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 Transmit antenna selection (TAS) plays a crucial role in improving the 

performance and spectral efficiency of 5G/6G systems. This study proposes 

to use the GridSearchCV method for hyperparameter optimization in two 
supervised learning models, support vector machine (SVM) and K-nearest 

neighbors (KNN), to optimally select antenna peers based on channel gain. 

These models were applied to Alamouti’s space-time block coding to 

improve performance, resulting in increased signal-to-noise ratio (SNR) and 
reduced bit error rate (BER). The results show that optimizing the 

hyperparameters led to a significant improvement in the performance of the 

SVM and KNN models. The SVM and KNN models were evaluated using a 

variety of metrics, with the SVM demonstrating superior predictive 
performance in terms of accuracy, average macro recall, average macro 

precision, average macro F1 score, and cross-validation score. Even before 

optimization, the SVM outperforms the KNN in terms of performance 

metrics. After optimization, this gap widens further, demonstrating the 

robustness of SVM for classification tasks. Although KNN is faster to train. 
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1. INTRODUCTION 

Multipath propagation is an inherent feature of the wireless channel, leading to signal fading. One 

way of improving the capacity of wireless channels is to use multiple antennas at the transmitter and receiver 

[1]-[13]. However, in many real-world systems, the receiver must be small by design (cell phones, PDAs, 

and smartphones). in such physically small receivers, it’s not practical to have several antennas. It is therfore 

impractical to deploy multiple antennas at the receiver. In contrast, the base station can easily accommodate 

multiple antennas, making it possible to use multiple transmit antennas. In such systems, transmit antenna 

selection (TAS) algorithms can help reduce the number of active transmit antenna, which can lead to 

impoved bit error rate (BER) performance and reduced hardware complexity [3]-[16]. For multi-antenna 

systems, TAS plays an important role in the trade-off between transmission rate and power cosumption, as a 

greater number of active antenna results in higher channel gain, but also increases circuit power [15]. 

The antenna selection approch (TAS) can also be combined with other techniques, such as 

orthogonal space-time block coding (OSTBC), to further improve system performance [17]. Li et al. [18], the 

authors discussed strategies for improving the performance of multiple-antenna communication systems in 

the context of low-rate channel -state feedback. More specifically, it focuses on the different transmitter 

strategies, such as TAS, Alamouti space-time coding and adaptive power allocation in multiple-input single-

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 2, February 2025: 819-828 

820 

output (MISO) communication systems. This approach to antenna selection in MISO systems involves an 

exhaustive search for all possible combinations of available antennas. This can become complex due to the large 

number of calculations involved. Fast antenna selection algoritms are therefore essential to reduce this 

complexity. Therefore, it is crucial to develop efficient algorithms for antennas selection in MIMO systems in 

order to reduce the complexity associated with exhaustive searches for all possible combinations among the 

available antennas and optimize real-time performance. 

There are optimization approaches, such as a greedy step-wise optimization approach, which can 

provide near-optimal solution [2]-[13]. So, antenna selection in wireless communications is an optimization-

based decision, where selection is based on predefined criteria or algorithms. However, Machine-Learning 

techniques offer a data-driven approach to antenna selection, where selection is based on learning from 

available data and making predictions. Joung [19] compared machine learning-based antenna selection whith 

conventional optimization-based methods in terms of performances, complexity and feedback, where he 

applies multi-class classification, which is a main task in machine learning, in a multiple-input multiple- 

output (MIMO) system with TAS. Yang et al. [14], the authors propose a new approach called pattern 

recognition aided transmission antenna selection MIMO (PR-TAS), which uses pattern recognition 

algorithms such as K-nearest neighbors (KNN) and support vector machine (SVM), to select antennas in a 

vertical bell laboratories layered space time (V-BLAST) system, which divides serial data into several sub-

streams and transmits them via different transmission antennas respectively, the authors have optimized the 

features extraction of the TAS algorithm based on the pattern recognition demonstrated in reference [19], to 

run the antenna selection algorithm and effectivelly reduce redundant calculations in the antenna set search 

process. In paper [20], the authors proposed a learning-based antenna selection and power allocation (L-

ASPA) algorithm that overcomes the high computational complexity of the joint antenna selection and power 

allocation (JASPA) algorithm. In the study presented in article [21], the authors proposed a machine learning 

