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ABSTRACT

In densely populated cities, parking space scarcity results in issues like
traffic congestion and difficulty finding parking spots. Recent advancements
in computer vision have introduced methods to address parking lot manage-
ment challenges. The availability of public image datasets and rapid growth in
deep learning technology has led to vision-based parking management studies,
offering advantages over sensor-based systems in comprehensive area coverage,
cost reduction, and additional functionalities. This study presents an innovative
fusion algorithm that integrates object detection with occupancy state algorithms
to accurately identify vacant parking spaces. The employment of the YOLOv7
framework for vehicle instance segmentation, combined with three occupancy
algorithms Euclidean distance (ED), intersection over reference (IoR), and
intersection over union (IoU) are compared to determine the occupancy state
of observed areas. The proposed method is evaluated using the CNRPark-EXT
dataset, and its performance is compared with state-of-the-art methods. As a
result, the proposed approach demonstrates robustness under varying conditions.
It outperforms existing methods in terms of system evaluation performance,
achieving accuracies of 98.88%, 97.99%, and 90.04% for ED, IoR, and IoU,
respectively. This fusion detection method enhances adaptability and addresses
occlusions, emphasizing YOLOv7’s advantages and accurate shape approxima-
tion for slot annotation. This study contributes valuable insights for effective
parking management systems and has potential usage in the real-world imple-
mentation of intelligent transportation systems.
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1. INTRODUCTION
The scarcity of parking spaces in highly populated cities is causing difficulties for people to park

their vehicles, leading to issues like traffic congestion, inconveniency finding suitable parking spots, and lim-
ited accessibility [1], [2]. This also impacts their overall vehicle trip experience [3]. Consequently, effective
parking lot management necessitates real-time monitoring of vehicle parking occupancy [4], [5]. Being aware
of available spots and providing this information to users can decrease bottlenecks, improve scalability, and
quicker identification of vacant parking areas. Different approaches have been suggested to deal with the issue
of parking management in urban areas. Solutions using wireless sensor networks (WSN) are well-regarded for
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their ease of implementation, affordability, and ability to work with different sensors that can monitor parked
vehicles [6]. Sensors such as ultrasonic [7], [8] and inductive loop sensors [7], [9]–[12] are frequently em-
ployed in the WSN research for smart parking management systems [4]. On the other hand, the extended
observation areas and the enormous number of parking slots might create real-world deployment challenges,
leading to high maintenance expenses. Additionally, in WSN-based systems, the algorithm for determining the
state of a parking spot is relatively straightforward. Each sensor is being assessed using thresholds to decide
the occupancy state. Despite this simplicity, the sensors’ limits in object identification and lack of intelligence
degrade accuracy, leading to potential false detection.

In recent years, various computer vision methods have been proposed to tackle challenges associated
with parking lot management [5]. These approaches focus on analyzing images captured from parking areas
and address various goals, such as identifying the boundaries of each parking space [13]–[19]; classifying
individual parking spaces to determine if they are occupied or unoccupied [6], [20]–[26]; and counting the
number of vehicles in images [27]–[30]. Furthermore, the availability of public image datasets [23], [31],
[32] and rapid growth of deep learning technology [33]–[41] have produced several state-of-the-arts (SoTAs)
in vision-based parking management studies [6], [23], [25], [26], [31], [32], [42], [43]. Computer vision
techniques have an edge over individual sensors in WSN-based systems. These methods can cover extensive
parking areas using just one camera, avoiding the necessity of a separate sensor per spot. This minimizes
setup and maintenance costs. Furthermore, cameras can aid in tasks like surveillance and identifying unusual
behavior.

This study addresses the problem of recent occupancy detection methods in parking surveillance sys-
tems. Existing methods exhibit limitations, including vague slot definitions, high computational costs, and
potential bias issues [6], [31], [32], [42]. Ke et al. [6] proposed a method relying on a matching algorithm
and leaving it unclear how parking slots are defined. Another approach employs computationally complex
detectors, incurring significant expenses for slot annotation [32]. Additionally, some methods proposed by
Almeida et al. [31] exhibit bias, performing well only under specific conditions. Moreover, certain classifi-
cation approaches utilize patches for slot assessment [23], [25], [26], [31], [43], introducing problems related
to overlapping annotations and limited feature information for distant slots. These limitations highlight the
necessity for a more accurate and adaptable approach to occupancy detection in parking surveillance systems.

