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Cryptojacking is the illicit use of computing resources for cryptocurrency
mining. It has emerged as a serious cybersecurity threat that degrades critical
system performance and increases operational costs. This paper proposes an
advanced machine learning (ML) framework that integrates transformer-
based language models with post hoc explainable artificial intelligence
(XAl) to detect cryptojacking using complementary network traffic and
process memory data. Numerical and categorical features are discretized and
tokenized to enable semantic modelling and contextual learning.
Experimental results show that transformer models effectively capture
cryptojacking-related behavioral patterns, with decoding-enhanced BERT
with disentangled attention (DeBERTa) achieving high detection
performance and recall exceeding 80%. bidirectional encoder representations
from transformers (BERT) attains comparable recall with lower
computational overhead, making it well suited for real-time environments,
while robustly optimized BERT approach (RoBERTa) and DeBERTa are
more appropriate for offline or batch-based analysis. Model performance is
evaluated using standard classification metrics, and XAl techniques provide
interpretable insights into feature relevance, supporting transparent and
reliable detection. In general, the proposed framework delivers an effective
and deployment-ready solution for cryptojacking detection.
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1. INTRODUCTION

Cryptojacking attacks have emerged as a major cybersecurity threat that exploits computing
resources without consent to mine cryptocurrencies for profit [1]. Attackers use methods such as malicious
websites, compromised servers, and file-less techniques, with in-browser mining becoming increasingly
common [1]. These attacks degrade critical system performance, increase energy consumption, and cause
financial losses. The rise of cryptojacking-as-a-service (CaaS) has lowered barriers for cybercriminals,
amplifying the threat [1]. The inherent decentralization and anonymity of cryptocurrencies further impede
efforts to track and analyze cryptojacking activity [1]. Proactive mitigation using large language models
(LLMs) and explainable artificial intelligence (XAl) is crucial, since traditional signature-based machine
learning (ML) approaches struggle to detect zero-day attacks [1]. While LLMs can classify malicious
activity, their interpretability is limited, motivating the use of XAl to improve transparency and reliability.
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Despite extensive research on cryptojacking, early detection remains underexplored [1], [2]. Promising
approaches involve monitoring application programming interface (APIs), registries, file activity, and
network metadata, yet most tools are evaluated in simulations, facing challenges in data collection, ground
truth accuracy, and interpretability [3]-[5]. This study uses network traffic and process memory data to detect
cryptojacking and improve interpretability.

The research evaluates three LLMs for early detection and applies XAl techniques like local
interpretable model-agnostic explanations (LIME) and shapely additive explanations (SHAP), to explain
feature contributions. The experiment aims to identify the most effective LLM that enhances model
explainability and determine the optimal dataset for cryptojacking detection. The study hypothesizes that
i) LLMs accurately detect cryptojacking, ii) LIME improves interpretability, and iii) the datasets
provide comprehensive information for effective classification. Studies highlight shortcomings in current
cryptojacking defenses [6], demonstrating the need for more effective and early detection. This is
critical as evolving cryptojacking techniques exploit computing devices such as GPUs and CPUs for
cryptocurrency mining, thereby harming system performance and security. Effective early prevention is
essential to mitigate the impact of cryptojacking to protect critical systems from data loss and financial
damage by identifying attacks before devices are exploited [7]. LLMs can support this process by analyzing
extensive network traffic datasets to detect patterns of malicious activity to enable timely detection and
response [7].

For example, Adigun et al. [8] present a method to detect cryptojacking activities related to Bitcoin
(BTC) traffic using six ML algorithms. The random forest (RF) model achieved the best performance even
though LLMs and XAl were not applied. A hybrid ML method combining internet protocol (IP) blacklisting
and payload inspection is implemented by Danesh et al. [9] to detect cryptojacking at the network edge.
The method achieved high accuracy (97.02%), but lacked LLMs and XAIl. This limits its ability to
provide interpretable explanations. Cao et al. [10] introduced Maglnspector, an unsupervised approach that
leverages GPU magnetic signatures and adversarial autoencoders to boost the detection accuracy of mutable
cryptojacking by 25.5% on NVIDIA GPUs and 17.8% on AMD GPUs.