-based approach, in particular the K-NN algorithm, for transmitter antenna selection to improve system 

performance in real-time environments. Machine Learning-based antenna selection and power allocation 

designs were investigated in paper [22], to fully exploit spatial diversity while minimizing the power 

consumption of avtive radio frequency (RF) modules. The authors propose an assisted antenna selection 

scheme (multi-label convolutional neural network) MLCNN for MIMO Internet of things communication 

systems, which shows promising results in improving prediction accuracy. The conclusion of the study in 

article [23], is that the proposed Machine Learning-Enabled Joint Antenna Selection and Precoding Designs 

algorithm (L-ASPD) significantly outperforms baseline schemes, achieves better effictive sum rate compared 

to traditional methods like joint antenna selection and precoding design (JASPD) under limited processing 

time, and reduces computation complexity by 95% while retaining over 95% of optimal performance. This 

indicates that using machine learning for antenna selection and precoding design can lead to improved 

system efficiency in wireless communication systems. 

Despite the large amount of work on this topic, no previous study has investigated in depth how to 

find optimal values for the hyperparameters of a machine learning model. In almost all machine learning 

projects, different models are used and the one with the best performance on the dataset is selected. However, 

there is room for improvement because we cannot be sure that this particular model is the best one to solve 

the broblem in question [14], [19], [24]. 

This study investigated the effects of hyperparameter optimization on machine learning models for 

TAS in 5G/6G systems. While earlier studies have explored the impact of machine learning techniques on 

antenna selection and system performance, they have not explicitly addressed its influence on finding optimal 

hyperparameter values to maximize model performance and efficiency, particularly using systematic 

approaches like GridSearchCV. 

As mentionede earlier, the performance of a model depends on the values for the hyperparameters. 

It’s worth noting that there is no way to know the best values for the hyperparameters in advance, so ideally, 

we need to try all possible values to find the optimal ones. Doing this manually could take a lot of time and 

resources, so we use GridSearchCV to automate the tuning of the hyperparameters. 

 

 

2. DATA-DRIVEN PREDICTION METHOD IN TRANSMIT ANTENNA SELECTION 

Data-driven prediction (DDP) method in TAS involves using machine learning algorithms to predict 

the best transmit antennas based on the channe conditions [25]. This approach can be used in mutiple-input 

mutiple-output (MIMO) systems to improve the system capacity and reiability. The DDP method can be used 

in combination with other antenna selection methods, such as the (KNN) algorithm or the (SVM) algorithm 

[14], [19], [21]. These methods aim to reduce the computational compexity associated with traditional TAS 

algorithms by avoiding exhaustive searches of all possible antenna subsets. Data driven prediction (DDP) 

methods in TAS can achieve lower complexity and higher efficiency, making them suitable for real-time 
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applications. In our work, we applied multi-class classification and defined two classifiers, KNN and SVM, 

performing nested cross-validation using GridSearchCV to find the best hyperparameters for each classifier. 

 

2.1.  K-nearest neighbor (KNN) 

KNN is a simple instance-based learning agorithm that classifies a data point according to the 

majority class among its K nearest neighbors in feature space [26]-[29]. KNN can be used to map the CSI to 

the optimal antenna subset by considering the most similar past instances [14], [19], [21]. This method is 

particularly useful in dynamic envirenments where wireless channe conditions change freqquently. 

 

2.2.  Support vector machine (SVM) 

SVM is a supervised learning model that can be used for classification and regression tasks. It works 

by finding the hyperplane that best separates the data into different classes [26], [28], [30]-[33]. It is possible 

to train an SVM to classify the optimal set of antennas based on channel state information (CSI) [14], [19]. 

This classification helps to select antennas that maximize system performance metrics such as signal-to-

noise-ratio (SNR) BER. 

 

2.3.  GridSearchCV method 

GridSearchCV is a technique for systematically searching for the hyperparameters of a machine 

learning model by trying all possible combinations of specific values for those hyperparameters. It uses 

cross-validation to evaluate the performance of each combination. GridSearchCV is used to optimize the 

hyperparameters of a model to find the best possible configuration that maximizes model performance on a 

given dataset. It is implemented in the scikit-learn library in Python. After testing all combinations, 

GridSearchCV selects the model with the best hyperparameters and retrains it on the dataset. 

 

 

3. PROPOSED METHOD 

This section presents the proposed methodology for predicting the best antenna pairs for data 

transmission using the Alamouti code in the MISO 2X1 system. A full description of the methodology is 

provided in this section. 