To overcome these challenges, we developed a fusion detection method to identify the occupancy
state of parking slots using the publicly available CNR-EXT dataset [23]. This method achieves a substantial
breakthrough in system performance compared to state-of-the-art (SoTA) methods. We contribute to showing
that our method has better dealt with accuracy, performance, and robustness. We have devised a pipeline that
combines object detection through computer vision techniques with an occupancy state algorithm to enable
detection under extreme lighting conditions and occlusions. Furthermore, our comprehensive experimental
results and findings serve as a valuable resource for future research.

This paper is organized as follows. In section 2, we describe details of the complete system of the
proposed method. Section 3 presents the experiments and results obtained by the system. This section presents
and explains the evaluation framework (fine-tuning hyperparameters) used to achieve optimized results of the
YOLOv7 best model, the system performance of occupancy detection methods, and the positioning of this
research. Finally, section 4 describes the conclusions of the paper and the possible future research that could
build upon these findings.

2. METHOD
The proposed framework’s overview is presented as a flow diagram in Figure 1. It consists of two main

components: (i) data preprocessing and training and (ii) data testing and occupancy detection. The system’s
architecture is tuned to balance computing efficiency, reliability, and scalability.

Assuming that each camera position is fixed to monitor the desired area in the parking lot, we begin by
manually annotating and labeling each parking slot to obtain regions of interest (ROIs) for individual parking
spots from 9 distinct camera positions, which were acquired from the CNRPark-EXT dataset [23]. Once all
the desired slots have been annotated, the resulting coordinate vertices for these slots are saved as blobs in our
system for future use.

As part of the vehicle detection method, we utilized renowned computer vision algorithms, YOLOv7
[44] due to their optimal accuracy and efficiency for object detection tasks. To improve the robustness and
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accuracy of our system’s performance, we propose a combination of object detection and occupancy state algo-
rithms that use intersection over union (IoU), intersection over reference (IoR), and Euclidean distance (ED),
which will be explained in the following subsection.

Figure 1. Overview of the end-to-end pipeline design and methodology. It is made up of two primary parts:
(i) data preprocessing and training and (ii) data testing and occupancy detection

2.1. Slot initialization
Given an image of a parking area, each parking slot is manually annotated to give a close approxi-

mation of its true form based on four coordinates as shown in Figure 2; for k = {1, 2, 3, 4}, where (xk, yk)
represent the horizontal and vertical axis coordinates of each parking spot, respectively. Then, a unique ID is
assigned to each parking space based on the ith row and jth column indices. We represent each parking space
with its ID as a list,

aij ∈ N, i = 1, 2, . . . , I
jm = 1, 2, . . . , J ;m = 1, 2, . . . ,M

(1)

(xk, yk)→ a := {{x1, y1}, {x2, y2}, {x3, y3}, {x4, y4}, {aij}} (2)

where the components of list aij denote the location of parking slot in row i and column j. It should be
emphasized that the value of J for the jth column may vary across different rows, which is indicated by M .
As a result, a tuple may represent the complete specified slot ID along with its coordinates as expressed in (2).

Figure 3 shows the comparison between a raw image from camera eight [23], represented in
Figure 3(a), and the outcome of the slot initialization step, shown in Figure 3(b). In the latter, yellow lines
designate each parking slot, and white text indicates the ID of each slot. The resulting tuple of a is then saved
in our system for future procedures once the appropriate slots have been defined.

Figure 2. Annotation process to obtain slot coordinates
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(a) (b)

Figure 3. The comparison (a) raw image from camera eight [23] and (b) slot initialization based on the same
camera view

