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 High-quality images are crucial for navigation, obstacle detection, and 

environmental understanding, but transmitting high-resolution images over 

constrained networks presents significant challenges. This study introduces 

an image transmission system using super-resolution convolutional neural 

networks (SRCNN) to enhance image quality without increasing bandwidth 

requirements by transmitting low-resolution images and upscaling them with 

SRCNN. The first phase of the research involved data collection, in which 

information was acquired directly from an appropriate locus to produce 

training, validation, and testing datasets. The second, three SRCNN models 

(915, 935, and 955) were trained using such a training dataset. The last was 

an evaluation, in which model 915 showed quick learning and stable 

performance with initial high loss, while model 935 had rapid convergence 

but potential overfitting. Model 955 achieved high initial performance. 

Three SRCNN model configurations were tailored to the specific needs of 

autonomous electric vehicles operating in limited areas, such as the locus. 

Input image resolution ranged from 128×128 pixels to 256×256 pixels, while 

output resolution varied from 256×256 pixels to 512×512 pixels. These 

resolutions can be acceptable for efficient image transmission over IEEE 

802.11ac, but on the long range (LoRa) network, it still produces some 

delay. 
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1. INTRODUCTION 

Effective image transmission has become essential with the quick development of autonomous car 

technology, particularly in places with spotty network coverage. High-quality images are essential for various 

tasks such as navigation, obstacle detection, and environment understanding [1]–[5]. However, transmitting 

high-resolution images over constrained networks poses significant challenges. This condition is because 

these images consume massive bandwidth transmission. For instance, in our development of an autonomous 

vehicle operated in a limited area using IEEE 802.11ac, with an 80 MHz channel, 2 spatial streams, and in 

ideal conditions, the theoretical maximum bandwidth is 866 Mbps. They are accounting for overhead and 

typical network conditions. This condition might achieve 60-70% of the theoretical maximum, or around 

https://creativecommons.org/licenses/by-sa/4.0/
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520-606 Mbps [6], [7]. This bandwidth can easily support multiple simultaneous HD or UHD video streams. 

Another option is employing the long range (LoRa) standard, which operates with bandwidths ranging from 

125 to 500 kHz. The maximum data rate of LoRa is only 5% of the minimum requirement for SD video 

(720×480 pixels), 50 kbps [8]–[11]. 

Our work offers a comprehensive method based on super-resolution convolutional neural networks 

(SRCNN) for enhancing picture transmission in autonomous cars. This technique minimizes data 

transmission loads while maintaining important visual information by transmitting low-quality images and 

upscaling them to high resolution on the vehicle's end, especially in limited or unstable network conditions. 

Better coordination and decision-making are encouraged by this approach, which improves picture quality for 

autonomous vehicles and facilitates communication between vehicles and central operations. Our method, 

which use SRCNN to upscale smaller input images in contrast to earlier research [12], shows promise in a 

range of image transmission scenarios within the autonomous car ecosystem. 

 

 

2. METHOD 

We present a workable solution for efficient picture transmission in autonomous vehicles: SRCNN. 

It tackles the difficulties associated with sending high-resolution pictures in bandwidth-constrained settings. 

By integrating SRCNN, low-resolution images can be transmitted quickly and enhanced into high-resolution 

images necessary for precise navigation [13], [14], making our approach viable for real-world 

implementation. In Figure 1, we present the process of transmitting images in our research scenario. The 

process of improving low-resolution photos using a SRCNN, a crucial component of our approach, is 

depicted in the diagram. A low-resolution image is first transmitted by a transmitter. This image is 

subsequently transmitted to a receiver, where its low resolution is retained. 

 

 

 
 

Figure 1. Super resolution-based image transmission scheme 

 

 

The primary focus of the process is to enhance this low-resolution image using SRCNN to obtain a 

high-resolution version. The SRCNN process begins by up-sampling the low-resolution image through 

bicubic interpolation. This step increases the image's size to match the desired high-resolution dimensions, 

serving as a preliminary enhancement. Following this, the up-sampled image undergoes to patch extraction 

and representation. This is achieved using the first convolutional layer with rectified linear unit (ReLU) 

activation, which extracts small regions or patches from the image and represents them in a higher-

dimensional feature space. Next, these patches are processed through a second convolutional layer with 

ReLU activation, performing a non-linear mapping. This layer plays an essential role because it bridges the 

resolution gap by figuring out the complex interactions between high-resolution and low-resolution patches. 