 

3.1.  Data generation and preprocessing 

We have generated a synthetic data set representing the channel coefficient of a MISO system with 

eight transmit antennas and ten thousand samples. The channel coefficients are generated using the Rayleigh 

fading model. The channel gain is then calculated by squaring the channel coefficients. We then generate 

labels for the antenna pairs, create all possible combinations of antenna pairs, and check which pair has the 

highest channel gain for each sample. These Boolean labels are then converted to class labels. Using the 

channel gain as input to the machine learning model, the antenna pairs are used as aabels. The data is diveded 

into training and test sets: 80% of the data is used for training and 20% for testing. The features are then 

normalized. The goal off this operation is to give the same scale to all input data. 

 

3.2.  Machine learning models 

We used two established machine learning models to predict the best antenna pairs for the Alamouti 

spâce-time block code system. These models are KNN and SVM. We chose these two models because of 

their different approaches and different prediction track records. 

 

3.3.  Tuning hyperparameters 

For each classifier, nested cross-validation is performed to find the best hyperpârameters. The 

GridSearchCV scikit-learn is used for this purpos. The different hyperparameters for the two models used are 

shown in Table 1. 

 

 

Table 1. Hyperparameters for both models 
KNN SVM 

Parameter Values/Options Parameter Values/Options 

n-neighbors [3, 5, 7, 9, 11] C [0.1, 1, 10, 100] 

Weights [‘uniform’, ‘distance’] Gamma [0.001, 0.01, 0.1, 1] 

Metric [‘euclidean’, ‘manhattan’, ‘minkowski’] Kernel [‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’] 
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3.3.1. Parameters grid for KNN 
a) n_neighbors: values [3, 5, 7, 9, 11] are chosen to test different numbers of neighbors. The number of 

neighbors (n_neighbors) is a crucial parameter for the KNN model, as it determines how many 

neighbors are taken into account when making a prediction. Too small a number risks making the model 

sensitive to noise, while too large a number can dilute the influence of close neighbors. By testing 

several odd values, we avoid ties in the majority vote, which is particularly useful for classification 

problems. 

b) Weights: the [‘uniform’, ‘distance’] options can be used to test two different approaches for weighting 

neighbors. 

 Uniform: all neighbors have the same weight. 

 Distance: closer neighbors are given a higher weight, which can improve accuracy by giving more 

weight to the most relevant neighbors. 

Test these two options shows whether distance weighting improves model performance compared with 

uniform weighting. 

c) Metric: metrics [‘euclidean’, ‘manhattan’, ‘minkowski’] are distances commonly used to measure 

similarity between points. 

 Euclidean: Euclidean distance, the distance “as the crow flies”. 

 Manhattan: Manhattan distance, the sum of absolute distances along the axes. 

 Minkowski: A generalization of the previous two, with the parameter p=3. 

Testing different metrics helps to determine which is most appropriate for the specific data, as KNN 

performance can vary depending on the metric used.   

 

3.3.2. Parameters grid for SVM 
a) C: values [0.1, 1, 10, 100] are chosen to test different levels of regularization. 

 C low (0.1): high regularization, which may avoid overlearning, but may lead to underlearning. 

 C high (100): low regularization, which may allow a better fit to the training data, but risks 

overlearning. 

Testing a range of values helps to find the right balance between bias and variance. 

b) Gamma: values [0.001, 0.01, 0.1, 1] are chosen to test the influence of the decision function. 

 High gamma (1): each data point has a greater influence, which can lead to overlearning. 

 Low Gamma (0.001): each data point has less influence, which can lead to underlearning. 

Testing different gamma values helps to find the right level of model complexity. 

c) Kernel: kernel types [‘linear’, ‘rbf’, ‘poly’, sigmoid’] allow different data transformations. 

 Linear: linear kernel, useful for linearly separable data. 

 rbf: gaussian kernel (Radial Basic Function), useful for non-linearly separable data. 

 Poly: polynomial kernel, useful for capturing more complex relationships. 

 Sigmoid: sigmoid kernel, less commonly used but can be useful in certain cases. 

Testing different kernels allows you to see which one best captures the relationships in the data. 

 
3.3.3. Cross validation 

We use cross-validation to evaluate the performance of each hyperparameter combination. We use 

5-fold cross-validation to divide the data into five subsets and evaluate the generalizability of the results of a 

statistical analysis to an independent data set. This allows us to avoid overlearning and provide a more 

reliable estimate of model performance. Using these hyperparameter grids, GridSearchCV can explore a 

variety of configurations for each model, automating the process of finding the best hyperparameters. This 

makes it possible to optimize KNN and SVM models to improve prediction accuracy, without having to 

manually test each combination. 