Advanced models like Maglnspector have been widely used to detect various network attacks via
traffic analysis [11], showing potential for cryptojacking detection. As noted above, LLMs combined with
XAl techniques have not yet been applied in this domain. The proposed method demonstrates that integrating
LLMs with XAl can enhance cryptojacking pattern recognition. Nevertheless, challenges such as model
opacity, high-dimensional representations, and context dependencies highlight the need for explainability
[12]. XAl methods like SHAP and LIME can provide insights into crucial features to enhance the
interpretability of LLM results [13]. Building on this, the study introduces a hybrid and model-agnostic
framework to improve LLM interpretability for robust cryptojacking analysis.

The limitations of existing cryptojacking detection literature arise from several factors. Firstly, there
is a lack of publicly available datasets. Many approaches also lack interpretability in identifying
cryptojacking, malicious addresses, and cryptocurrency-mining activities, often focusing on broader malware
detection [8]-[10]. For example, while ML has been used to classify zero-day exploits, the specific
characteristics and interpretability of cryptojacking remain largely unaddressed [11], [12]. Some recurrent
neural network (RNN)-based methods, including long short-term memory (LSTM), gated recurrent unit
(GRU), and simple RNN, rely heavily on legacy datasets like UNSW-NB15 and NSL-KDD [14]. This limits
their applicability to novel malware detection. Traditional ML techniques may also produce false positives.
Therefore, future research should explore hybrid and agnostic LLM to accurately detect, predict, mitigate,
and interpret cryptojacking threats across diverse cryptocurrency networks [15]. Current detection methods
show promise, but vary with attack type, system setup, and conditions [13]-[15].

The manuscript is organized as follows: section 2 describes the methodology with experimental
datasets. In section 3 details the proposed approach, including the chosen LLMs and evaluation metrics.
Section 4 presents and analyses the results while section 5 concludes the study.

2.  PROPOSED METHOD

Experimental steps delineating the research methodology for implementing the proposed model
consists of preprocessing experimental datasets, refining features, choosing appropriate LLMs, and
carrying out experimental tests to validate the selected approach (Figure 1). These steps have been stratified
into i) data collection, ii) preprocessing, iii) feature extraction, iv) LLM classification, and v) XAl (Figure 1).
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Figure 1. The proposed hybrid ML model

2.1. Experimental datasets
2.1.1. UGRansome dataset

UGRansome is the first experimental dataset. It is a key resource for identifying zero-day exploits
[16]. Created in 2021, the dataset includes previously undocumented zero-day attacks [16]. And contains
207,533 samples each with 14 attributes (Table 1). Its large size supports effective ML training and testing.
Recently, Zhang et al. [16] used the UGRansome by employing F-measures to enhance model
interpretability. Compared to other datasets, UGRansome offers a larger feature set and more robust model
evaluation [2], [5]. The dataset is publicly available in CSV format (10.0 MB), covering 17 ransomware
families (https://www.kaggle.com/datasets/nkongolo/ugransome-dataset/data).

Table 1. Attributes in the UGRansome dataset

Column Feature Type Description
1 Timestamp Quantitative Numeric time taken by a transaction to occur (e.g., 45 seconds).
2 Protocol Qualitative Categorical network protocol used for the communication.
3 Flag Qualitative Categorical flags associated with the network communication.
4 Family Qualitative Ransomware family (e.g., CryptoLocker, Locky, NoobCrypt).
5 Cluster Quantitative Numerical groups categorizing malware.
6 Seed address Qualitative The initial or source address involved in the transaction.
7 Expended address ~ Qualitative The recipient or destination address involved in the transaction.
8 Bitcoin Quantitative The bitcoin amount involved in transactions (e.g., 3.0 BTC).
9 uUsbD Quantitative The equivalent value of bitcoin in US dollars.
10 Network flow Quantitative The size of data transferred in the transaction (e.g., 454 bytes).
11 IP Qualitative The IP address.
12 Threats Qualitative Malware associated with malicious activities (e.g., phishing).
13 Port Quantitative The network port (e.g., 5061).
14 Prediction Qualitative  Target variable (signature (S), anomaly (A), synthetic signature (SS)).

