no superiority compared with 
other methods, while LLB+-tree is the best method with these parameters. Figure 15 shows the 
Tresponse with the low Pc and high L. When N ≥ 400, LLB+-tree is better than Linked list, while 
Original B+-tree is only better than Linked list when N ≥ 800. Figure 16 shows the Tresponse with 
the high Pc and high L. Linked list also depicts the defect of scalability with the increasing N. 

The result of experiments on the impact of N shows that the Tresponse of Linked list is a 
linear growth with the increasing N, while other two methods shows better scalability. With these 
parameters, LLB+-tree is completely better than Original B+-tree and it is also better than 
Linked list in most cases. 

3) The impact of the number of lanes: In this set of experiments, we try to evaluate the 
impact of the number of lanes L to Tresponse with the high and low parameters Pc and N. The 
results are shown in Figure 17, 18, 19 and 20. 
 
 

 
 

 

Figure 17. Tresponse with Pc = 30, N = 250 and 
variable L 

Figure 18. Tresponse with Pc = 60, N = 250 and 
variable L 
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Figure 19. Tresponse with Pc = 30, N = 1000 and 
variable L 

Figure 20. dTresponse with Pc = 60, N = 1000 
and variable L 

 
 

Figure 17 depict the Tresponse with the low Pc and low N. With these parameters, Linked 
list is no doubt the best method. Meanwhile, the performance of LLB+-tree is better than that of 
Original B+-tree. Figure 18 depict the Tresponse with the high Pc and low N. With the increasing 
of L, LLB+-tree and Original B+-tree are gradually approaching to each other, the performance 
of which are better than that of Linked list when L ≤ 8. Figure 19 shows the Tresponse with the low 
Pc and high N. In this case, LLB+-tree has better performance than all other methods. Figure 20 
shows the Tresponse with the high Pc and high N. The performance of LLB+-tree and Original B+-
tree are gradually approaching to each other with the increasing of L just like that in Figure 18. 
We conclude the impact of L as follow: there exist cases (low Pc and low N) that fit Linked list 
most; LLB+-tree generally “controls” Original B+-tree. While in high Pc cases the performance of 
LLB+-tree is approaching to that of Original B+-tree with the increase of L. 

4) Evaluations: Although the contrast experiments of three methods show that LLB+-
tree is efficient in most traffic conditions, we evaluate their performance using statistical analysis 
of simulation data. Such simulation data contain three sets of parameters separately describe 
congested, normal and sparse traffic conditions, the parameters setting of which are shown in 
Table 3. For each combination of parameters in a same traffic condition, we take 100 results 
into account. The basic statistical information of totally 24,300 samples from congested, normal 
and sparse simulation data are shown in Table 4. 

 
 

Table 3. Parameters Setting for Common Traffic Conditions 

 
 
 

Table 4. The Basic Statistical Information of Simulation Data 

  
 
 
The average Tresponse, the main indicator to evaluate the performance of different 

methods, shows that LLB+-tree outperforms Original B+-tree by 12.8%, and the performance of 
LLB+-tree is increased by 64.2% compared with that of Linked list. The variances indicate that 
Original B+-tree is more stable than LLB+-tree while the difference is not that obviously. The 
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result shows that LLB+-tree is better than Original B+-tree when there has not demand strict the 
range of Tresponse. 

For better understanding the performance of these methods, we analyze the total 
possible frequency distributions of Tresponse of different methods from simulation data with all 
possible combination of parameters: N ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}, 
Pc ∈ {0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%} and L ∈ {2, 3, 4, 5, 6, 7, 8, 
9, 10}. The distribution of Linked list is shown in Figure 21 with Original B+-tree shown in Figure 
22 and LLB+-tree shown in Figure 23. Note that in this case we haven’t consider the weight 
(possibility) of each combination of parameters that would occur in real cases. The figure is only 
to display the range of possible Tresponse for different methods (e.g., a condition with N = 100, L = 
10 and Pc = 100% is extremely infrequent in real cases). 
 

 
 

 

Figure 21. Range of Tresponse with Linked list Figure 22. Range of Tresponse with Original B+-
tree 

 
 

 
Figure 23. Range of Tresponse with LLB+-tree 

 
 

We can see that the distribution of Tresponse with Linked list is scattered from 1ms to 
3643ms, while Original B+-tree scattered from 71ms to 521ms, LLB+-tree scattered from 33ms 
to 597ms. 

In collusion, although Linked list-based methods are suitable in some cases (e.g., in 
some sparse traffic conditions), the distribution of Tresponse prove that they are not suitable for 
large-scale simulations. According to simulation experiments and statistical analysis, the result 
shows that LLB+-tree is more suitable in most traffic conditions. 
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6. Conclusion 
In this paper, we design and implement the LLB+-tree for NN queries in traffic 

simulation systems. Such a LLB+-tree is suitable to multi 1-dimensional and highly concurrent 
NN queries. We then propose three sub-algorithms to manage a LLB+-tree and build 
mathematical models to optimize parameters settings. We also propose a theoretical analysis to 
estimate the time complexity of the method. The result of simulation experiments and statistical 
analysis show that LLB+-tree is efficient for NN queries in traffic simulation systems. In 
particular, LLB+-tree can save 64.2% and 12.8% response time respectively compared with 
Linked list and Original B+-tree. 
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