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Abstract  
The problem of secure multi-party computation (SMPC) is one of the most fundamental problems 

in information security. First, we introduce the basic concept of SMPC and four SMPC basic agreement: 
key distribution, oblivious transfer, bit commitment and zero knowledge proof. Secondly, we separately 
illustrate commitment schemes commitment transfer protocol, commitment sharing protocol and 
commitment multiplication protocol. Finally, we present unconditionally secure multi-party computation with 
a passive adversary, an active adversary, general adversary structures. 
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1.  Introduction 

Secure multi-party computation (SMPC)) is a subfield of cryptography. The goal of 
methods for secure multi-party computation is to enable parties to jointly compute a function 
over their inputs, while at the same time keeping these inputs private. For example, two 
millionaires can compute which one is richer, but without revealing their net worth. In fact, the 
example was initially suggested by Andrew C. Yao in  1982 [1]. And it was later named the 
millionaire problem. 

The concept is important in the field of cryptography and is closely related to the idea of 
zero-knowledgeness. In general it refers to computational systems in which multiple parties wish 
to jointly compute some value based on individually held secret bits of information, but do not 
wish to reveal their secrets to one another in the process. For example, two individuals who 
each possess some secret information x  and y , respectively may wish to jointly compute 

some function ( , )f x y  without revealing any information about x  and y other than what can 

be reasonably deduced by knowing the actual value of ( , )f x y , where "reasonably deduced" is 

often interpreted as equivalent to computation within polynomial time. The primary motivation for 
studying methods of secure computation is to design systems that allow for maximum utility of 
information without compromising user privacy. 

Secure computation was formally introduced by A. Yao in 1982  as secure two-party 
computation. 

The millionaire problem and its solution gave way to a generalization to multi-party 

protocols [2]. In an MPC, a given number of participants 1 2, , , np p p  each have a private 

data, respectively 1 2, , , nd d d . The participants want to compute the value of a public function 

F  on N  variables at the point 1 2( , , , )nd d d . An MPC protocol is dubbed secure if no 

participant can learn more from the description of the public function and the result of the global 
calculation than what he or she can learn from his or her own entry  under particular conditions 
depending on the model used. 

Like many cryptographic protocols, the security of an MPC protocol can rely on different 
assumptions: 

It can be computational (i.e. based on some mathematical problem, like factoring) or 
unconditional (usually with some probability of error which can be made arbitrarily small). 
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The model in which the scheme is described might assume that participants use a 
synchronized network (a message sent at a "tick" always arrives at the next "tick"), that a secure 
and reliable broadcast channel exists, that a secure communication channel exists between 
every pair of participants (an adversary cannot read, modify or generate messages in the 
channel), etc. 

The centrally controlled adversary considered can be passive (only allowed to read the 
data of a certain number of participants) or active (can corrupt the execution protocol or a 
certain number of participants). 

An adversary can be static (chooses its victims before the start of the multi-party 
computation) or dynamic (can choose its victims during the course of execution of the multiparty 
computation). Attaining security against a dynamic adversary is often much harder than security 
against a static adversary. 

An adversary can be defined as a threshold structure (meaning that it can corrupt or 
simply read the memory of a number of participants up to some threshold), or be defined as a 
more complex structure (it can affect certain predefined subsets of participants, modeling 
different possible collusions). These structures are commonly referred to as adversary 
structures. The opposite set consisting of the sets of honest parties that can still execute a 
computational task is related to the concept of access structures. 

Unconditionally or information-theoretically SMPC is closely related to the problem of 
secret sharing, and more specifically verifiable secret sharing (VSS); many SMPC protocols that 
protect against active adversaries use VSS. 

Performing a computation using MPC protocols is still order of magnitudes slower than 
performing the computation using a trusted third party. However, more and more efficient 
protocols for MPC have been proposed, and MPC can be now used as a practical solution to 
various real-life problems such as distributed voting, private bidding and auctions, sharing of 
signature or decryption functions, private information retrieval, etc. The first large-scale and 
practical application of multiparty computation took place in Denmark in January 2008, as 
described by Bogetoft et al. [3]. 
 
 
2. SMPC Underlying Protocol 

In this section we mainly disscuss  the following four SMPC basic agreement: key 
distribution, oblivious transfer, bit commitment and zero knowledge proof. 
 