Ultimately, a third convolutional layer receives the output from this layer and uses the processed features to 

recreate the high-resolution image. An enormously improved high-resolution image replaces the initial low-

resolution input. 

A modified neural network called the SRCNN was created to enhance image resolution [15], [16]. 

The SRCNN has three main layers, as Table 1 illustrates. The input layer works with a low-resolution image 

that has been down-sampled from its original high-resolution form by an average of 2, 3, or 4. Three 

convolutional layers make up the SRCNN model. The first layer uses 64 filters (9×9) and ReLU activation to 

recover overlapping patches from the low-resolution picture and converts them into high-dimensional feature 
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vectors. The second layer maps these vectors to another set of high-dimensional feature maps using 32 filters 

(1×1) with ReLU. The third layer reconstructs the high-resolution image using filters (5×5), with the number 

of filters depending on the image type, producing a linear output. The model is trained using a mean squared 

error (MSE) loss function in order to minimize the difference between the reconstructed high-resolution 

image and the original high-resolution image [17]. The model is then optimized using stochastic gradient 

descent (SGD), which makes use of data augmentation methods like rotation, scaling, and mirroring to boost 

robustness. The mean squared error (MSE) loss function is used by SRCNNs to increase image resolution. In 

order to minimize the discrepancy between the real high-resolution images and the high-resolution images 

predicted by SRCNN, this function is essential for training [18], [19]. 

 

 

Table 1. The network architecture of SRCNN 
Layer Purpose Layer type Filter 

size 

Number of 

filters 

Stride Activation 

function 

Output 

Input Low-resolution image - - - - - Low-resolution 

image 

Layer 

1 

Extracts overlapping 

patches and maps to high-
dimensional feature vectors 

Convolutional 

layer 

9×9 64 1 ReLU Feature maps 

representing 
extracted patches 

Layer 

2 

Maps feature vectors to 

another set of high-
dimensional feature vectors 

Convolutional 

layer 

1×1 32 1 ReLU New set of high-

dimensional feature 
maps 

Layer 

3 

Reconstructs the high-

resolution image from the 
feature vectors 

Convolutional 

layer 

5×5 1 (grayscale) 

or 3 (RGB) 

1 None (linear 

activation) 

Final high-

resolution image 

 

 

Mathematically, the MSE loss function is defined as follows (1) [20]:  

 

𝑀𝑆𝐸 𝐿𝑜𝑠𝑠 =
1

𝑁
∑ (𝐼ℎ𝑖𝑔ℎ(𝑖) − Îℎ𝑖𝑔ℎ(𝑖))2𝑁

𝑖=1  (1) 

 

In this case, 𝑁 stands for the total number of pixels in the image, 𝐼ℎ𝑖𝑔ℎ for the ground truth high-resolution 

image, and Îℎ𝑖𝑔ℎ for the predicted high-resolution image generated by SRCNN. The loss function calculates 

the average squared difference between corresponding pixels across the entire image, providing a quantitative 

measure of how well the predicted output matches the actual high-resolution target. Using gradient descent 

and backpropagation to modify parameters, the SRCNN model minimizes the MSE loss during training, 

lowering prediction error and enhancing image quality. SRCNN effectively generates high-fidelity super-

resolution images that closely resemble the high-resolution ground-truth images by using MSE as the primary 

loss function. This shows significant improvements over traditional interpolation methods using CNNs and 

deep learning. This super-resolution application will be employed to efficiently deliver images in 

autonomous electric vehicles operating in confined environments. The research process was developed in 

three phases, as depicted in Figure 2.  

The raw dataset was acquired and prepared in the first phase. As shown in Figure 3, data collection 

for this stage started at the KST Samaun Samadikun BRIN in the Bandung area. With a 4:3 aspect ratio and a 

30 frames per second frame rate, the Insta360 ONE RS Twin Edition 4K Boost Lens camera was used to 

record the data. 

 

 

 
 

Figure 2. The research process  
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Figure 3. The location of the raw dataset collection 

 

 

The second phase focuses on model preparation and training. The Adam optimiser was used with a 

batch size of one and a training step of 200,000. The developed SRCNN model had a layer composition with 

filter sizes of 9×9, 1×1 (or 3×3; 5×5) and 5×5 in its three convolutional layers. These layers correspond to the 

patch extraction and representation layer, the non-linear mapping layer, and the reconstruction layer. During 

this stage, a pre-prepared training and validation dataset was used to train the model. This phase resulted in a 

fully trained model, which was assessed using four important metrics at each training stage. Throughout the 

training procedure, training peak signal to noise ratio (PSNR), validation PSNR, training loss, and validation 

PSNR were tracked. After that, the model was ready for testing in the subsequent stage. 

