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ABSTRACT

Software-defined networking (SDN) is a groundbreaking technology that trans-
forms traditional network frameworks by separating the control plane from the
data plane, thereby enabling flexible and efficient network management. Despite
its advantages, SDN introduces vulnerabilities, particularly distributed denial of
service (DDoS) attacks. Existing studies have used single, hybrid, and ensemble
machine learning (ML) techniques to address attacks, often relying on generated
datasets that cannot be tested because of accessibility issues. A major contribu-
tion of this study is the creation of a novel, publicly accessible dataset, and
benchmarking the proposed approach against existing public datasets to demon-
strate its effectiveness. This paper proposes a novel approach that combines
ensemble learning models with principal component analysis (PCA) for fea-
ture selection. The integration of ensemble learning models enhances predictive
performance by leveraging multiple algorithms to improve accuracy and robust-
ness. The results showed that the ensemble of random forests (ENRF) model
achieved the highest performance across all metrics with 100% accuracy, preci-
sion, recall, and F1-score. This study provides a comprehensive solution to the
limitations of existing models by offering superior performance, as evidenced
by the comparative analysis, establishing this approach as the best among the
evaluated models.
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1. INTRODUCTION
Distributed denial-of-service (DDoS) attacks are web attacks that are designed to disrupt services and

deny legitimate user access [1]. These attacks overwhelm the targets with excessive traffic, causing service
outages [2]. They can target various layers of the OSI model, making it versatile and challenging to mitigate
[3]. DDoS methods have evolved and have become increasingly sophisticated over time [4]. High-rate DDoS
attacks generate massive traffic volumes to overwhelm targets quickly, whereas low-rate DDoS attacks use
minimal traffic to evade detection and gradually degrade the performance [5], [6]. High-rate attacks are easier
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to detect, but cause immediate disruption, whereas low-rate attacks are stealthier and persist longer [7], [8].
Despite advancements in security, DDoS attacks remain a significant threat to software-defined networking
(SDN) owing to their centralized control and programmability [9]. Attackers use handlers to control compro-
mised systems and install malware within SDNs [10]. These compromised systems, or “zombies” form botnets
that launch coordinated DDoS attacks [11].

Various solutions have been proposed, including traditional security measures, moving target defense
strategies, and AI-based methods, such as machine learning (ML) and deep learning (DL) [12]. Although
many studies have focused on single or hybrid ML models for DDoS detection, developing ensemble learning
methods is crucial for improving accuracy [13]. In addition, studies of [14]-[18] have used generated datasets
that are not publicly available, thereby limiting their reproducibility. We used a novel dataset that is publicly
accessible in the Mendeley data repository, allowing for broader testing and validation [19]. The core idea
of this study is to improve the detection of DDoS attacks by developing an ensemble ML framework that
integrates multiple classifiers and leverages their combined strengths to improve the accuracy. It evaluates the
effectiveness of traditional ML methods and incorporates principal component analysis (PCA) for optimized
feature selection. The proposed approach was compared with existing DDoS detection techniques using novel
and CICDDoS19 datasets. Furthermore, this study provides a robust solution for mitigating DDoS threats
and contributes valuable insights and resources to the cybersecurity field. To the best of our knowledge, this
study uniquely merges the assessment of various ML methods, development of an ensemble framework, and
performance comparison using PCA within a single study. The main contributions of this study are as follows.

- Effectiveness assessment: evaluate the effectiveness of various machine learning methods in detecting
DDoS attacks.

- Ensemble framework development: develop an ensemble-based machine learning framework that integrates
multiple classifiers to enhance detection precision.

- Feature selection with PCA: employ PCA for feature selection to improve model performance by reducing
dimensionality and retaining essential features.

- Novel dataset: a major contribution of this study is the creation of a novel, publicly accessible dataset that
addresses reproducibility issues found in previous studies.

- Performance comparison: the performance of the proposed ensemble approach was compared with existing
DDoS detection techniques using our novel publicly accessible dataset and the CICDDoS19 dataset.

The remainder of this paper is structured as follows: section 2 covers related work; section 3 discusses the
proposed model development framework for SDN security; section 4 details the experimental setup and per-
formance evaluation; and section 5 concludes the study with future work.