2.1. Key Distribution  

For the people engaged in the field of seure multi-party computation and cryptography, 
key distribution is the most basic agreemen. Its main goal is to make discrete communijcations 
securely share string (usually set to binary bit string) to prepare for the future use of secret 
communication tasks. We know that, in the classic environment, the biggest enemy is not 
channel noise, but a potential eavesdropper. If the eavesdropper mastered both sides of the 
legitimate communication key, in subsequent communication, he can illegally eavesdropp 
secrets, forged identity and engage in other acts. In the classic environment, eavesdropping  
can not be avoided in a certain extent. However, in quantum environment, according to the 
uncertainty principle and no-cloning theorem of quantum, eavesdropping detection becomes 
fairly easy [4].  

Public key cryptography is the basic of key distribution. S. Goldwasser and S. Micali put 
forward the first probabilistic pubic key encryption scheme[5], called Goldwasser-Micali(GM) 
scheme. GM scheme is additively homomorphic. Its security is based on Quadratic Residue 

assumption.   is the message extension rate of the encryption algorithm,and 2log N  , 

where security parameter N pq . The bit complexity of the cryptographic operation on the 

message m  is 2
2( (log ) )O m N , so GM encryption system is inefficient. 

T. ElGamal proposed homomorphic probabilistic cryptosystem [6]. It is multiplicaivaly 
homomorphic to realize secure multiparty multiplication of the encrypted data. Its security is 
based on Decision Diffie-Hellman assumption. Its shortcoming is that message expansion rate 
of the encryption scheme on the finite field is tremendous, to achieve practical security, large 
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prime number p  needs at least 300 decimal digits, its bits length p  at least 1024, and at least 

there should be a large prime factor of 1p  .  

J. Benaloh proposed homomorphic dense probabilistic encryption scheme [7]. It is 
extension of the GM program, similar to the GM program, also additively homomorphic. Its 
security is based on the High-degree Residuosity problem, message expansion rate  close to 

1.  
P. Paillier proposed homomorphic probabilistic public key encryption algorithm [8], 

which is additively homomorphic. Its security is based on the Decisional Composite Residuosity 
assumption, message expansion rate  is a constant.   

 
2.2. Oblivious Transfer 

The oblivious transfer means the recipient can get their want messages from the 
sender's secret message set but you can not get the other message, and the sender dose not 
know the recipient choose which messages. Oblivious transfer is an important concept in 
modern cryptography. Now it widely is used to build zero-knowledge proof, verified secret 
sharing protocol  etc. The oblivious transfer and bit commitment together constitute the basis of  
secure multi-party computations. It is a hot spot of  research in the field of information security. 
An interesting application called the secret all-or-none leak, refers to such a secret learning 
task: the owner of several secrets Alice would like to sell any of her secrets to Bob, Bob pay 
money to get a secret what he wants (that is he knew nothing about the other secret), and ask 
Alice can not know Bob purchase which secret.           

The conception of oblivious transfer was proposed by Rabin in [9]. Even, Goldreich and 

Lempel had given 
2

1

 
 
 

-OT in [10]. And Crepeau had proven the equivalance Even’s 
2

1

 
 
 

-OT 

and Rabin’s OT in [11]. Then Brassard, Crepeau and Robert had given AN-DOS and GOT in 
[12,13]. Cachin had constructed UOT in [14].  

  
2.3. Bit Commitment 

Consider such a scene: Alice claimed that she has some predictive capability, but Bob 
is skeptical. In order to make Bob to convince her predictive ability, Alice decided to show her 
the predictive ability for the upcoming a soccer game. How to make Bob believe her predictive 
power? In classic environment, this problem can be easily solved. Before the game, Alice will 
predict the score to written on a small piece of paper, then hand to Bob. After the game, Bob 
contrast to the note on the score of the game to determine the predictive capability Alice really 
has claimed. The core of this example is Alice in something of a prior claiming assertion, 
afterwards, she could not deny the assertion. Without loss of generality Alice’s assertion as one 
bit, such SMPC model is the bit commitment. The conception of bit commitment was proposed 
by M.Blum. Bit commitment scheme can be used to build up zero knowledge proof, verified 
secret sharing, coins throwing etc. A bit commitment scheme must meet the following 
properties: 

Correct: if Alice and Bob all honestly executive agreement, then Bob will properly gain a 
bit Alice commitment in reveal stage. 