2.2. Transfer learning for car detection
2.2.1. Dataset preparation

CNRPark-EXT dataset used in this research consists of 810 parking lot images gathered from 9 cam-
eras with different viewpoints and various environmental conditions: sunny, overcast, and rainy. This dataset
contains information on the binary classification of 2 labeled classes: class 1: occupied slot, which has a car
image; class 2: vacant slot, which is the annotated image of an empty slot. However, since we want to increase
the robustness and accuracy in our system instead of using binary classification as in [23], we used instance
segmentation to detect vehicles in the observed image and then evaluate their position in the slot area. Thus,
we need to re-annotate our dataset for data preparation. Roboflow platform was employed to resize the input
image into 640 × 640 pixels so that this input will be compatible with the YOLOv7 detector. Additionally,
we annotated vehicles individually as polygon shapes for segmentation purposes. To vary our dataset, we
used augmentation tools in the Roboflow platform by rotating our train set randomly between 15◦ clockwise
and counter-clockwise so that we gathered 1,243 image frames with a total of 16,653 car instances from the
CNRPark-EXT dataset. Then, we randomly divided all datasets from 1,243 images with the portion of 70%,
20%, and 10% for the train, validation, and test sets, respectively.

2.2.2. Transfer learning YOLOv7
In this research, we employ the YOLOv7 architecture [44] to perform instance segmentation for vehi-

cle detection. YOLOv7 stands out in vehicle segmentation due to its innovative enhancements, as highlighted
in several studies. The YOLOv7 algorithm introduces improvements such as lightweight models with high de-
tection accuracy, low complexity, and reduced parameter count [45]. Additionally, the YOLOv7-based method
[46] also excels in instance segmentation, resulting in superior segmentation accuracy and faster inference
speeds compared to other popular algorithms like mask region-based convolutional neural network (R-CNN)
[37] and YOLACT [41]. Moreover, the YOLOv7-based vehicle detection method addresses challenges such
as low accuracy in detecting small and occluded targets by utilizing a pyramid pooling structure and paral-
lel channel-spatial attention modules, achieving high average precision and processing speed [47]. Therefore,
these collective advancements highlight YOLOv7’s superiority in vehicle segmentation over other models,
making it suitable for this study. After data preparation was completed, we processed the training set for
transfer learning to achieve the best YOLOv7 model. We then validated the model using the validation set to
examine the performance of our inference model. Finally, the best weights from the evaluation process were
applied to our system for future use.

2.3. Occupancy state algorithms
We compared three occupancy state algorithms: IoU, IoR, and ED. In IoU was implemented to es-

timate the state of each slot. The key to this algorithm is to compare the intersection area of a specific slot
ROISij and the area of a selected car ROICn. Since the shape of every parking space might vary, taking on
the form of a polygon, we can measure the ROIs of each parking space by using the quadrilateral equation as,

ROISij =

∣∣∣∣ (x1y2 − y1x2) + · · ·+ (x4y1 − y4x1)

2

∣∣∣∣ (3)
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where ROISij is a list containing all the calculated areas of each parking space. Whereas ROICn is a list of
every area of detected cars that can be obtained from YOLOv7 instance segmentation inference. Hence, the
IoU can be computed as,

IoUij =
I,Jm
max

i=1,j=1

[
ROISij ∩ROICn

ROISij ∪ROICn

]
(4)

The output of the slot state after performing the IoU algorithm can be expressed as,

Pred(aij) =

{
occupied, IoU ij ≥ Th
vacant, otherwise

(5)

where Th is the ratio of (ROISij ∪ ROICn). However, since this algorithm depends on the threshold value
corresponding to the percentage of overlap between the evaluated ROISij and ROICn, the IoU algorithm may
fail to detect occupied slots that are far away from the camera when higher threshold values are set. Therefore,
we propose two other algorithms, ED and IoR, to minimize the error of false detection in occupancy state
detection. The details of these algorithms are described in the following subsection.

2.3.1. Intersection over reference
In Algorithm 1, we proposed the IoR. This algorithm aims to maximize the occupancy area of a

detected car onto an individual slot by modifying the divisor of IoU as a factor of reference area ROISij .
By evoking (3), The IoR formula can be expressed as,

IoRij =
I,Jm
max

i=1,j=1

[
ROISij ∩ROICn

ROISij

]
(6)

Algorithm 1. IoR to determine slot state
Input: parking slot image, slot coordinate, YOLOv7 best model
Output: Pred(aij)
Initialisation:
compute YOLOv7 instance segmentation
compute ROISij , ROICn

for all slot in row do
set Th

compute IoR
sort max IoR
if max IoR ≥ Th then

set Pred(aij) occupied
else

set Pred(aij) vacant
end if
update Pred(aij)

end for
return Pred(aij)

Pred(aij) =

{
occupied, IoRij ≥ Th
vacant, otherwise

(7)

In (7) can be applied to predict the slot state of this algorithm, where the threshold value Th can be set as the
proportion of ROISij . Additionally, we also apply a sorting mechanism to prevent redundancy of a certain
vehicle occupying more than one slot using argmax function for IoU and IoR algorithms in this study.