Using the previously created test dataset, the trained model's performance is assessed in the last 

phase. Based on the images in the testing dataset, the testing method produces the mean PSNR value, a 

qualitative indicator of the model's performance. To assess the model's performance quantitatively, a 

demonstration is carried out to highlight the caliber of the super-resolution photographs produced by the 

trained model. This phase makes sure that the model's efficacy is thoroughly assessed before it is put into use. 

 

 

3. RESULTS AND DISCUSSION 

This section will discuss comprehensively the results given from the experiment based on the three 

phase described in method section.  

 

3.1.  First phase results 

The data collection process involved capturing videos at fifteen distinct locations within the 

designated area, resulting in fifteen separate videos. Each video was then converted into a series of discrete 

frames using Python, generating a substantial number of frames. Frames containing comparable data were 

eliminated to guarantee a diversified dataset. Next, three subsets of the remaining frames were created: 

training, validation, and testing sets [21]-[26]. From the selected frames, 322 images were categorized into 

eight size categories, with dimensions of 150×150, 200×200, 250×250, 300×300, 350×350, 400×400, 

450×450, and 500×500 pixels, forming the training dataset. The validation dataset comprised 141 images, 

chosen to cover a broader range of sizes than the training dataset. The testing dataset included images scaled 

in three categories: ×2, ×3, and ×4. Each scale had a corresponding category for data and labels, each 

containing 50 images of the same dataset but in different sizes. The labels featured ground truth images with 

dimensions of 512×512 pixels for scales ×2 and ×4 and 510×510 pixels for scale ×3. The data category 

included images resized to half, a third, or a quarter of the ground truth size, depending on the scale. For 

testing input, the image resolutions were 256×256 pixels for scale ×2, 170×170 pixels for scale ×3, and 

128×128 pixels for scale ×4. Upon completion of this phase, the training, validation, and testing datasets 

were prepared for subsequent phases of the research. 

 

3.2.  Second phase results 

Figure 4 describes the results of training and validation for architecture 915 for both loss and PSNR. 

The graph in Figure 4(a) shows the training and validation loss for a model with the architecture model 915 
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over a series of training steps ranging from 0 to 200,000. Both the training and validation losses start 

relatively high, around 0.025, but show a steep decline in the early steps, decreasing significantly by around 

50,000 steps. After this rapid decrease, the losses stabilise and remain low and close to each other for the 

remaining training steps. The convergence of both the training and validation losses to similar low values 

suggests that the model is performing effectively, with a strong generalisation capability, as indicated by the 

validation loss remaining close to the training loss and showing no signs of overfitting. The strongest aspect 

of this model is its ability to learn quickly and maintain low loss values, demonstrating robust performance. 

However, the weakness lies in the high initial loss, suggesting that further optimisation or better initialisation 

strategies could potentially improve the early performance of the model. Overall, the model shows excellent 

performance and generalisation with the given architecture.  

The graph in Figure 4(b) shows the PSNR for both the training and validation data sets using the 

architecture model 915 over a series of training steps ranging from 0 to 200,000. Initially, both the training 

and validation PSNR values start relatively low, around 10 to 20 dB. As training progresses, there is a sharp 

increase in the PSNR values within the first 50,000 steps, with the training PSNR rising rapidly to around 35 

and the validation PSNR reaching around 30. After this initial surge, both the training and validation PSNR 

values stabilise and remain at these levels for the remainder of the training steps. The model shows a strong 

initial learning phase, as evidenced by the rapid increase in PSNR, indicating that it quickly improves the 

quality of the reconstructed images. In addition, the stabilisation of both PSNR values suggests consistent 

performance over extended training. However, the model starts with relatively low PSNR values, suggesting 

poor initial performance that could be improved with better initialisation or pre-training strategies. 

Additionally, there appears to be a minor overfitting, with the model doing better on the training data than the 

validation data, as evidenced by the substantial difference between the training PSNR (about 35) and the 

validation PSNR (around 30). Overall, the model shows strong performance with rapid initial improvements 

and stable quality maintenance over time, although there is room for improvement in initial performance and 

generalisation to unseen data. 

