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Abstract 
Aiming at a class of multiple-input multiple-output (MIMO) system with uncertainty, a sliding mode 

control algorithm based on neural network disturbance observer is designed and applied to ship yaw and 
roll joint stabilization. The nonlinear disturbance observer is finished by radial basis function neural network 
and with that a terminal sliding mode control algorithm is proposed. The asymptotic stability of closed-loop 
system is proved based on Lyapunov theorem. The proposed control law is applied to anti-roll control 
under simulative wave disturbances. Simulation results verified robustness and effectiveness of the 
suggested algorithm. A good anti-rolling effect is achieved and yaw angle is also reduced greatly with less 
mechanical loss. 
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1. Introduction 
Sliding mode variable structure control has merits such as invariance to matching 

uncertainties. It is effective means for nonlinear control problem and is widely used [1, 2]. The 
development of sliding mode theory for single-input single- output (SISO) is going to be 
accomplished, but sliding mode methods for SISO couldn’t generalized and applied to MIMO 
system simply and what’s more, many actual industrial objects are MIMO nonlinear. Therefore, 
the control problem on MIMO nonlinear uncertainty system becomes a research hotspot [3]. 
Paper [4] discussed a class of high order MIMO system terminal sliding mode control, but odd 
problem was not considered and boundary layer method was employed to reduce chattering 
such that the robustness was influenced. A higher sliding mode controller was designed for 
MIMO nonlinear system in [5]. Approaching precision was reserved and chattering is reduced 
significantly, but the decoupling matrix was gotten approximatively. Algebraic strong 
observability and system smoothness was put into use to realize finite time stability in [6]. The 
algorithm was also based on higher order sliding mode, but the unknown input observer was 
hard to design. Although some achievements which were about MIMO nonlinear control 
problem and only based on sliding mode theory were got, chattering, unknown upper bound of 
uncertainty and algorithm complexity are hard to handle. It is difficult to solve complex problem 
only by one control theory. Good result can be achieved if combining sliding mode with other 
control algorithms. Such as paper [7] proposed an adaptive fuzzy sliding mode control law and 
realized finite time stability based on final attractor. An adaptive sliding mode controller for 
perturbed nonlinear time varying systems was designed in [8]. 

Because radial basis function neural network (RBFNN) can approach any nonlinear 
function under certain condition and its self-learning, self-adaption and fault-tolerant abilities are 
good, many control schemes based on RBFNN are proposed [9]. RBFNN can be used as 
equivalent control part, to learn unknown upper bound, to adjust switching gain etc, in a word, 
there are many successful applications based on RBFNN sliding mode control [10-12] which are 
mainly adopted by SISO system. This paper combines RBFNN with sliding mode theory. A 
RBFNN disturbance observer is designed to approximate compound disturbance online and 
terminal sliding mode method is employed to cut down response time to complete the control for 
MIMO nonlinear system. System robustness is strengthened and chattering is lowered because 
of disturbance observer. 
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In shipping business, demand for sailing performances such as comfortability, safety 
and economy become higher. Rolling control can improve these performances exactly. There 
are many kinds of ship stabilizer [13]: fin stabilizer, tank stabilizer, rudder stabilizer and 
rudder/fin joint stabilizer. Rudder/fin joint stabilization is considered based on the fact that the 
ship motion is nonlinear and strong coupling in essence. In 1981 Kallstrom proposed rudder/fin 
joint control based on multivariable quadric form theory which improved rolling and yaw 
simultaneously [15]. Rudder/fin joint control also has been studied based on sliding mode [16, 
17], but the common drawbacks are unsatisfactory chattering and long response time. 

Rudder/fin joint system is MIMO nonlinear typically, such that the proposed neural 
sliding mode control algorithm is suitable for it. Firstly, rudder/fin joint nonlinear state equation is 
deduced according to the known linear transfer function. Then the proposed algorithm is used to 
simulate under wave disturbance. The results indicate good anti-rolling effect is got. The rolling 
angle is within ±1.8°.The control chattering of fin stabilizer and rudder is greatly weakened 
comparing with the sliding mode control without disturbance observer. 