 

3.4.  Performance evaluation 

To evaluate a machine learning model in a multi-class classification task, several performance 

metrics can be used, such as accuracy, precision, recall, F1 score, confusion matrix, ROC-AUC (Receiver 

Operating Characteristic-Area Under Curve), and micro and macro averages. Although we have 28 classes, it 

can indeed be difficult to interpret the results due to the complexity. In this case, it can be useful to visualize 

the model performance using the following metrics: 

a) Confusion matrix: a matrix that visualizes model performance by showing true positives, false positives, 

true negatives, and false negatives for each class. It helps to understand where the model is going wrong. 

b) Accuracy (Overall Precision): the percentage of correct predictions out of all predictions made. It’s a 

simple measure, but can be misleading if the classes are unbalanced. 
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c) Macro-Average: calculates the metric independently for each class and averages it. This treats all class 

equally, regardless of their frequency. 

d) Precision: the proportion of true positive predictions out of all positive predictions. 

e) Recall: the proportion of true positive predictions out of all the true positive instances. 

f) F1 score: the harmonic mean of precision and recall, providing a balance between the two. 

We also evaluated the performance of the adopted models by calculating the 5-fold cross-validation score to 

provide an estimate of model performance on novel data, as well as measuring training and prediction times 

for the SVM and KNN classifiers.  

 

 

4. RESULTS AND DISCUSSION  

4.1.  Results 

In this section, we present the results of simulations performed in the Python environment, i.e., 

confusion matrices for a test set. We also present tables showing the results of the calculations for the 

different metrics mentioned above. These tables allow us to compare the confusion matrices obtained by the 

SVM and KNN models before and after hyperparameter optimization, for model evaluation purposes. 

 

4.1.1. Model performances 
After adjusting the hyperparameters, we initialized and trained the SVM and KNN classifiers on the 

training data, and then performed the predictions on the test data. The confusion matrices in Figures 1-4 show 

that there are 28 classes (0-27) into which the models classify the data. They also show the number of correct 

and incorrect predictions made by the SVM and KNN models. The values on the diagonal represent correct 

predictions, while the other values represent errors. Models optimized in terms of hyperparameters show 

overall accuracy, with fewer false positives (FP) and false negatives (FN) than non-optimized models. And in 

both cases, SVM has a better overall accuracy, with fewer false positives (FP) and false negatives (FN) than 

KNN, the latter having more FP and FN, indicating a slightly inferior performance in terms of correct 

classification. And, Tables 2 and 3 show the evaluation of the SVM and KNN models. After optimization, 

the performance of the SVM improved in all metrics (accuracy, precision, recall, F1 score, average cross-

validation score). For example, accuracy increased from 0.9190 to 0.9295. KNN also improved, from 0.7820 

to 0.8200 for accuracy, but this improvement was less significant than that of SVM. 

 

 

 
 

Figure 1. Confusion matrix (SVM) for a set of tests using the default hyperparameters 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 2, February 2025: 819-828 

824 

  
 

Figure 2. Confusion matrix (KNN) for a set of tests using the default hyperparameters 

 

 

 
 

Figure 3. Confusion matrix (SVM) for a set of tests using GridSearchCV 
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Figure 4. Confusion matrix (KNN) for a set of tests using GridSearchCV 

 

 

Table 2. Results of evaluation metrics obtained for SVM and KNN models before optimization 
 

 

Metrics 

Evaluation 

Accuracy 

(%) 

Macro average 

precision (%) 

Macro average 

recall (%) 

Macro average 

F1 score (%) 

Average cross-

validation score (%) 

SVM 91.90 92.13 91.90 91.90 91.07 

KNN 78.20 78.67 78.20 78.21 78.41 

 

 

Table 3. Results of evaluation metrics obtained for SVM and KNN models after optimization 
 

 

Metrics 

Evaluation 

Accuracy 

(%) 

Macro average 

precision (%) 

Macro average 

recall (%) 

Macro average 

F1 score (%) 

Average cross-

validation score (%) 

SVM 92.95 93.12 92.95 92.96 92.96 

KNN 82.00 82.28 82.00 81.98 82.80 

 

 

4.1.2. Computational complexity 
Table 4 shows how the SVM model optimization has reduced the training and prediction times: the 

training time is reduced from 0.3756 to 0.2408 seconds. And the prediction time decreased from 0.6111 to 

0.2981 seconds. This indicates that the optimized hyperparameters have made the model more efficient. 