2.1.2. Process memory dataset

The PM is the second experimental dataset (Table 2) collected via dynamic malware analysis using
the MalFe platform. The ransomware and benign executables are compiled in a sandbox environment [17]
with API call traces recorded as JSON reports. These reports are used to extract categorical and temporal
features, including call types, timestamps, frequencies, intervals, and sequences [17]. After preprocessing, the
dataset contains approximately 280-285 unique API call features, supporting malware visualization and
classification based on runtime behaviour (https://www.kaggle.com/code/thashannaick/ransomware-
detection-using-llm-and-xai-techniques).

Table 2. Attributes in the PM dataset

Column  Feature Type Description
1 r Numerical Count of read-related API calls executed by the process.
2 w Numerical Count of combined read and write API calls.
3 X Numerical Count of read and execute API calls.
4 rwe Numerical Count of read, write, and create API calls.
5 rwx Numerical Count of read, write, and execute API calls.
6 rwxc Numerical Count of read, write, execute, and create API calls.
7 Category  Categorical Category of the API call (e.g., file, registry, process, network).
8 Family Categorical Ransomware family associated with the sample.
9 Label Categorical Class label indicating benign or malware.
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2.1.3. Suitability of experimental datasets for cryptojacking detection

The UGRansome and PM datasets are suitable for cryptojacking detection because they capture
complementary malicious behaviors [18]. UGRansome provides cryptocurrency transaction and network
features that reflect illicit mining activity (Table 1), while the PM dataset captures runtime process behavior
through API call patterns that reveal stealthy cryptomining operations (Table 2). Together, these datasets can
potentially enable LLMs to learn complex behavioral dependencies across network and host levels. Their
structured features further support XAl methods, allowing transparent interpretation of feature contributions
in cryptojacking detection [7].

2.2. Feature preprocessing and encoding for LLM-based cryptojacking analysis

Numerical and categorical features from the UGRansome and PM datasets are preprocessed and
transformed to enable effective fine-tuning of transformer-based LLMs [18]. Missing numerical values are
imputed using median statistics, while categorical attributes are completed using mode values to preserve
data integrity and generalization. Label inconsistencies across datasets are standardized prior to training.
Continuous numerical features are discretized using quantile-based binning and encoded into token-like
representations [7], [18].

These tokens are concatenated into sequential text inputs to allow structured cryptojacking data to be
processed as linguistic sequences by LLMSs. This preprocessing and encoding pipeline ensures compatibility
with transformer architectures while retaining behavioural semantics essential for cryptojacking detection,
and provides a reliable foundation for downstream explainable analysis. Both datasets were free of missing
values and duplicates after removing negative timestamps. Categorical features were encoded using Python’s
label encoder.

3. METHOD

An autoencoder is a type of artificial neural network (ANN) used for unsupervised deep learning
(DL) [19]. It consists of two main components: an encoder that compresses the input data into a lower-
dimensional representation, and a decoder that reconstructs the original input from this representation.

Let X be the input data, f.,coqer(X) be the encoding function, and f;.coqer(X) be the decoding
function. The goal of training an autoencoder is to minimise the reconstruction error measured using a loss
function such as mean squared error (MSE) [19]. In the autoencoding process, 0 represents the parameters of
both the encoder and decoder, and n is the number of training examples [19]. The encoder maps the input
data X to a lower-dimensional representation Z = £, ..4.-(X). Through this process, the autoencoder learns a
compact representation of the input data, capturing its essential features in a lower-dimensional space.

While autoencoders are effective at learning compact and task-agnostic representations of data,
modern natural language processing (NLP) often requires modeling complex sequential dependencies and
contextual relationships in large corpora [18], [20], [21]. This limitation motivates the use of transformer-
based architectures (Figure 2), such as LLMs, which extend the concept of learned representations to
sequences of arbitrary length.

Transformers replace the fixed encoding—decoding paradigm of autoencoders with attention
mechanisms that dynamically capture relationships between elements in a sequence to enable state-of-the-art
performance in tasks such as text generation, summarization, and classification [7], [18], [20], [21]. In this
study, cryptojacking detection using the UGRansome and PM datasets is performed by using an autoencoder
for feature extraction (Figure 1), transformer-based LLMs for classification (Figure 2), and explainability is
provided via SHAP and LIME for feature attribution (Figure 1).