2. RELATED WORKS
The research community greatly appreciates its pioneering work on ML models that proactively

and reactively defend against DDoS attacks in SDN environments. These mechanisms enhance network
security by identifying and preventing DDoS attacks on diverse infrastructure, including wired, wireless,
mobile, and sensor networks. Their research has not only advanced theory, but also practical solutions to
combat these prevalent security threats. Kumar and Selvakumar [20] proposed adaptive learning mechan-
ics to detect DDoS attacks. The ensemble approach combines multiple classifiers to reduce errors and im-
prove detection capabilities. For detection accuracy, the KDD dataset achieved 98.2% accuracy, and the
mixed traffic dataset achieved 98.8% and 99.2% on the SSENET2011 dataset. In addition, the NFBoost al-
gorithm achieved a significantly lower false positive rate than the other methods, with an improvement of
up to 78.26%. Some studies have focused on enhancing the accuracy of intrusion detection systems (IDS)
in classifying traffic as normal or malicious. For example, Jabbar et al. [21] expounded that the random
forest (RF) average one-dependence estimator (RFAODE) ensemble classifier significantly improves the ac-
curacy and reduces the error rate of IDS compared to individual classifiers such as AODE, Naı̈ve Bayes
(NB), and RF. RFAODE achieved an accuracy of 90.51% and a false alarm rate (FAR) of 0.14% using the
Kyoto dataset. The analysis used 15 of the 24 available features. Shirmarz et al. [22] introduced a new
ensemble approach combining decision tree (DT), K-nearest neighbor (KNN), and support vector machine
(SVM) techniques. This method aims to improve SDN control threats. The ensemble achieved an accuracy
of 99.4%, despite the results of the individual classifiers. Additionally, the system maintained a low false-
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positive rate, making it practical for real-world applications. PCA was employed to reduce the feature set from
76 to 24, thereby enhancing classifier performance. Firdaus et al. [23] introduced ensemble technique that
integrates K-means clustering and RF classification to improve the detection accuracy of service disruption at-
tacks in SDN environment. This study achieved a higher detection accuracy and lower false positive rate (FPR)
compared to traditional methods. Experiments were conducted using specified hardware and software setups to
ensure the validity of the results. Alashhab et al. [24] reported mitigation of overloading attacks using online
ensemble method in SDN network. The prototype addresses the limitations of traditional static mechanisms by
incorporating online learning approaches to adapt to evolving attack patterns in real-time. The system attained
accuracy of 99.2% for any type of denial attack. Overall, their work contributes to handling zero-day, low-rate,
evolving disruptive traffic. Finally, Christila and Sivakumar [25], multilayer ensemble learning was proposed
to boost service attacks of an SDN controller. Multiple ensemble methods provided improved stability.

3. PROPOSED MODEL DEVELOPMENT FRAMEWORK FOR SDN SECURITY
In this section, we present the proposed model development pipeline to enhance SDN security, as

shown in Figure 1. The pipeline consists of eight phases, each meticulously designed to ensure a robust and
efficient model for detecting and mitigating threats in SDN environments.
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Figure 1. The proposed model development framework for SDN security illustrates the phases from dataset
compilation, preprocessing, and feature selection through ensemble method selection, hyperparameter tuning,

training and testing, model evaluation, and comparison with existing models

3.1. Dataset
In the first phase of the project, we collected a dataset that included both proprietary data and CICD-

DoS2019 dataset. This provides a thorough overview of possible network threats and a strong basis for the next
steps.

3.1.1. Generated dataset
We created a new dataset using Mininet, resulting in 1,048,757 rows and 21 columns. Our setup in-

cludes 12 switches, an RYU controller, and 24 host devices. The process involves designing a realistic network
topology in Mininet, configuring it, and using an RYU controller to manage traffic. We used the MGEN and
hping3 tools to generate various types of network traffic, including DDoS attacks. Flow statistics were recorded
every 30 s and saved in a CSV file called “SDN-DDoS Traffic Dataset.csv,” which is available in Mendeley.
The data were then cleaned and normalized to prepare for analysis. Table 1 outlines the DDoS attacks and
features included in this dataset. In addition, Table 2 compares various generated datasets, highlighting the
features, controllers, attack tools, and environments used in each study.
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Table 1. Comparison of different datasets and attacks
Dataset Attacks Instance No. of features

TCP 350358 16
Novel dataset UDP 348790 16

ICM 349727 16
UDP flood 3125400 21

CICDDoS2019 SYN flood 1851263 21
UDPlag 625243 21

3.1.2. CIC-DDoS2019
Researchers often use different datasets to test DDoS attack detection models; however, some of these

datasets are outdated. Furthermore, the CIC-DDoS2019 dataset is a recent and widely accepted resource for
network security [26]-[29]. It includes both normal and malicious traffic and offers a comprehensive tool for
evaluating DDoS detection methods. This dataset was created using CICFlowmeter v3, which extracts features
such as flow duration, total forward packets, total backward packets, and packet length distribution. These
features facilitate a thorough traffic analysis and enhance the effectiveness of DDoS detection models.