KNN maintained a similar training time, but the prediction time was slightly reduced from 0.0819 to 0.0629 

seconds. This shows a slight improvement in prediction speed. 

We found that optimizing hyperparameters using the GridSearchCV method significantly enhances 

the classification performance of machine learning models in selecting transmit antennas in 5G/6G systems. 

The proposed method in this study tended to have an inordinately higher proportion of correct classifications 

as shown by improved metrics such as accuracy, precision, recall, and F1 score across multiple classes. 

 

 

Table 4. Results of the computational complexity of classifiers 

 
Before optimization After optimization 

Training time (Seconds) Prediction time (Seconds) Training time (Seconds) Prediction time (Seconds) 

SVM 0.3756 0.6111 0.2408 0.2981 

KNN 0.0050 0.0819 0.0050 0.0629 
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4.2.  Discussion  

Optimizing hyperparameters for SVM can include selecting the type of support kernel, the C 

parameter, and the gamma parameter. These adjustments improve the model’s ability to optimally separate 

classes. For KNN, optimization may involve the number of neighbors (K) and the distance weighting 

method. Optimal choice of K can improve model accuracy by reducing noise. After optimizing the SVM 

model’s hyperparameters, a reduction in computational time can be achieved through more efficient 

parameter choices that reduce the number of computations required or simplify the model. For example, a 

simpler kernel or a weel-tuned C-value can speed up the convergence of the algorithm. KNN is generally 

faster to train because it relies on simple distance calculations. However, optimization can further reduce 

prediction time by choosing an optimal K that minimizes the number of computations required. 

Even befor optimization, SVM far outperforms KNN in terms of metric performance. After 

optimization, the gap widens even further, demonstrating the robustness of SVM for classification tasks. 

Although KNN is faster to train, the optimized SVM offers a better trade-off between computation time and 

prediction quality. In addition, the performance of the SVM and KNN models was consistent on different 

data, as shown by the cross-validation results in Tables 2 and 3, making the a more reliable choice for the 

antenna selection task. 

Thus, hyperparameter optimization had a significant impact on the performance and complexity of 

the SVM and KNN models. In particular, SVM showed a significant improvement in all metrics after 

optimization, while reducing the computational time. KNN also benefied from optimization, but to a lesser 

extent than SVM. These results demonstrate the importance of hyperparameter optimization in the 

development and improvement of machine learning models.  

Our study suggests that higher model complexity is not associated with poor performance in antenna 

selection for 5G/6G systems. The proposed method may benefit from the integration of advanced ensemble 

techniques without adversely impacting the processing time and efficiency compared to traditional 

approaches noted in previous research. This study explored a comprehensive application of GridSearchCV 

for hyperparameter optimization in machine learning models like SVM and KNN. However, further and in-

depth studies may be needed to confirm its robustness across different datasets and real-world scenarios, 

especially regarding the variability in wireless channel conditions and hardware constraints. 

 

 

5. CONCLUSION  

In this work, we proposed a method to predict the best antenna pairs for data transmission using the 

Alamouti code in the 2X1 system to further improve the overall performance of the MISO  system. We used 

the GridSearchCV method to optimize the hyperparameters of the SVM and KNN machine learning models 

to select the antenna pairs. The results show that optimizing the hyperparameters led to a significant 

improvement in the performance of the SVM and KNN models. The significant improvement in the SVM 

indicates that the choice of hyperparameters allowed the algorithm to converge faster and make predictions 

more efficiently. When making a trade-off between performance and computation time, it is important to 

consider the size of the dataset and the resources available. SVM may be preferred for small datasets where 

perforance is critical, while KNN may be useful for large datasets with limited resources. In all cases, 

GridSearchCV will only test the combinations of hyperparameters specified in the grid. If the grid is too 

restricted, potentially better combinations may be missed. Our study demonstrates that optimized machine 

learning models, such as SVM and KNN, are more robust than traditional methods in selecting transmit 

antennas for 5G/6G systems. Future studies could explore the integration of more complex models or 

ensemble techniques, or the use of techniques such as Bayesian search or RandomizedSearchCV with 

feasible ways of producing further performance gains in real-time wireless communication systems. 

Recent observations suggest that the optimization of machine learning models, specifically through 

hyperparameter tuning using GridSearchCV, significantly enhances the performance of TAS in 5G/6G 

systems. Our findings provide conclusive evidence that this phenomenon is associated with improved 

classification accuracy and reduction in computational complexity, not due to elevated numbers of exhaustive 

search methods. 
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