Confidentiality: Bob cannot learn the bit in commitment stage. 
Binding: in the end of commitment stage Bob can get the only bit in reveal stage.   
The first model was proposed by A. C. Yao [15], even though Yao has not emphasized 

the generalitty of the model, but the model was evaluated as " really applies to any actual both 
secure computation ". Now we called Yao model. Hoi-Kwong Lo and H. E. Chau proposed LC 
model in [16]. They made two changes to Yao model. First,  the initial state set to pure state 
from mixed state in Yao model. Second, in model Yao, in each round communication do two 
things: measurement and unitary transformation, but measuremen is deleted, only a unitary 
transformation in LC model. This simplification is helpful for the analysis of uncondional security 
existence or not. It greatly simplifies the certification process. 
 
2.4. Zero Knowledge Proof 

Many more complex secure multi-party computation tasks need zero knowledge proof, 
such as identity authentication, signature, etc. Consider a scene: Alice said to Bob “ I know the 
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mathematical proof of the theorem”. Bob expressed doubt again. Alice wanted Bob to believe 
that she did know the methods of proof of the theorem, but not let Bob know proof process. Say 
simply, zero knowledge proof purpose is that make verifier believe prover who really mastered 
this knowledge under the premise not leaking. 

The earliest Goldwasser proposed the concept of zero knowledge proof [17]. After 
verifier participated in the process of zero knowledge proof, any information that can be 
calculated in polynomial time, also can be calculated independently by verifier in polynomial 
time, as long as he believes the authenticity of the proposition. The definition of zero knowledge 
proof systems mainly consider two different probability distribution:  

a) Finished with proof of interaction, the probability distribution generated by the 
polynomial time verifier. 

b) A probabilistic polynomial time automata generated the probability distribution 
based on the premise to be proven proposition correctness.  

The resulting three different levels of zero knowledge proof systems: 
a) Perfect zero knowledge: in this system in the    above two distribution completely 

identical. 
b) Calculation zero knowledge: in this system the two distributions in polynomial time 

indistinguishability, that is the two distributions can not be separated from the test of any 
probabilistic polynomial time.  

c) Statistical zero knowledge: in this system the two distribution close to the statistical 
characteristics, namely the statistical difference between the two can be neglected. 
 
 
3. Commitment Scheme 

A commitment scheme, for an adversary structure, is a scheme that allows a player ip  

to commit to a value a while keeping the value hidden in the presence of an  -adversary and 

also binding ip to the value in such a way that when he in a later stage decides to reveal the 

value, only the value a will be accepted among the other players. 
For computationally SMPC, we can use a VSS scheme for unconditionally or perfectly 

information. We will use a commitment scheme devised by Cramer et al. in [18]. 
Commitment scheme: 

a) COMMIT( s ): Commitment allows a player to commit to a value s . 

b) CTP( ,s j ): Commitment transfer protocol allows a player ip to transfer a 

commitment of s  to player jp . 

c) CSP( s ): Commitment sharing protocol allows a player ip to convert a commitment 

to s  into a set of commitments on the shares of 1 2( , , , )ns s s s . In other words, each player 

jp will be committed to his share js  . 

d) CMP: Commitment multiplication protocol allows a player ip  who is committed to 

,a b  and c ab  to prove to the other players that c  is indeed equal to a b . 

e) OPEN( s ): Open reveals a commitment, i.e., the value is revealed to all 

participants. Only the correct value, the one D commited to, is accepted by the honest players. 

The commitment scheme is also homomorphic, that is given two commitments aC  and 

bC  each player can compute non-interactively the commitment a bC   and abC .  