2.3.2. Euclidean distance
Algorithm 2 shows the implementation of ED to predict slot state in an observed image. To perform

the ED algorithm, the centroid of every individual slot will be assessed for all detected centroid cars. Recalling
(2), where each element represents the coordinates of every distinctive slot, the center of gravity of each slot
can be calculated as,

Cij =

(
x1 + x2 + x3 + x4

4
,
y1 + y2 + y3 + y4

4

)
(8)
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Algorithm 2. ED to determine slot state
Input: parking slot image, slot coordinate, YOLOv7 best model
Output: Pred(aij)
Initialisation:
compute YOLOv7 instance segmentation
compute Cij , Cn

for all slot in row do
set Th

compute ED
sort min ED
if min ED ≤ Th then

set Pred(aij) occupied
else

set Pred(aij) vacant
end if
update Pred(aij)

end for
return Pred(aij)

Then, the first-order image moments are calculated to provide the centroid of each vehicle detected
in the frame after running YOLOv7 inference. This requires adapting a greyscale image with pixel intensities
represented as I(x, y), which allows for the computation of image moments Mvw as,

Mvw =
∑
x

∑
y

xvywI(x, y) (9)

the sum of all pixel intensities in the image of the grey level is defined as the zeroth-order moment M00. The
first-order moments, M10 and M01, provide information about the spatial distribution of the pixel intensities
along the x and y axes, respectively. These moments are used to calculate the centroid of the instance car in
the directions x and y. Thus, the centroid of all detected cars can be calculated as follows (10).

Cn(x, y) =

(
M10

M00
,
M01

M00

)
(10)

After obtaining Cij and Cn we perform Euclidean distance for all centroid slots to every centroid of
detected cars by the following equation,

d(p, q) =

I∑
i=1

J∑
j=1

(
N∑

n=1

(qi,j − pn)
2

)1/2

(11)

where p ∈ Cn centroid of every car and q ∈ Cij centroid of each individual slot. Let {Th ∈ min{diag(aij)}}
be the shortest diagonal for all individual slots of slot j in row i, where the components of vector Thij represent
the value of thresholds for every slot j in row i. Thus, the output of the slot state whether the parking slot is
vacant or occupied can be represented as,

Pred(aij) =

{
occupied, min{d(p, q)} ≤ Th
vacant, otherwise

(12)

Note that to avoid redundancy of a particular slot occupied by more than one vehicle, we implement a
simple sorting procedure that will evaluate those specific slots only with the closest vehicle. To aid comprehen-
sion of these algorithms’ functionality, Figure 4 offers a visual representation of the proposed methods. The top
row of Figure 4(a) corresponds to the system input, which consists of the input image, YOLOv7 inference, and
the slot area ROISij . The second row Figure 4(b) depicts the IoU algorithm, where it shows a conventional
method for evaluating the occupancy state of a specific slot by showing the overlap between the intersection of
(ROISij ∩ ROICn) and the union of (ROISij ∪ ROICn). Following this, the third and fourth rows illus-
trate our proposed algorithms: Figure 4(c), the IoR algorithm, which focuses on the proportion of (ROISij ∩
ROICn) to the desired ROISij , and Figure 4(d), the ED algorithm, which measures the spatial accuracy of
the detected vehicle to the designated slot by calculating the Euclidean distance between the centroid of the slot
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Cij and the centroid of the car Cn. Together, these visual elements in Figure 4 provide a comprehensive guide
to understanding the input system and the progression from the IoU algorithm to the proposed IoR and ED
methods, highlighting their distinct approaches and contributions to fusion algorithms for identifying vacant
parking spots.