Table 2. Comparison of our novel dataset with other existing datasets
Ref. Dataset Features Controller Attack tools SDN environment
[23] InSDN 15 RYU Hping3 Mininet using 4 OvS switches
[24] Custom dataset 22 RYU Scapy, Iperf, and Hping3 Mininet using 80 hosts
[25] Custom dataset Not mentioned RYU Hping3 Mininet emulator
[29] InSDN 77 ONOS Tcpdump, hping3, and LOIC Mininet with 1 OvS

This paper SDN-DDoS dataset 21 RYU MGEN and Hping3 Mininet with 12 OvS switches

3.2. Preprocessing
During pre-processing, we cleaned and transformed the raw data. This involved handling missing

values, normalizing the data, and encoding categorical variables to prepare the dataset for analysis and feature
selection.

3.3. Feature selection
A critical aspect of our methodology is the selection of features used for training ML models. Given

the vast amount of data generated, we encountered the challenge of limited feature space and computational
complexity. The concept of a limited feature space refers to the restriction on the number of features that can
be feasibly processed and analyzed owing to computational constraints and the risk of overfitting. To address
this issue, we used PCA from the “sklearn.decomposition” module to select important features and reduce the
dataset’s complexity [30], [31]. PCA removes redundant and irrelevant features, thereby improving model
performance [32]. In our study, we configured PCA to maintain 20 key components. This is represented by (1).

PCA = PCA (Noofcomponents = 20) (1)

This configuration reduced to 20 features, which encapsulated the most significant variance in the data. To
identify the most influential features from the original dataset, we applied the following method in (2).

Selected Features = X.Columns[PCA.Componenets . argmax(axis = 1)] (2)

This technique identifies the original features with the highest contribution to each of the 20 prin-
cipal components. The “pca.components ” attribute represents the principal axes in the feature space, and
“argmax(axis=1)” locates the feature with the maximum weight for each component. As a result,
“selected features” lists the most critical original features, allowing for a more focused and effective anal-
ysis. Overall, PCA offers significant benefits and assumes that the principal components capture the linear
relationships among features. In cases where the underlying relationships are nonlinear, PCA may not effec-
tively capture complex interactions, potentially leading to suboptimal feature representation. Table 3 lists the
features extracted in the experiments. These features were selected to provide a comprehensive representation
of the network traffic, enabling effective DDoS detection.
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Table 3. Recorded features of the datasets
Extracted features

Packet count per flow, flow duration (minutes), source IP address, port bandwidth usage, aggregate duration, destination IP
address, packet transmission rate, flow count, Packet in messages count, bytes per flow, port number, flow duration (seconds),
total packet count, transmitted byte volume, byte accumulation, received byte volume

3.4. Ensemble method selection
The fourth phase involved selecting an appropriate ensemble method. Ensemble methods that combine

the predictions of multiple models are chosen to leverage their ability to improve the accuracy and robustness
over single models [33]. Various ensemble techniques were evaluated to identify the most effective approach
to the dataset. RF emerged as the best-performing model for our purposes. RF operates by constructing a
multitude of DT during training and outputting the class that is the mode of the classes (classification) or the
mean prediction (regression) of the individual trees [34]. Ensemble of random forest (ENRF) leverages this
mechanism to effectively detect DDoS attacks. Each tree is trained on a random subset of the dataset to ensure
diversity among the trees. During detection, an incoming packet is passed through all decision trees, and each
tree independently classifies it as either normal or abnormal. The detection process in ENRF is as follows:

- Packet evaluation: each packet is evaluated by all decision trees in the forest.
- Majority voting: each tree provides a vote on whether a packet is normal (benign) or abnormal (malicious).