The study uses pre-trained transformer-based language models (PLM), such as bidirectional encoder
representations from transformers (BERT), robustly optimized BERT approach (RoBERTa), and decoding-
enhanced BERT with disentangled attention (DeBERTa), to extract rich, and context-aware feature
representations for improved classification. The BERT is a pre-trained language model that utilizes
bidirectional attention to capture the contextual meaning of tokens in a sequence [21].

By understanding both preceding and succeeding tokens simultaneously, BERT generates rich
embeddings that represent complex relationships in textual or sequential data [20]. In the context of
cryptojacking detection using network traffic of the UGRansome dataset and process memory features,
BERT can encode system logs, process names, or memory traces into embeddings that capture behavioral
patterns indicative of malicious activity (Figure 2). The RoBERTa is an improved variant of BERT that
employs dynamic masking, larger batch sizes, and more training data to achieve better generalization and
representation quality [21]. For cryptojacking detection, ROBERTa can provide more robust feature
representations from the UGRansome and PM datasets to improve the model’s ability in distinguishing
between normal and malicious process behaviors (Figure 2).
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The DeBERTa enhances BERT by using disentangled attention mechanisms and an improved
decoding structure to capture both content and positional information more effectively [21]. In cryptojacking
detection, DeBERTa can extract fine-grained, and context-aware features from memory snapshots or
malware execution patterns, which can improve classification accuracy when combined with downstream
LLM classifiers (Figure 2). Together, these PLMs can be fine-tuned on cryptojacking datasets (Figure 2) by
juxtaposing their ability to learn high-dimensional, and semantically rich representations, which are then fed
into classifiers to accurately detect and differentiate malicious activities.
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Figure 2. Conceptual flow: PLM, fine-tuning, and embedding model

3.1. Anomaly detection techniques
The isolation forest (IF) algorithm is used to detect anomalies by isolating observations through
random splits (Figure 1). For a given dataset X with n observations and d features, the IF is described (1) as:

. 1
Isolation(x) = ?:1@ (1)
where h(x;) is the path length from the root node to the terminal node for observation xi. The anomaly score

S(x) for x is also defined as (2):

_E(hx)

S(x) = 27 @)

where E(h(X)) is the average path length of x and c(n) is the average path length of unsuccessful searches (3).

c(n) = 2H(n—1) -2 3)

With H(i) being the i-th harmonic number. If S(x) is close to 1, then x is considered an outlier.
Otherwise, it is considered normal. The autoencoder detects anomalies based on the reconstruction error £
computed as the MSE between x and its reconstruction x (4).

E(x,a?) = %Zld=1(xi - %)? 4)

A threshold € is set for X > €, when x is flagged as an anomaly. Preprocessing these anomalies is
crucial for enhancing the performance and reliability of the proposed model. Anomalies, such as outliers and
missing values could skew results and lead to inaccurate predictions. The study addressed these issues by
preprocessing anomaly data, which enhances the accuracy and improves the robustness of the proposed
model, making it less sensitive to noise and variations in the data. Furthermore, clean and well pre-processed
data reduced training time, and the computational resources required, making the entire modelling process
more efficient. Figure 3 shows the process by which anomaly data is filtered and transformed into
embeddings.
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This technique removes extreme values beyond a defined threshold, preventing distortion of the
mean or variance (Figure 3(a)). As shown in Figure 3(b), the resulting datasets exhibit reduced random
variability, highlighting key features that contribute to improved model efficiency, particularly for the
UGRansome dataset.

PM: TF-IDF token embeddings (SVD 2D) UGRansome: TF-IDF token embeddings (SVD 2D)
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Figure 3. Embedding generation from (a) PM and (b) UGRansome data

3.2. Local interpretable model-agnostic explanations

LIME aims to explain individual predictions by perturbing the input data and observing changes in
the output [22]. The formula for computing the value (or weight) of a feature involves the following steps:
— Generate perturbed samples (5)

Z={212; ...z} ®)

Where z; are the perturbed samples generated around x.
— Model predictions (6)

f@ ={f(2), f (), ... f(zm)} (6)

Where f is the black-box model, in this case, PLMs.
— Weighting samples (7)

2
exp(_(D(z.ZZ)) )

D(x,z’)) (7)

T[x(z) =

Lyrezexp (-7
Where D (x, z) is a distance function (e.g., Euclidean distance) between x and z, and ¢ is a kernel width
parameter.