(a)

(b)

(c)

(d)

Figure 4. Visual illustration of the proposed methods. Top row: (a) depicts the input system, which consists of
the input image, YOLOv7 inference, and the ROI slot; (b) represents the IoU algorithm; (c) illustrates the IoR

algorithm; and (d) shows the ED algorithm

3. RESULTS AND DISCUSSIONS
3.1. YOLOv7 performance

In this study, we utilized transfer learning instead of training our deep learning model from scratch.
This approach allowed us to achieve improved model performance by leveraging our data distribution while
reducing the computational cost. In Figure 5, the comparison between YOLOv7 performance with default
hyperparameters and optimized hyperparameters during the training phase is portrayed. We employed the
default hyperparameters setup on YOLOv7 for the initial training process using 50 epochs to our dataset.
Figures 5(a) and 5(b) portrays the loss performance of the training versus validation process and the result
of model performance for default hyperparameters YOLOv7, respectively. Based on the graph in Figure 5(a)
we can analyze where at about 17th epoch, the validation loss starts to appear saturated, while the training
loss shows a slight downtrend until the end of the learning process. Even though the model performance of
this setup produced good marks on the mean average precision (mAP@50) of 97.5%, precision of 96.9%, and
recall of 94.9%, this model implies overfitting to our data distribution.
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Given this circumstance, we tried to optimize the hyperparameters and the learning process of YOLOv7
to avoid overfitting conditions that may cause the model to only remember our data train distribution instead
of having the ability to accomplish generalization. We discovered that the best setup for YOLOv7 hyperpa-
rameters to our data distribution, as stated in Table 1 is by using 500 epochs, early stopping of 20 patience,
and applying the stochastic gradient descent (SGD) optimizer. It is essential to highlight that the unspecified
hyperparameters listed in Table 1 are determined using the default configuration. An early stopping mechanism
is intended to discontinue the learning process if there is no improvement in the training loss of as many as 20
epochs. Hence, we do not need to wait until the learning process of 500 epochs is finished. YOLOv7 allows us
to use adaptive gradient algorithms (ADAM) and SGD optimizers. ADAM can adjust the learning rate for each
parameter during training. It can progress faster in the training phase but may not always result in the best gen-
eralization performance. The geometry adaptation in ADAM, through adaptively scaling gradient coordinates,
reduces anisotropic gradient noise and increases the Radon measure of a basin. As a result, ADAM tends to
take longer to escape sharp minima with small Radon measures.

In contrast, SGD uses a fixed learning rate for all parameters that leads to improved model perfor-
mance slowly but could achieve higher test performance. The SGD’s local instability allows it to better navi-
gate towards flatter minima with more considerable Radon measure. Flatter minima, commonly associated with
generalized solutions, explain why ADAM usually suffers from worse generalization performance than SGD
[48]–[51]. With the rapid advancement of parallel computing technologies, such as graphics processing units
(GPUs) and tensor processing units (TPUs), the time and computational cost of training deep learning models
are no longer significant obstacles. As a result, obtaining the parameters required for training data has become
significantly faster and more affordable. This availability has also been supported by many cloud platforms so
that many users can easily design and deploy their deep learning models in the cloud server without necessarily
owning a local server. All the computations for the transfer learning stage of this research were performed
using Google Colab and the Nvidia R© Tesla T4 GPU accelerator.

Table 1. Optimized YOLOv7 hyperparameters

Hyperparameters Description
Value

Default Optimized
lr0 Initial learning rate (lr) at the beginning of training process 0.01 0.001
lrf Final lr (during training, lr is gradually decreased till reaching final value) 0.01 10e-6

momentum Determining contribution of the previous gradient update to the current update.
As the model learns to recognize cars, momentum helps accelerate convergence

and prevents the model from getting stuck in suboptimal local minima. (a
higher momentum value leading to more stable and consistent updates)

0.937 0.9

warmup epoch Number of epochs for which the learning rate is gradually increased from 0 to
lr0.

3.0 1.0

mixup The probability of applying the mixing images for each training batch
augmentation technique during training. The mixup coefficient combines two

images into a single image to provide new training examples. It helps to prevent
overfitting and can lead to improved performance while enhancing the model to
learn more robust and generalized features by training on diverse combinations

of images.