The final classification is determined based on the majority vote of the trees.
- Anomaly detection: by combining the outputs of multiple trees, ENRF enhances the robustness and accu-

racy of DDoS detection, reducing the likelihood of false positives and negatives.

Algorithm 1 effectively identifies normal and abnormal packets by learning the patterns and charac-
teristics of benign and malicious traffic from a dataset. Specifically, the RF DDoS detection algorithm was
applied to our dataset to distinguish between benign and malicious attacks, thereby demonstrating its efficacy
in identifying DDoS threats. This ensemble approach ensures that the model generalizes well to unseen data
and maintains a high performance in real-world scenarios. Furthermore, Figure 2 illustrates the workflow pro-
cess for each received packet, detailing the steps from packet arrival to packet handling, using a Python script
in the RYU controller.

Algorithm 1. Ensemble of decision trees for DDoS detection
1: Initialize the Ensemble: Initialize a set T of decision trees.
2: Build the Decision Trees:
3: for t = 1 to T do
4: Feature Selection: Randomly sample m features from the input features.
5: Tree Construction: Construct a new decision tree Dt by recursively partitioning the dataset based on the selected features.
6: At each node:
7: Select the feature that maximizes the information gain.
8: Continue splitting until the maximum tree depth is reached or all instances belong to the same class.
9: Add Tree to Ensemble: Add Dt to the ensemble.

10: end for
11: Classify Instances:
12: for each instance xi in the training set do
13: Feature Extraction: Generate a feature vector zi by extracting relevant features using PCA.
14: Prediction with Trees: For each decision tree Dt, determine the class prediction yi,t by following the decision path of xi.
15: Aggregate Predictions: Combine predictions to derive yi:
16: if majority of the trees predict yi = 1 then
17: classify xi as a DDoS instance.
18: else
19: classify xi as a normal instance.
20: end if
21: end for
22: Output the Ensemble: Provide the ensemble of decision trees as the final output.
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Figure 2. Workflow process for each received packet

3.5. Hyperparameter tuning
Hyperparameter tuning is critical for optimizing the performance of a selected ensemble method [35].

This phase involves systematically adjusting the hyperparameters to determine the best configuration that max-
imizes the predictive power of the model while avoiding overfitting. The RF classifier in this study was con-
figured with specific hyperparameters to enhance the model performance. The model was constructed with 10
estimators, and bootstrap sampling was utilized with the Gini impurity criterion to evaluate split quality. The
number of features considered at each split was set to the square root of the total number of features, with no
constraints on the maximum depth of the trees. The minimum number of samples required to split a node was
set to 2, and the minimum number of samples for a leaf node was 1. No minimum decrease in impurity was
mandated for a split to occur. The random state was fixed at 42 to ensure reproducibility and the model was
operated on a single processor. The model did not employ out-of-bag scoring or warm starts, and the default
settings were used for the minimum weight fraction of leaves, maximum number of leaf nodes, class weights,
and verbosity level.

3.6. Training and testing
The dataset was divided into two parts, 80% for training and 20% for testing. This ensures that the

model is well trained while maintaining sufficient data for an objective evaluation.

3.7. Model evaluation
The scheme’s performance was measured using metrics like accuracy, precision, recall, and F1-score

to evaluate how well it detects and prevents security threats in an SDN environment.

3.8. Comparison with existing models
We compared our new system with existing ML models from recent studies. This comparison high-

lights the improvements and effectiveness of the proposed approach in enhancing SDN security.

4. EXPERIMENTAL SETUP AND PERFORMANCE EVALUATION
We used the scikit-learn library for machine learning algorithms and performance evaluations because

of its extensive range of efficient tools for data analysis. Scikit-learn, built on NumPy, SciPy, and matplotlib,
offers a wide variety of advanced ML models [36]. Its well-documented API makes it easy to integrate into
data processing workflows. In this study, we employed ensemble models such as RF, gradient boosting (GB),
and bagging (BA) to enhance the performance by combining multiple algorithms.

4.1. Performance metrics and evaluation
We evaluated the model using various metrics, including accuracy (ACC), precision (PRC), recall

(RCL), F1-score (F1), area under the curve (AUC), FPR, and true positive rate (TPR). These metrics provide
a comprehensive evaluation of the performance of the model in various aspects of classification. Accuracy
measures the proportion of correctly classified instances among all instances. This was calculated using in the
(3).