— Linear model fitting (8)

g(z) = ﬁO + ﬁlzl + ﬁZzz +-t+ ﬁnzn (8)

Here, the coefficients 8 represent the importance of each feature, and the linear model g is used to
interpret the weighted samples [20]-[22]. Hence, S derived from g fitted to these samples explain the
importance of features in influencing the model’s prediction. This study utilizes LIME as a post-hoc method
to generate explanations after the autoencoder and LLMs have been trained (Figure 4). Additionally, SHAP
is employed to quantify the contribution of each feature to the model’s predictions [23], providing a
complementary perspective on model interpretability. The aim is to enhance the explanation of cryptojacking
detection in ML-based XAl systems. In the experiments, ransomware-derived features are used to detect
cryptojacking because both malware types exhibit abnormal system behaviors, such as excessive CPU and
memory usage, enabling anomaly-based detection approaches to be effectively applied (Figure 4).
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3.3. Parameters fine-tuning

Table 3 outlines parameters of the proposed hybrid model. For the autoencoder, the parameters
include the Adam optimizer, MSE loss function, rectified linear unit (ReLu) as the activation function for
hidden layers, and Sigmoid activation function for the output layer. These parameters are used for training
the autoencoder model [20], [21]. In turn, Gini and entropy measured the quality of a RF split, with the
number of trees in the forest set to 100. The LIME model is set to RF with a Logit link function to generate
local explanations for LLM’s predictions (Table 3). The link function specifies transformations applied to the
output of the interpretable model [21]. The study uses Python libraries such as numpy, Keras, TensorFlow,
pandas, matplotlib, seaborn, scikit-learn, and lime to implement the hybrid model (Table 3). Transformer-
based models, BERT (max_seq_len=128, batch=32), RoBERTa (learning_rate=2e-5, epochs=3), and
DeBERTa (attention_heads=12, epochs=3) were used for contextual feature extraction.

Table 3. Parameters of the proposed hybrid model

Algorithm Parameters Description
Autoencoder Hidden Iayer_s=2, epochs=50, ) ) Feature extraction. Neural network (NN) for anomaly detection.
Adam optimizer, ReLU, MSE, and Sigmoid
RoBERTa Learning_rate=2e-5, epochs=3 Optimized BERT variant with robust pre-training.
DeBERTa Attention_heads=12, epochs=3 Transformer model with disentangled attention.
BERT Max_seq_len=12, batch=32 Transformer-based model for contextual classification.
LIME RF and Logit: num_features=14 Post-hoc explainer that approximates local model behavior.
SHAP Model_type=tree Post-hoc explainer using Shapley values to assign feature importance.
3.4, Data split

The study partitioned the datasets into 80% training and 20% testing sets using scikit-learn’s train-
test split while preserving class distribution, and employed four-fold cross-validation to evaluate model
performance and reduce bias.

3.5. Evaluation metrics

The accuracy of a binary classification model is assessed by dividing the count of correctly
classified samples (true positive (TP) and true negative (TN)) by the total number of samples including false
positive (FP), and false negative (FN) [22], [23]. This metric serves as an indicator of the proportion of
instances that are accurately classified within the hybrid model (9).

TP+TN _ TP+TN ©)
N  TP+TN+FP+FN

Accuracy =
Precision represents the proportion of samples accurately classified as positive, thus measuring the
proportion of TP predictions (10).

TP
TP+FP

Precision = (10)

The recall is defined as the ratio of correctly classified positive samples to the total number of actual
positive samples. This metric serves to quantify the proportion of TP accurately identified by the model (11).

TP
TP+FN

Recall = (11)
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F1 score represents the harmonic mean of precision and recall (12).

2 __ 2XPrecisionXRecall

Fl1= T T

Precision ' Recall

(12)

" Precision+Recall

The receiver operating characteristic — area under the curve (ROC-AUC) is a performance metric for
classification models [23]. The ROC curve plots the TP rate (sensitivity) against the FP rate (specificity) at
different threshold settings. The AUC measures the area under this curve, representing the model’s ability to
distinguish between classes. A value of 1 indicates perfect classification, while 0.5 corresponds to random
guessing [23]. Table 4 provides a confusion matrix used to evaluate the classification performance in
identifying cryptojacking transactions [22]. In the context of cryptojacking detection, TP refers to
transactions correctly classified as cryptojacking. FP denotes transactions incorrectly identified as
cryptojacking. Conversely, FN represents misclassified cryptojacking transactions. TN encompasses
transactions accurately classified as non-cryptojacking.