 

 

  
(a) (b) 

 

Figure 4. The result of training and validation for architecture 915 (a) loss (b) PSNR 

 

 

Figure 5 describes the results of training and validation for architecture 935 for both loss and PSNR. 

The graph in Figure 5(a) shows the training and validation loss for a model with the architecture model 935 

over a series of training steps ranging from 0 to 200,000. Initially, both the training and validation losses start 

high, around 0.09. There is a sharp drop in loss within the first 50,000 steps, where both training and 

validation losses drop to around 0.01. After this sharp decline, the losses stabilize and remain consistently 

low for the remainder of the training steps. The model shows strengths in rapid convergence, effectively 

reducing losses within the first 50,000 steps, and maintaining low and stable loss values throughout the 

training period, indicating strong performance and no degradation over time. However, the model starts with 

relatively high loss values, suggesting poor initial performance that could be improved with better 

initialization techniques. In addition, the almost identical nature of the training and validation losses could 

indicate that the validation data is not sufficiently challenging or diverse compared to the training data, 

potentially masking overfitting. Overall, the model shows robust performance but could benefit from 

improvements in initial performance and validation data diversity. 

The PSNR for the training and validation sets of the 935-model architecture is presented on the 

graph in Figure 5(b). The steps, which span from 0 to 200,000, are represented by the x-axis, while the PSNR 

values are displayed on the y-axis. The training PSNR is shown by the solid blue line, while the validation 

PSNR is shown by the dashed orange line. The model shows a rapid improvement in PSNR within the first 
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50,000 steps, indicating effective initial learning. The training PSNR stabilizes around 35 dB, which is 

relatively high and indicates that the model fits the training data well. The significant difference between the 

PSNRs for training and validation points to the possibility of overfitting, in which the model performs well 

on training data but poorly on validation data. Overall, while the model learns the training data effectively, its 

generalization ability needs improvement, potentially requiring techniques such as regularization, dropout or 

more diverse training data to improve performance on the validation set. 

 

 

  
(a) (b) 

 

Figure 5. The result of training and validation for architecture 935 (a) loss (b) PSNR 

 

 

Figure 6 describes the results of training and validation for architecture 955 for both loss and PSNR. 

The graph in Figure 6(a) shows the loss over training steps for both the training and validation sets of model 

architecture 955, with the x-axis representing steps from 0 to 200,000 and the y-axis showing the loss values. 

Both the validation loss (dashed orange line) and the training loss (solid blue line) begin at roughly 0.1 and 

drop off quickly throughout the first 10,000 steps before stabilizing at close to zero for the remaining steps. 

The model demonstrates efficient learning with rapid loss reduction and achieves a low final loss, suggesting 

a good fit to the data without significant overfitting. However, the near-zero loss raises concerns about 

potential overfitting, as the model may be highly tuned to the training data. Furthermore, the fact that the 

validation loss closely follows the training loss without much variation suggests a lack of diversity in the 

validation set or potential problems with the validation process. Therefore, while the model shows strong 

initial performance, further validation is required to ensure robust generalization. 

The graph in Figure 6(b) shows the PSNR over training steps for both the training and validation 

sets of model architecture 955, with the x-axis representing steps from 0 to 200,000 and the y-axis showing 

PSNR values. The solid blue line (training PSNR) and the dashed orange line (validation PSNR) both 

increase rapidly within the first 50,000 steps. The training PSNR stabilizes at around 35, while the validation 

PSNR levels off at around 30. The model shows efficient initial learning and achieves high PSNR values for 

both training and validation sets, indicating good performance. The model does better on the training data 

than the validation data, though, and a noticeable difference in the PSNRs between the training and validation 

sets the possibility of overfitting. Furthermore, the validation PSNR plateaus and falls short of the training 

PSNR, suggesting that the model's ability to generalize upon new data needs improvement. 