0.0 0.5

As depicted in Figure 5(c), the results of tuning hyperparameters for YOLOv7 show a noticeable trend
in the validation loss, which closely follows the training loss. The validation loss is lower than the training loss
because of YOLOv7’s tendency to learn more effectively during the training process. This discrepancy can
be attributed to the training set’s data distribution varying more significantly than the validation set, owing to
the data augmentation process. Furthermore, optimizing hyperparameters, particularly selecting a lower final
learning rate (lrf), has enabled the SGD optimizer to enhance the model’s performance, resulting in smoother
and more generalized outcomes. The performance of the optimized YOLOv7 hyperparameters, as illustrated in
Figure 5(d), yields comparable results to the default setup with the mAP@50 of 97.4%, precision of 98%, and
recall of 93.9%. However, it is worth noting that the default model might still exhibit some overfitting to our
specific data distribution. Despite the slight differences observed in mAP@50 and recall between the optimized
and default setups, the optimized performance excels in precision, ensuring greater consistency in inferencing.
This emphasizes the significance of fine-tuning hyperparameters to achieve more robust and reliable results.
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(a) (b)

(c) (d)

Figure 5. Performance metrics comparison of: (a) loss value in default YOLOv7 hyperparameters; (b) loss
value in optimized YOLOv7 hyperparameters; (c) model performance with default YOLOv7

hyperparameters; and (d) model performance with optimized YOLOv7 hyperparameters

3.2. Evaluation performance on occupancy state algorithms
To evaluate our proposed algorithms, we split 10% of a total dataset based on our data preparation

stage. This results in 125 unique images from CNRPark-EXT of 9 different view cameras in 3 conditions
(sunny, overcast, and rainy). Evaluation performance metrics of accuracy (13), precision (14), recall (15), and
F1-score (16) were applied to predict how our proposed method performed in this study based on the ground
truth label from CNRPark-EXT using the confusion matrix given in Table 2. Here, TP indicates true positive,
TN refers to true negative, while FP and FN represent false positive and false negative, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1− score = 2 ∗ Precision ∗Recall

Precision+Recall
(16)

Table 2. Confusion matrix of occupancy detection algorithms
Ground truth Prediction Evaluation

Occupied Occupied TP
Empty Empty TN
Empty Occupied FP

Occupied Empty FN

In this study, it is essential to note that we employed various threshold values, denoted as {Th ∈
{0.25, 0.5, 0.75, 1}}, for each of the proposed algorithms in order to determine the optimal solution for each
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method. In the case of the ED algorithm, as outlined in (12), the threshold value is defined as the proportion of
the shortest diagonal distance for each slot. Conversely, for the IoU algorithm, as described in (5), the threshold
value corresponds to the percentage of overlap between the evaluated ROISij and ROICn. Lastly, the IoR
algorithm determines the threshold value as the ratio of the evaluated ROISij , as indicated in (7). As a result,
Figure 6 illustrates the evaluation performance of this study’s proposed methods. Generally, the ED algorithm
demonstrates an upward trend as its threshold value increases with respect to accuracy, recall, and F1-score
metrics. In contrast, the IoU and the IoR algorithms exhibit higher scores for these metrics at lower threshold
values, and their performance tends to decline as the threshold value increases.

Specifically, Figure 6(a) illustrates that the ED algorithm attains its highest accuracy of 98.88% at
a threshold value of 0.75. Figure 6(b) demonstrates that the ED algorithm achieves its optimal precision of
99.57% at a threshold of 0.5. Furthermore, Figure 6(c) shows that the ED algorithm reaches its highest recall
of 99.19% at a threshold of 1. Figure 6(d) highlights that the ED algorithm achieves the highest F1-score of
98.99% at a threshold value of 0.75. The IoU algorithm’s peak performance is observed at a threshold value of
0.25, achieving an accuracy of 90.04%, as depicted in Figure 6(a), a recall of 82.17%, as shown in Figure 6(c),
and an F1-score of 89.92%, as indicated in Figure 6(d). Additionally, Figure 6(b) reveals that the IoU algorithm
achieves a precision of 99.77% at a threshold value of 1. Lastly, there are interesting outcomes for the IoR
algorithm. At a threshold value of 1, the results show 0% in precision shown in Figure 6(b), recall displayed in
Figure 6(c), and F1-score represented in Figure 6(d) because there are no true positive detections. According
to (6), this threshold requires the (ROISij ∩ ROICn) to perfectly overlap 100% with the ROISij . The 0%
precision and the 0% recall signifies that no actual occupied slots were correctly detected. Consequently, the
F1-score is also 0%, confirming the algorithm’s failure to identify any true positives at this threshold. This
strict requirement for perfect overlap is likely impractical, and adjusting the threshold to allow for less than
1 could improve the IoR algorithm’s performance. the IoR algorithm demonstrates its best performance at a
threshold value of 0.25, achieving an accuracy of 97.99%, as depicted in Figure 6(a), a precision of 99.64%, as
shown in Figure 6(b), a recall of 96.74%, as illustrated in Figure 6(c), and an F1-score of 98.15%, as indicated in
Figure 6(d). The sample results of occupancy detection from proposed methods using best threshold parameters
are depicted in Figure 7. The regions in red are indicated as occupied slots, while the green areas are specified
as vacant slots and the blue areas represent detected vehicles through instance segmentation using the YOLOv7.