The paper’s structure arrangement is as follow. The problem description is in section 2. 
The terminal sliding mode controller based on RBFNN observer is designed in section 3. 
Section 4 studies the application to yaw/roll control and the conclusions are made at last. 

 
 

2. Controller Design 
2.1. Problem Description 

Considering nonlinear system with uncertainty: 
 

( ) ( ) ( ( ) ( )) ( )

( ) ( ( ))

x t f x G x G x u f x

y t h x t

     
 

                            (1) 

 

Where nx R is state vector, mu R is control inputs, my R  represents outputs. ( ) nf x R  is 

unknown modeling error, ( ) n mG x R   stands for system uncertainties, ( )f x , ( )G x  are 

smooth function with suitable dimensions. Without loss of generality, assume ( )G x  is non-

singular. 
In order to design terminal sliding mode control, suppose ( ) 0f x  and ( ) 0G x  . 

The tracking errors are defined as: 
 

de y y                                                                      (2) 

 

Where dy are expected values. 

Represent sliding mode surfaces as follow: 
 

Ce                                                                          (3) 
 

Where
1 2[ , , ... ]mC diag c c c . 

For the convenience of description, define the following variables: 
 

1 2[ , , ... ]m

                                                            (4) 

 

1 2, , ..., m                                                      (5) 
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Where 0 / 1a b   , a ,b are positive odd numbers and the meaning of ̂ will be given 

when designing controller. 
For nominal part of system (1), derivative of sliding mode surfaces satisfy: 
 

1 2

                                                               (7) 

 

Where  1 11 12 1, ,..., 0mdiag      ,  2 21 22 2, ,..., 0mdiag      . 

From (1), (3) and (7) 
 

1 2( ( ) ( ) )dC f x G x u y                                           (8) 

 
Then the control law of nominal model of system (1) is: 

 
1

0( ( ))su CG x u                                                            (9) 

 
Where

0 1 2( )du Cy Cf x         

 
2.2. Design of Terminal Sliding Mode Controller Based on RBFNN Observer 

( )f x and ( )G x  must be considered when designing terminal sliding mode controller 

for robustness of system(1). The compound disturbance is defined as: 
 

( ) ( )d G x u f x                                                                (10) 

 

 For any given xx M ( xM is compact set), optimal weight W  may be defined as: 

 
ˆarg [ | |]supmin

x
W x M

W W W

 
                                                   (11) 

 

 :|| ||W W M                                                                  (12) 

 
Where  is parameter feasible region, M is design parameter, W represents neural network 

weights, Ŵ stands for adjustable neural network weights. ˆ( | )i ix W denotes the ith element of 

ˆ| )x W . 

 
ˆ ˆ( | ) ( )T

i i i ix W W x                                                            (13) 

 

Where 1 2ˆ ˆ ˆ ˆ[ , ,..., ]m T

i i i iW diag W W W , 1 2( ) [ ( ), ( ),..., ( )]m T

i i i ix x x x    is neural network basis 

function. 2 2( ) exp( || || / )i i ix x c    , ic , i  are the center and width values of RBFNN. The 

Approximation value of RBFNN is: 
 

ˆ ˆ( | ) ( )Tx W W x                                                                (14) 

 
( ) | |T

i id W x                                                           (15) 

 

Where i is the ith component of  , i

 is upper bound of RBFNN error i .weight value error 

vector ˆW W W  . Then: 
  

ˆ ˆ( | ) ( )Td d x W W x                                                  (16) 
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In order to design disturbance observer, considering the following form system 
 

3
ˆ( | )h x W                                                          (17) 

 

Where  denote states of auxiliary system. Design parameter  1 2, ,... 0mdiag      , 

 3 31 32 3, ,... 0mdiag      ,

3
ˆˆ ˆ ˆ( | ) ( ) ( ) ( ) ( | ) ( )h x W x x f x G x u d x W sign         ,  is observer error of 

disturbance as x   . 