In order for a dealer D  to commit to a value s , he could simply share s  among the 

players. This would work if we could guarentee that D  was honest, but if D  was corrupt, he 
could send inconsistent shares to the different players. To avoid this, we must force D to 
distribute consistent shares: 
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a) D  chooses a symmetric  matrix m mR   at random and sets 1,1R  to s . For each row 

iv  belonging to ip , D  sends the vector 
i

T
i vu R  to ip . The first element of iu  is 

is , ip ’s share in s . 

b) ip  sends to each jp the value ,ij j is v u   . jp  compares the received value with 

,i jv u   and broadcasts the message fail ( , )i j  if they are not equal. 

c) If a fail ( , )i j  is received, D  broadcasts the value ijs . If any of the players fail to 

agree that the value ijs  is correct, they broadcast an accusation that D  is corrupt. 

d) Say jp  accuses D  of corruption. D  can disprove the accusation by broadcasting 

the information sent to jp  in step i). 

e) Each player checks the values broadcasted by D  to see if they are consistent with 
the values they have received. If they are not he sends an accusation that D  is 

corrupt. By the 2Q  property of the adversary structure, the protocol will only be 

rejected if at least one of the honest players sends an accusation. Likewise, the 
protocol will be accepted if all the accusing players are in  . 

Commitment Transfer Protocol: A commitment transfer protocol allows a player ip , 

who has acommitment to s  to transfer the commitment to a player jp  . If jp  and ip  are 

honest, the protocol leaks no information to the adversary. jp  learns the value s  in the 

process. 

1) ip  securely sends jp  all the information he used to create a commitment C  to s . 

This includes s . 

2) jp  creates a new commitment C   to s  using the information received in step 1 and 

checks whether or not 0C C   . 

If any of the above steps fail, ip or jp  must be corrupt. To disprove his corruption, ip
can open s . 

Commitment Sharing Protocol: A commitment sharing protocol is a protocol that 

allows a player ip  committed to a value s to secret share 1 2( , , , )ns s s s  so that each player 

jp  is committed to the share js . To accomplish this, ip , already committed to s , generates a 

random vector R  of size 1m  and commits to each value in R. Using CTP, ip  transfers the 

commitment of js to jp  and hence jp  also learns js . Since js  is a result of linear operation 

on the previously committed values, jp  can check that js  is indeed a share of s . 

Commitment Multiplication Protocol: A commitment multiplication protocol allows a 
player committed to the values a , b  and c ab  to convince the other players that ab c . If 
the scheme is strongly multiplicative, the CMP will be perfectly secure. Otherwise it will have a 
negligible error probability  . 

CMP with negligible error: 

1) ip  has already committed to the values a , b  and c ab . We’ll denote those 

commitments aC , bC  and cC . In order to convince the other players that c  is indeed equal to 

a b , ip  chooses a random   and creates the commitment C  and another commitment for 

the value   , we will call it C   . 
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2) The other players generate a random challenge {0,1}r   using the appropriate 

protocols. 

3) ip  opens the commitment arC C , which reveals the value 1r ra   , and he 

also opens a commitment to 1 b crC C rC   , which should reveal 0 . 

If ip  is honest, then all the opened values are either random or 0. If ip  can answer two 

different random challenges correctly, then ab c  with an error probability of 
1

2
 . This 

probability can be reduced by iterating the process until the desired probability   is reached 
[19]. 

CMP with zero error: 

1) ip has committed to three values a , b  and c . 

2) Using CSP, ip creates and distributes shares of a , b  and c . Each player jp  

receives the shares ja , jb  and j j jc a b  and is committed to them. 

3) Since ip  is committed, we know that the shares of a , b  and c are consistent and 

(0)af a , (0)bf b  and (0)cf c  where deg( )af t , deg( )bf t , and deg( ) 2cf t . 

Each player checks whether or not his shares compute i i ic a b and broadcasts an accusation 

if this fails. 
In order to have a CMP with zero error the secret sharing schemes must be strongly 

multiplicative. That is, 
3

n
t  . That means that there are at least n t  honest players in the 

scheme. And since 2n t t  , where 2t  is also the maximum degree of cf , the honest 

players can always correctly reconstruct the polynomial if c ab . If c ab , at least one 

honest player, in addition to the corrupt players, would have to accuse ip . 

This protocol can also be generalised to work for any secret sharing scheme with a 3Q  

adversary structure, provided that the scheme is realised with a strongly multiplicative MSP. 
Open reveals a commitment. To open a commitment on s, the dealer D  broadcasts s 

and all the shares of 1 2{ , , , }ns s s s  . If the number of players that agree to the broadcasted 

values of s  and is  is greater than the set of players from the adversary structure   , then the 

opening of s  is accepted. 
 