Table 4. Confusion matrix

Actual/predicted Positive (cryptojacking)  Negative (non-cryptojacking)
Positive (cryptojacking) TP FP
Negative (non-cryptojacking) FN TN

4. RESULTS AND DISCUSSION

The hybrid model underwent evaluation using a four-fold cross-validation approach, and the
reported performance is an average across all folds. As highlighted in Figure 5, the attention visualizations
reveal that transformer models effectively learn a contextual representation of discretized features. DeBERTa
exhibits a highly dynamic and non-uniform attention distribution (Figure 5(a)), allocating focus across
multiple bin tokens and operation-specific indicators (e.g., rx, rw). This demonstrates its ability to interpret
the engineered token sequence as a structured behavioral language. In contrast, ROBERTa (Figure 5(b)) and
BERT (Figure 5(c)) show more concentrated attention, primarily focusing on initial tokens, suggesting strong
performance but reduced sensitivity to feature variation (Figure 5).

Attention Weights (Sample} Attention Weights {Sample) Attention Weights (Sample)

N

Figure 5. Attention weight for; (a) ROBERTa, (b) DeBERTa, and (c) BERT on tokenized features

These results confirm the effectiveness of the feature transformation and tokenization process, as
well as the transformers’ ability to selectively prioritize salient behavioral features. The visualizations
enhance model transparency by showing that critical related features are explicitly identified and weighted
during classification, reinforcing the suitability of transformer architectures for explainable malware
detection [24].

4.1. Classification results

The transformer models demonstrated strong detection capabilities with varying trade-offs between
recall and precision. DeBERTa achieved an overall accuracy of 77.2%, correctly identifying most malware
instances, with a high recall of over 90%, indicating effective detection of malicious activity (Figure 6(b)). Its
elevated FP rate (FPR) suggests an overly cautious behavior, potentially increasing false alarms. Similarly,
BERT exhibited high malware recall (=90%), successfully identifying the majority of malicious samples, but
at the cost of a moderate precision due to FPs, reflecting a tendency to misclassify unusual benign activity as
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malicious (Figure 6(c)). RoBERTa showed comparatively improved performance, achieving more TPs with
fewer FPs than BERT (Figure 6(a)), indicating a better balance between detection accuracy and false alarm
reduction.

Predicted Predicted

(a) (b) (©
Figure 6. LLM's confusion matrix for (a) RoOBERTa, (b) DeBERTa, and (c) BERT

These results highlight that while all models are effective at detecting malware, managing false
positives (FPs) remains a key challenge for practical deployment (Figure 7 and Table 5). The RoBERTa
model achieved strong discriminative performance with an AUC of 0.833 (Figure 7(a)), as further reflected
in its performance metrics (Figure 7(d)). The DeBERTa model obtained the highest AUC of 0.856 (Figure
7(b)), benefiting from its disentangled attention mechanism and high recall, as shown in Figure 7(e). BERT
followed closely with an AUC of 0.854 (Figure 7(c)), demonstrating strong and consistent classification
capability (Figure 7(f)). BERT was the most computationally efficient model, requiring only 6 minutes to
train, making it well suited for real-time environments (Figure 8). ROBERTa required approximately 82
minutes, offering improved performance at a higher computational cost suitable for GPU-enabled systems
(Figure 8). DeBERTa had the highest training cost at 138 minutes, indicating its suitability for offline or
infrequently retrained detection systems rather than real-time deployment (Figure 8). These results indicate
that BERT is the most practical choice for real-time cryptojacking detection, as it can be trained and updated
quickly under limited computational resources, while RoOBERTa and DeBERTa are better suited for offline or
batch-based detection where higher accuracy justifies longer training times (Figure 8).
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Figure 7. LLMs overall results for (a, d) RoOBERTa, (b, €) DeBERTa, and (c, f) BERT
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Table 5. Performance comparison
Model Accuracy (%)  Precision (%) Recall (%) F1(%) ROC-AUC (%)

DeBERTa 77 84 77 78 86
RoBERTa 79 82 79 80 83
BERT 78 82 78 79 85
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Figure 8. Computational cost

4.2. LIME explanation results

The LIME analysis on the UGRansome and PM datasets provides interpretable evidence of how the
proposed model identifies cryptojacking intrusions. For both datasets, LIME highlights that predictions are
strongly influenced by features associated with ransomware family labels, indicating that certain ransomware
behaviors overlap with cryptojacking activity (Figure 9).