(a) (b)

(c) (d)

Figure 6. The comparison of performance analysis for proposed methods using different metric: (a) accuracy,
(b) precision, (c) recall, and (d) F1-score
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Figure 7. The visualization of occupancy detection from 9 distinct images in the CNRPark-EXT dataset under
different weather conditions (sunny, overcast, and rainy)

3.3. Positioning of this research in comparison with SoTAs
We have summarized the comparative analysis between our research and the SoTAs for occupancy

detection in parking surveillance systems in Table 3. It is essential to highlight that there can be variations
in terms of system inputs and computational processes across different systems. Furthermore, we emphasize
evaluating system performance and the primary algorithm procedures. In contrast to an alternative detection
method [6], our proposed approach demonstrates better accuracy and incorporates a broader assortment of
evaluation metrics for the validation process. While [6] has made commendable contributions by integrating its
system into an edge device and validating its methodology using a proprietary dataset, the outlining of how they
define the evaluated slot within the observed parking lot remains vague, as their approach hinges on a matching
algorithm. Notably, their proposed algorithm cannot ascertain occupancy status when the SSD detector fails to
localize a vehicle.

Conversely, our study involves a pre-initialization phase wherein every slot within each camera view is
meticulously annotated and stored within our system. This particular slot annotation process facilitates accurate
occupancy assessments within the designated areas. Another study [32] leveraged homographic transformation
properties and adjusted correction factors to establish a uniform grid for directly mapping discrete parking
spot numbers without necessitating manual supervision. However, these steps entail substantial computational
expenses regarding the slot annotation process. Regarding the primary detection algorithm, Nieto et al. [32]
employs Faster R-CNN detectors, known for their inherent computational complexity. In contrast, our system
utilizes YOLOv7, balancing competitive accuracy and faster inference speeds, rendering it particularly well-
suited for real-time applications.

In contrast to the classification methods outlined in [23], [25], [26], [31], [43], our approach employs a
fusion detection method to discern the occupancy state of observed parking slots, thereby providing heightened
adaptability and resilience in addressing occlusion scenarios. While the utmost accuracy achieved by [31]
stands at 99.6%, their outcomes exhibit a particular bias, indicating that the model’s performance remains
robust primarily when the training subset closely resembles the test subset, resulting in marked disparities when
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exposed to diverse test sets. In terms of primary algorithms, [23] utilized a CNN-based approach employing
the AlexNet architecture, while [43] introduced the quantized SimpleNet (Q-SimpleNet). Additionally, [25]
applied EfficientParkingNet, and [26] employed a modified MobileNetV3 in their respective works. Similar to
our study, they utilized the CNRPark EXT dataset. However, a notable difference from our approach is their use
of patches for individual slots to determine their occupancy status. In contrast, our method employs detection
algorithms for assessment. Notably, as they annotate each slot with a bounding box, overlapping annotations
between adjacent slots could introduce interference capable of influencing the inference results of the applied
detectors. Furthermore, the size of the defined patches on distant slots diminishes due to their greater distance
from the camera. Consequently, employing minute bounding boxes may predispose the outcomes to bias or
misclassification due to the limited feature information within the evaluated area.