 
4. Unconditionally Secure Multi-party Computation 

First, we define the necessary arithmetic operations for computation in a passive 
adversary case. Computations in an active adversary setting will be addressed later in this 
section. 

Threshold schemes used to securely compute a function f  with a passive static or 

adaptive adversary can only compute a function securely if 
2

n
t  . For a static or adaptive 

active adversary where a broadcast channel does not exist, the bound is 
3

n
t  .  

Unconditionally Secure Multi-party Computation 36 multiplicative threshold function is 2Q  ( 3Q ). 

This leads us to a more general protocol for multi-party computation: 
1) We can compute any function with a passive adversary structure provided that our 

secret sharing scheme is resilient to a 2Q  adversary structure. 
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2) To compute a function f in the presence of an active adversary our adversary 

structure must be 3Q . 

4.1. SMPC with a Passive Adversary 
Given two instances of Shamir’s secret sharing scheme, the participants can compute 

the addition of  secret simply by adding the shares of one instance to their corresponding shares 
in the other instance. 

 

2 1,1 2,1 1,2 2,2 1, 2,

1 2

( ) ( ) ( )n nf f s s s s s s

s s

       

 


 

 

Multiplication of a constant c  can be computed by having each participant ip  compute 

i ic s c  . The resulting shares 1 2, , , nc c c  determine s c . Multiplication is a bit more 

complicated as the multiplication of two polynomials would result in a new polynomial with 

degree of at most 1 2deg( ) deg( ) 2f f t   and the coefficients of the new polynomial would not 

be randomly distributed. To solve this problem, we perform a sanity operation, a reshare, after 

every multiplication that reduces the degree of 1 2f f  and adds uniformly random values to all 

coefficients in 1 2f f , except for first coefficients of each polynomial, ie, the secret. We will 

illustrate how to perform multiplication of two polynomials generated using Shamir’s secret 
sharing scheme with an example. 

Example.  Given two values a  and b , we can securely compute the value c ab  
with a passive adversary by executing the following steps: 

1) Share a  to 1 2, , , na a a  and b  to 1 2, , , nb b b  such that ip  receives shares ia  

and ib ; 

2) Each player ip  then computes the product of his two shares, i i ic a b  ; 

3) Each player ip  then shares ic to ,1 ,2 ,, , ,i i i nc c c  and sends the shares to their 

respective players; 

4) Each player jp  can now compute the value jc   using the values received and the 

recombination vector. 
 

11,1 2,1 ,1 1

1,2 2,2 ,2 2 2

1, 2, ,

n

n

n n n n n
n

cc c c r

c c c r c

c c c r c

                            





     



 

 

5) The shares 1 2, , , nc c c    determine c ab  completing the multiplication. 

Using these primitives, we can now evaluate an arithmetic circuit C  over a field F  
computing a function f  such that when the circuit completes, each player will have a share of 

the resulting computation.  
Theorem ([20]). There exists functions that cannot be securely computed with a 

passive adversary if the adversary structure is not at least 2Q .  

Proof. Consider for example the OR -function between two players. It is easy to see 
that this function can never be computed by the two participants, each providing one bit, without 
one of them leaking information. 
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Conversely, we can compute any function f  securely with a passive adversary 

provided that the adversary structure is at least 2Q . To prove this, it is sufficient to show that 

given three values , ,a b c F , we can always securely compute , ,a b c a a b   [21]. This was 

shown in the above example.  
 
4.2. SMPC with an Active Adversary 

In order to safely compute a function f on a set of values where we have a static or 
adaptive active adversary we require a method that allows the participants to check whether a 
player is executing the protocol correctly and providing valid shares. In other words, we need a 
stronger primitive that allows players to commit to a value. To achieve this, we will use the 
commitment scheme described in this Section.  

Using this scheme, we can now construct a information theoretic  SMPC protocol 

resilient against an active adaptive adversary 3Q  structure. Assume two committed input values 

a and b shared with CSP so that each player jp holds a commitment to that share ja  and jb  . 