Considering (1) and (17), the dynamic equation of disturbance error. 
 

3
ˆ( ) ( ) ( )T TW x sign                                       (18) 

 

As is indicated in (18), if 0   then ˆ( | )x W d   which means the RBFNN 

observer can approach compound disturbance effectively. Weights Ŵ


of network and adaptive 

law ̂  are designed respectively. 
 

1 3
ˆ ( )TW KC        

                                         (19) 

 

2 3
ˆ | ( |KC        

                                          (20) 

 

Where  1 2
ˆ ˆ ˆ ˆ, , ...

T
T T T

mW diag W W W , 1 2( ) ( ), ( ),..., ( )T T T

mx x x x       , 1 0  , 2 0  , 0TK K  . 

The robust control law is deduced as: 
 

1

0
ˆ ˆ ˆ( ( )) ( ( | ) ( ))u CG x u Cd x W C sign s   

                  (21) 
 

Then the terminal sliding mode control algorithm based on RBFNN observer can be 
concluded as Theorem 1 

Theorem 1. For MIMO nonlinear system (1), RBFNN disturbance is designed based on 
(17), parameters adjustment formulas are as (19) and (20), the control law is designed as (21), 
then tracking errors of closed-loop system and disturbance observation errors are asymptotic 
convergence. 

Proof: 
Considering (1), (3) and (21): 
 

1 2
ˆ( ) ( )TC W C sig n                                     (22) 

 
Choose Lyapunov function: 
  

3

1 2

1 1 1 1
( )

2 2
T T T T Ta

V K tr W W
a b

     
 

       


                (23) 

 
The derivative of (23) is: 

 

3

1 2

1 1
( ) ( )T T T TV K tr W W    

 
                               (24) 
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Take (18) and (21) to (24): 
 

1 2 3 3 3

3

1 2

( ) ( ) ( ) ( ) ( )

1 1ˆ ˆ( ) ( ) ( ) ( )

T T T T

T T T T

V K KC W
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   


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 

             

         

 

    
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Because of 0 / 1a b   and a, b are positive odd numbers, then 

3( ) ( ) ( )sign sign sign        . 

Considering (16) and (25), then: 
 

1 2 3 3 3

3
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( ) ( ) ( ) |

1 1
| ( ) ( ) ( )

T T

T T T T T
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 
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     
 

             

          



     
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Take into account equations: ˆ ˆ        , 

3 3
ˆ ˆ| | | |T T           ,

3 3( ( ) ) ( )T T T Ttr W W            . Then from formula (26) : 

 

1 2 3 3

3 1

3 2

( ) ( )

( ( ( ) )) (|

|

T T T

T T T
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tr W KC W KC

  





        

     

  

          

      

    



  



                    (27) 

 

Because of ˆW W   and ˆ   , formula (27) can be written as: 
 

1 2 3 3( ) ( )T T TV K K                                   (28) 

 

Considering 0K  , 0  , 1 0  , 2 0  and 3 0  , then: 

 

0V                                                 (29) 
 

Then closed-loop system is asymptotical stable. 
 
 

3. Application to Ship Yaw/Roll Joint System 
3.1. Rudder/Fin Joint Nonlinear System Mathematic Model 

Ship motion is rather complex. Course angle keeping and rolling angle reduction are the 
main control objective when studying rudder/fin joint control. Figure 1 is functional block diagram 
of linear rudder/fin joint control system. 

 
 

 
 

Figure 1. Functional Block Diagram of Linear Rudder/Fin Joint Control System 
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Transfer function of a ship rudder/fin joint system is given in literature [18]. The reduced 
order transfer function is: 

 

11 12

21 22

0.2 0.1

( ) ( ) (5 1)(2 1) (5 1)(2 1)

( ) ( ) 0.006 0.05

(52.35 1) (52.35 1)

G s G sr s s s s

G s G s

s s s s

 
  

 
                         
   

         (29) 

 
Where r, , , represent rolling angle, yaw angle, fin angle and rudder angle. 