In summary, our approach endeavours to preserve the information of each slot to the greatest extent
feasible by emulating designated slots akin to real-shape conditions. As evidenced by system performance
outcomes, the accuracy of the ED algorithm within our proposed method slightly surpasses that of [23], [25],
[26], [43]. Additionally, our intersection over reference (IoR) algorithm demonstrates comparable performance
accuracy to that reported in [23].

Table 3. Comparison between proposed method and state of the arts
Research

study
Input Computation

process
Pipeline

logic
Primary

algorithm
Dataset Testing

scenarios
System performance

metrics
*Almeida
et al. 2015

[31]

Image Desktop Classification SVM and
LBP/LPQ

PKLot
image
dataset

Outdoor, clear,
sky, overcast,

rainy

Accuracy:
84.2%-99.6% AUC:

0.9194-0.9998
Amato et al.

2017 [23]
Image Edge

device
Classification CNN:

AlexNet
CNRPark

EXT image
dataset

Outdoor, sunny,
overcast, rainy

Accuracy: 98%
AUC:0.9974

Nieto et al.
2018 [32]

Video Desktop Detection Homographic
transforma-
tion, Faster

R-CNN,
fusion

PLds image
dataset

Outdoor, clear,
rainy

AUC:0.919

*,**Ke et al.
2020 [6]

Video Edge
device

and server

Detection SSD, BG,
SORT,
fusion

Pascal
VOC,

MIO-TCD,
and private

dataset

Outdoor,
indoor, sunny,
cloudy, rainy,

foggy

Accuracy: 95.6%

Zhuang
et al. 2022

[43]

Image Desktop
and Edge

device

Classification CNN:
Q-SimpleNet

CNRPark
and PKLot

image
datasets

Outdoor, sunny,
overcast, rainy

Accuracy: 98.6%
@CNRPark, 97.5%

@PKLot

Rahman
et al. 2022

[25]

Image Desktop Classification Efficient-
ParkingNet

CNRPark
image

datasets

Outdoor, sunny,
overcast, rainy

Accuracy: 98.44%

Yuldashev
et al. 2023

[26]

Image Desktop Classification Modified
Mo-

bileNetV3

CNRPark
and PKLot

image
datasets

Outdoor, sunny,
overcast, rainy

Accuracy: 98.01%

Proposed
study

Image Cloud
based

Detection YOLOv7,
ED#, IOU+,

IOR++,
fusion

CNRPark
EXT
image
dataset

Outdoor,
sunny,

overcast, rainy

Accuracy:
98.88%#, 90.04%+,

97.99%++

F1-score: 98.99%#,
99.2%+, 98.15%++

*The test procedure may have led to biased results, or it is not clear. **Authors included private dataset in the test. #The evaluation
performance of Euclidean distance algorithm. +The evaluation performance of intersection over union algorithm.

++The evaluation performance of intersection over reference algorithm.

4. CONCLUSION
This paper presents an approach that transcends current methods for accurately identifying the occu-

pancy state of parking spaces using a public dataset. The proposed fusion algorithms combine computer vision
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techniques with occupancy state algorithms, resulting in enhanced accuracy and robustness in system evalua-
tion performance. The developed pipeline integrates object detection through an optimized YOLOv7 frame-
work with multiple occupancy state algorithms: IoU, IoR, and ED. Comprehensive experimental evaluations
provide valuable insights into the performance of these methods, demonstrating the approach’s superiority over
SoTA techniques with accuracies of 98.88% for the ED algorithm, 90.04% for the IoU algorithm, and 97.99%
for the IoR algorithm. This research advances the field by offering an innovative solution that surpasses existing
methods and contributes to the development of more reliable parking surveillance systems.

Nevertheless, this study has a few important limitations that should be taken into consideration when
designing future research investigations concerning occupancy detection in intelligent parking management
systems. Since manual annotation and secondary datasets are still used in this study, investigating both in-
door and outdoor environments with primary datasets could provide valuable insights into the robustness of
the proposed methods. Additionally, addressing the significant challenge of manual labeling in parking spot
recognition represents a merit contribution to the field. Furthermore, future research could explore alterna-
tive lightweight deep learning models and deploy this system within an artificial intelligence of things (AIoT)
architecture to evaluate its efficiency and effectiveness in real-world applications.
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