In particular, process memory access patterns, such as read-write (rw) and read-execute (rx)
operations, emerge as dominant contributors (Figure 9(a)), reflecting the intensive and persistent memory
usage required for illicit cryptocurrency mining [25]. Protocol indicators, including BTC, USD, and specific
communication protocols, are also assigned high importance (Figure 9(b)), suggesting attempts to monetize
compromised resources and maintain mining pool connectivity. Furthermore, network traffic (NetFlow)
features are consistently emphasized in capturing abnormal outbound connections and sustained traffic
volumes typical of cryptojacking campaigns (Figure 9(b)). Finally, addresses and threat indicators contribute
to the model’s decisions by linking observed behaviors to known malicious traffic. In general, the LIME
results confirm that the model relies on semantically meaningful network traffic and PM features to

distinguish cryptojacking from benign activity, thereby increasing trust and transparency in the detection
process.
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Figure 9. LIME results for (a) PM and (b) UGRansome data
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4.3. SHAP explanation results

Figure 10 presents the SHAP explanation results for detecting cryptojacking. On the UGRansome
dataset, the SHAP force plot shows that memory operations read—write—create (RWC), read—write—execute
(RWX), BTC, cluster, and NetFlow features are the most influential factors in predicting individual
cryptojacking (Figure 10(a)). Meanwhile, the SHAP summary plot on the PM dataset reveals a similar
pattern of influential features at the global level (Figure 10(b)). Compared with LIME, which stresses RW,
RX, BTC, protocol, USD, network traffic, addresses, and threats, SHAP not only confirms the importance of
memory access patterns, cryptocurrency indicators, and network traffic, but also identifies higher-level
features. In particular, RWC and clusters capture process creation behavior and aggregated activity patterns
that LIME did not highlight (Figure 9), indicating that cryptojacking malware not only manipulates memory
but also coordinates processes and network behaviors systematically. While LIME provides local and
instance-specific explanations, SHAP offers a global perspective, revealing consistent behavioral signatures
across the datasets. Results show that SHAP uncovers structural and behavioral patterns that complement
LIME’s local insights to enhance interpretability and trust in the detection of cryptojacking activity.
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Figure 10. SHAP results for (a) UGRansome and (b) PM datasets

4.4. Comparative analysis with existing studies

Table 6 compares the findings with existing literature to highlight the contribution of this study
[26]-[29]. It presents current detection approaches against the proposed hybrid host-based model, which
surpasses state-of-the-art techniques in accuracy and precision, achieving more than 80% (Figure 11).
In contrast, the attention-based LSTM model by Ma et al. [26] reported lower performance, while the
proposed host-based method provides a more accurate solution for early cryptojacking detection. The model
also outperforms Li et al. [27] approach, which achieved 89% precision using autoencoders (Table 6).
The proposed host-based LIME matches or exceeds these metrics, demonstrating superior overall
performance (Figure 11). Moreover, while Olayah et al. [28] and Abbasi et al. [29] reached 97% accuracy
using Grey Wolf optimization and statistical code analysis; the proposed model improves interpretability
[27]-[29]. These results support the hypothesis that host-based model-agnostic methods achieve high
performance, similar to traditional ML models like RF and K-NN (Figure 11). Potential limitations include
insufficient data quality, inadequate feature selection, computational cost, imbalanced datasets, or parameter
tuning issues. Moreover, LLMs require complex processing time than RF or K-NN due to their deep
architecture, high-dimensional embeddings, and sequential token processing, which increase inference
complexity in real-world scenarios. Furthermore, model-agnostic host-based methods may be too complex or
unsuitable for certain cryptojacking behaviors. As cryptojacking tactics evolve, performance may vary,
highlighting the value of integrating advanced ML techniques for effective detection.
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Table 6. Comparison of methods in literature