 

 

  
(a) (b) 

 

Figure 6. The result of training and validation for architecture 935 (a) loss (b) PSNR 
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3.3.  Third phase results 

Table 2 shows a comparative analysis of three SRCNN models, 915, 935, and 955, across three 

scale metrics: ×2, ×3 and ×4. Each metric contains the maximum, minimum and average values of PSNR for 

these models. Table 2 demonstrate SRCNN model 915 notable strengths, particularly with a high maximum 

value of 35.705 for the ×2 scale, indicating robust performance in this specific aspect. The model also 

maintains relatively high average values across all scales (×2: 33.549, ×3: 30.913, ×4: 29.594), demonstrating 

consistent performance. However, the model shows weaknesses with lower minimum values for ×3 (27.721) 

and ×4 (26.379), indicating variability and inconsistency in performance for these scales. The SRCNN model 

935 a commendable maximum value of 35.550 for the ×2 scales, slightly lower than model 915 but still 

strong. It remains consistent with respectable averages (×2: 33.483, ×3: 30.926, ×4: 29.589). Nevertheless, 

the model's minimum values for ×2 (29.941) and ×4 (26.369) are the lowest of the three scales, indicating 

potential for improvement in maintaining a higher baseline performance. The SRCNN model 955 stands out 

with the highest maximum value for the ×2 metric (35.761), the best of all three models. It also has the 

highest minimum value for the ×2 scales (30.092), demonstrating strong basic performance. The average 

values for ×2 (33.655) and ×4 (29.596) are the highest of the three models, indicating overall robust 

performance. However, the ×3 metric shows a slightly lower maximum value (32.895) compared to the other 

models, which could be an area for improvement. 

 

 

Table 2. The PSNR of test in scale ×2, ×3, ×4 for all architecture model 
The PSNR of test in scale ×2, ×3, ×4 for architecture model 915 

 ×2 ×3 ×4 

Max 35.705 32.918 31.609 

Min 29.959 27.721 26.379 
Average 33.549 30.913 29.594 

The PSNR of test in scale ×2, ×3, ×4 for architecture model 935 

 ×2 ×3 ×4 
Max 35.550 32.916 31.584 

Min 29.941 27.741 26.369 

Average 33.483 30.926 29.589 
The PSNR of test in scale ×2, ×3, ×4 for architecture model 955 

 ×2 ×3 ×4 

Max 35.761 32.895 31.575 
Min 30.092 27.723 26.374 

Average 33.655 30.916 29.596 

 

 

The model 955 outperforms the other two SRCNN models in terms of performance consistency on 

all scales. Model 935 has the lowest minimum values but has a consistent average performance, whereas 

model 915 comes in second with great results but significant variability. To improve their reliability, models 

915 and 935 could focus on improving their minimum performance values. Overall, model 955 emerges as 

the most reliable and effective of the three, showing superior performance and consistency. 

Examples of input and output images utilized during the testing process are shown in Figure 7. The 

input image for every model input that has the highest PSNR value is displayed in Figure 7(a). In the 

meantime, the 955-architecture model's output image, which was found to be the top performance at a scale 

factor of 2, is displayed in Figure 7(b). Owing to the manuscript's page limit restrictions, the resolution of the 

input and output photographs has been reduced by four times. This output image shows how the model can 

reconstruct or improve images at twice the original size without sacrificing quality. The capacity of the 955 

architectures to produce crisp, detailed images highlights the remarkable performance of the system and 

points out the effectiveness of the algorithms and design in handling image upscaling jobs. 

 

 

  
(a) (b) 

 

Figure 7. Testing process (a) a sample input image and (b) a sample output given by super resolution 

(SRCNN-955) 
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4. CONCLUSION 

This study uses SRCNN to increase the picture transmission efficiency in autonomous cars 

navigating limited network conditions. Three different SRCNN model configurations were created in order to 

meet the unique needs of autonomous electric vehicles that operate in restricted spaces, such Bandung, 

Indonesia's KST Samaun Samadikun. The validity of this research is supported by the use of a large dataset 

consisting of 765 photos, which guaranteed that the models were assessed under different conditions to 

achieve optimal performance. 

The input image resolution in this experiment varied from 128×128 pixels to 256×256 pixels. In 

contrast, the scale factor used affected the output resolution, which ranged from 256×256 pixels to 512×512 

pixels. Even with the smallest input image size of 128×128 pixels, the SRCNN setup managed to achieve a 

PSNR of 29.596 by upsizing the image to 512×512 pixels. The same model could upscale an image with an 

input resolution of 170×170 pixels to 510×510 pixels with a PSNR of 30.926. The final photos looked 

fantastic. It will be more effective to transfer these images over the IEEE 802.11ac Wi-Fi network, but there 

will be noticeable delays when using the LoRa network a 128×128 image will take 5.6 seconds to broadcast. 

This emphasizes the necessity for additional study to enhance SRCNN's functionality, especially with regard 

to transmission efficiency across various networks. 
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