22 ( )G s is 2 order Nomoto model and can be changed to nonlinear response dynamic. 

 

0 0 0 0( / ) ( ) ( / )K T H K T                                         (30) 

 

Where 3( )H       , 20.01  , 29415.13  . 

Then the linear model is changed to nonlinear mathematic model by using (30). 

The influence of 21( )G s to the whole system is rather small, such that it can be 

neglected. 
Considering mechanical characteristics of fin and rudder. 
 

F c

E c

T

T

  

  

 


 




                                                                  (31) 

 

Where c is fin control angle, c is rudder angle, FT  0.5s, 2.5ET  s the control constraints 

are 1

max 4.4 s   , max 20   , 1

max 8 s   , max 20   . 

Take 1x r , 2x p , 3x  , 4x  , 5x  , 6x  . 1 cu  , 2 cu  , 1y r , 2y  . The 

nonlinear mathematic model of the rudder/fin joint system 
 

1 2

2 1 2 5 6

3 4 1

3
4 4 4 6

5 5 1

6 6 2

1 1

2 3

0.1 0.7 0.02 0.01
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0.0182 28.0366 0.00096

2 2

0.4 0.4

x x

x x x x x

x x x

x x x x

x x u

x x u

y x

y x


     
 


   


  
   



 

















                               (32) 

 
3.2. Wave Disturbance Model 

In fact, ship stabilization problem is to restrain wave’s influence. The wave disturbance 
could not be neglected. This study adopts a simple method to simulate wave disturbance, which 
is band-limited white noise to drive two-order oscillation element. The wave disturbance 
simulation schematic diagram is shown in Figure 2, Figure 3 and Figure 4 show equivalent 
rolling angle disturbance and yaw angle disturbance which will be brought to nominal model of 
rudder/fin joint system in matlab simulation. 
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Figure 2. Wave Disturbance Simulation Schematic Diagram 
 

 
 

 

Figure 3. Equivalent Rolling Angle Disturbance Figure 4. Equivalent Yaw Angle Disturbance 
 
          

3.3. Ship Stabilization Simulation 
Each parameter should be chosen properly according to (21). The given rolling angle 

and yaw angle are both zero. The simulation is performed under wave disturbance 
recommended in section 3.2 and the simulation step time is set 0.01s. Figure 5 shows the 
rolling angle under three different conditions. It is indicated that rolling angle is reduced and the 
anti-rolling effect is similar under both SMC and RBFNN SMC. Yaw angle curves shown as 
Figure 6 indicate that yaw angle is smaller under RBFNN SMC than under SMC and both 
algorithms are effective. 

 

 
 

 

Figure 5. Rolling Angle Figure 6. Yaw Angle 
 
 
The control variables are rudder angle and fin angle as is shown in Figure 7 and Figure 

8. Both values of rudder angle and fin angle are smaller under RBFNN SMC than that under 
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SMC. From the partial enlarged drawing in Figure 7 and Figure 8, the chattering is greatly 
reduced under RBFNN SMC. 

 

 
 

 

Figure 7. Rudder Angle Figure 8. Fin Angle 
 

                              
4. Conclusion 

Nonlinear disturbance observer based on RBFNN approximation capability is proposed 
in this paper and on this basis terminal sliding mode controller for MIMO nonlinear uncertainty 
system is designed. The RBFNN SMC is applied to ship rudder/fin control. Wave disturbance is 
simulated by combining band-limited white noise with two-order oscillation element. Simulation 
results show the designed observer can approach wave disturbance. The system robustness is 
realized and chattering of fin and rudder is rather smaller than that without disturbance 
observer. The rudder/fin model adopted in this paper is deduced from linear model and so it is 
rather easy and rough. Next we will study control method of rudder/fin system with four degrees 
of freedom. Furthermore, the idea combining RBFNN observer with dynamic sliding mode is 
promising. 
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