Reference ML model Method Metric Results Limitations
[26] DL In-browser MAPE 65% Underfitting
[27] Autoencoders In-browser Precision 89% Traffic periodicity
[28] Grey wolf In-browser  Confidentiality 97% XAl
[29] Blacklisting Host-based Accuracy 97% Multiple parameters
[30] Ensemble learning  Host-based F1-score 97% SHAP
[31] Sequential analysis  In-browser Thresholds - Experimentation
[32] Ensemble learning  Host-based Accuracy 98% Attacks categories
This study Hybrid model Host-based ROC-AUC 93% Datasets
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Figure 11. Comparative results

4.5. Discussion

This work explores the use of LLMs in combination with XAl techniques for detecting
cryptojacking activities. While previous studies have applied various ML approaches to anomaly detection,
very few have examined the explicit integration of LLMs with XAl methods to identify cryptojacking
patterns [30]-[32]. The study findings indicate that LLMs can effectively capture normal transactional
behavior and flag deviations associated with cryptojacking. Transformer-based architectures, with their
capacity to manage complex datasets, were able to accurately distinguish cryptojacking states, while LIME
and SHAP offered valuable insights into the key features driving these predictions. In particular, BTC
incomes played a significant role in illicit transactions, and seed addresses were useful for predicting
cryptojacking attacks [11], [33]. Despite demonstrating strong predictive capabilities, the approach faced
certain constraints, such as the potential for overfitting and the limited availability of cryptojacking-specific
datasets. Although the semi-supervised framework improves generalization by leveraging both labeled data,
the small PM dataset size may restrict broader applicability. Additionally, while LIME and SHAP provide
interpretability for individual feature contributions, they are limited in capturing interactions between
features.

Compared with other DL models that prioritize metrics such as mean absolute percentage error
(MAPE) or confidentiality, the hybrid model-agnostic approach offers a more balanced solution by
combining high accuracy with explainability. Traditional ML models often sacrifice transparency for
performance, but the inclusion of LIME and SHAP enhances trust by clarifying individual predictions. This
interpretability is particularly important in blockchain environments, where understanding the rationale
behind cryptojacking detection can inform risk mitigation strategies [33]. The semi-supervised nature of the
proposed model further allows the use of both labeled and unlabeled datasets, increasing adaptability to real-

Cryptojacking detection using model-agnostic explainability (Elodie Ngoie Mutombo)



406 a ISSN: 2502-4752

world scenarios where fully annotated data is scarce. This combination of interpretability, predictive
performance, and flexibility positions host-based semi-supervised model-agnostic techniques as a promising
solution for cryptojacking detection in blockchain systems. Future work should prioritize the expansion of
cryptojacking datasets and the development of engineered features to improve generalization. Investigating
methods to capture feature interactions more effectively and integrating advanced DL techniques could
further enhance detection capabilities. Additionally, designing scalable solutions capable of handling large
volumes of transaction data will be essential as cryptojacking methods continue to evolve. Addressing these
challenges will strengthen the reliability of cryptojacking recognition in complex critical system’s
environments.

5. CONCLUSION

This study aimed to investigate how LLMs, specifically BERT, RoBERTa, and DeBERTa, can be
effectively combined to detect and understand cryptojacking attacks using the UGRansome and PM datasets.
The research question is addressed through a series of evaluations and analyses. The findings demonstrate
that LLMs achieve commendable performance across various metrics, showcasing high accuracy and
precision. The model exhibited moderate recall, indicating reasonable predictions. Integrating LIME and
SHAP provided more profound insights into feature values and model predictions by enhancing the
interpretability of LLM’s results. Specifically, BTC incomes contributed to cryptojacking attacks, with seed
addresses playing a crucial role in enabling timely interventions. The study supports the hypothesis that
LLMs combined with XAl techniques offers a robust and interpretable approach to cryptojacking
recognition. The finding’s insights can lead to timely interventions and mitigation of the damage caused by
malicious cryptomining activities. Future research should explore the scalability of LLMs to ensure
comprehensive and practical cryptojacking recognition. In summary, employing hybrid ML models that
integrate LLMs with XAl for cryptojacking detection marks a significant advancement in addressing zero-
day exploits recognition.
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