To compute the addition of  a and b , each player ip  adds his two shares i i ic a b   and 

computes a commitment for i ia b . Multiplication of the values a  and b : 

1)  Each player ip  multiplies his shares i i ic a b   and commits to the result. Each ip  

then performs CMP( aC , bC ,
ic

C

) where aC , bC  and

ic
C


 are the commitments to ,i ia b  and ic  . 

2)  Each player then shares his commitment to ic   using the CSP protocol. 

3) Every player now computes the value 
1

n

j i ij
i

c c


  and a commitment 
jcC for it. 

Players can check if the value is correct because
1 1

j

n n

c i ij i ji
i i

C C C 
 

   .  

If a participant fails in any of the above steps, he is disqualified, and if the adversary 

structure is 3Q , his input can be ignored, i.e., we remove corrupt players from the 

recombination vector. The reconstruction is still possible, because the number of honest players 
is sufficient enough to reconstruct the missing local multiplication. To illustrate this, recall that for 

a 3Q  threshold scheme the adversary threshold is 
3

n
t  . Given this requirement, the number 

of honest players is at least 2n t t  , which means that there exist enough honest players to 

reconstruct the missing local multiplication, which would be a polynomial of degree 2t . 

If we allow for a negligible error and assume a broadcast channel, then 
3 2

n n
t   is 

sufficient for secure multi-party computation [19]. In paper [18], it showed that we can construct 
a general secure multi-party computation scheme from any linear secret sharing scheme 
provided that the access structure allows MPC and VSS. That is, we can construct a secure 

multi-party computation protocol from any M with a 2Q  ( 3Q ) adversary structure. 

 
4.3. SMPC with General Adversary Structures 

It is relatively straightforward to use the techniques we have seen to construct protocols 
secure against general adversaries, i.e., where the adversary’s corruption capabilities are not 
described only by a threshold t on the number of players that can be corrupt, but by a general 
adversary structure, as defined earlier. 

What we have seen so far can be thought of as a way to build secure MPC protocols 
from Shamir’s secret sharing scheme. The idea is now to replace Shamir’s scheme by 
something more general, but otherwise use essentially the same high-level protocol. 
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To see how such a more general scheme could work, observe that the evaluation of 
shares in Shamir’s scheme can be described in an alternative way. If the polynomial used is 

1( ) n
nf X s a X a X    , we can think of the coefficients 1( , , , )ns a a  as being 

arranged in a column vector  . Evaluating ( )f X  in points 1, 2, ,n  is now equivalent to 

multiplying the vector by a Van der Monde matrix M , with rows of form 0 1( , , , )ni i i . We may 

think of the scheme as being defined by this fixed matrix, and by the rule that each player is 

assigned 1 row of the matrix, and gets as his share the coordinate of M  corresponding to his 

row. 
It is now immediate to think of generalizations of this: to other matrices than Van der 

Monde, and to cases where players can have more then one row assigned to them. This leads 
to general linear secret sharing schemes, also known as Monotone Span Programs(MSP). The 
term “linear” is motivated by the fact any such scheme has the same property as Shamir’s 
scheme, that sharing two secrets ,s s and adding corresponding shares of s  and s , we obtain 

shares of s s . The protocol constructions we have seen have primarily used this linearity 
property, so this is why it makes sense to try to plug in MSP’s instead of Shamir’s scheme. 
There are, however, several technical difficulties to sort out along the way, primarily because 
the method we used to do secure multiplication only generalizes to MSP’s with a certain special 
property, so called multiplicative MSP’s. Not all MSP’s are multiplicative, but it turns that any 
MSP can be used to construct a new one that is indeed multiplicative [22]. 

Furthermore, it turns out that for any adversary structure, there exists an MSP-based 
secret sharing scheme for which the unqualified sets are exactly those in the adversary 
structure. Therefore, these ideas lead to MPC protocols for any adversary structure where MPC 
is possible at all. 
 
 
4.  Conclusion 

Study on SMPC is a hotspot in international cryptography. SMPC plays an important 
role in e-voting, e-auction, secret sharing,threshold signature etc. In this paper, we introduce the 
basic concept of SMPC and four basic agreement. And we separately illustrate commitment 
transfer protocol, commitment sharing protocol and commitment multiplication protocol. Last, we 
present unconditionally secure multi-party computation. In-depth work is needed for SMPC 
further researches and applications in related fields. 
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