ACC =
TP + TN

TP + TN + FP + FN
(3)

The acronyms true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) represent
true positives, true negatives, false positives, and false negatives, respectively. ACC was used to provide general
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model correctness. PRC, also known as the positive predictive value, indicates the proportion of TP predictions
among all positive predictions. It is defined as (4).

PRC =
TP

TP + FP
(4)

Precision is another important parameter to measure the ability to identify actual attacks without falsely alarm-
ing benign traffic. RCL or sensitivity measures the proportion of actual positives correctly identified by the
model. The equation for recall is as (5).

RCL =
TP

TP + FN
(5)

Recall reflects the effectiveness of the model in identifying denial of attacks. The F1-score is the harmonic
mean of the precision and recall, providing a balance between the two metrics. It is calculated as (6).

F1 = 2
PRC ∗RCL

PRC +RCL
(6)

The F1-score is valuable in scenarios where we need to balance precision and recall, which are essential in-
service attacks to ensure both true attack detection and the minimization of false alarms. AUC represents the
degree or measure of separability, showing how well the model can distinguish between classes. This was
derived from the receiver operating characteristic (ROC) curve. A higher AUC indicates a better performance
of the model in differentiating between the positive and negative classes. The FPR is calculated as (7).

FPR =
FP

FP + TN
(7)

The TPR, or recall, is calculated as (8).

TPR =
TP

TP + FN
(8)

The confusion matrix, detailed in Table 4, is a crucial component for evaluating the performance of our clas-
sification system. It delineates the results of the classification process and categorizes the outcomes into four
distinct types: TP, TN, FP, and FN.

Table 4. Confusion matrix outcomes
Category Explanation Outcome
TP Instances where the model correctly identifies a

DDoS attack.
Successful identification of an actual DDoS attack, ensuring appro-
priate countermeasures are activated.

TN Instances where the model accurately recognizes le-
gitimate, non-attack traffic.

Accurate recognition of non-attack traffic, allowing normal opera-
tions to proceed without disruption.

FP Instances where the model incorrectly flags normal
traffic as a DDoS attack, leading to false alerts.

Incorrect identification of normal traffic as an attack, which could
lead to unnecessary interventions and alert fatigue.

FN Instances where the model fails to detect an actual
DDoS attack, posing a potential security risk.

Failure to detect an attack, which can result in undetected malicious
activities and potential network breaches.

4.2. Performance analysis and results
Figure 3 and Table 5 show the performance metrics (ACC, PRC, RCL, and F1-score) of the various

ML models for DDoS attack detection: ENRF, fuzzy neural network (FNN), SVM, generalized linear model
(GLM), NB, and XGBoost. Notable performance improvements across these models were partly due to the
feature selection process using PCA. The ENRF model achieved a perfect score across all metrics (100.0%),
indicating its exceptional effectiveness in distinguishing between DDoS attacks and legitimate traffic without
any false positives or false negatives, making it ideal for critical security applications. The FNN model achieved
an accuracy of 99.84%, precision of 96.61%, recall of 96.74%, and F1-score of 96.36%, indicating that it is
suitable for environments where slight misclassifications are tolerable. The SVM model performed exception-
ally well, achieving 99.92% across all metrics, making it highly effective in detecting attacks. In contrast, the
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GLM model achieved 84.34% accuracy, indicating the challenges in distinguishing between attack and non-
attack traffic owing to its linear nature. The NB model had an accuracy of 96.85%, with a precision of 85.33%,
recall of 82.14%, and F1-score of 80.76%, suggesting a moderate performance with a higher rate of false pos-
itives. The XGBoost model also performed impressively, with 99.74% accuracy, 99.95% precision, 99.84%
recall, and an F1-score of 90.15%. Despite a slight drop in the F1-score compared with ENRF and SVM, its
high precision and recall, along with computational efficiency, make it compatible with large-scale SDN envi-
ronments. Overall, the use of PCA for feature selection played a critical role in enhancing the performance of
these models.
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Figure 3. Performance of ENRF and other ML models for DDoS attack detection

Table 5. Performance metrics of different models
Model Accuracy Precision Recall F1-score
ENRF 100.0% 100.0% 100.0% 100.0%
FNN 99.84% 96.61% 96.74% 96.36%
SVM 99.92% 99.84% 99.84% 99.84%
GLM 85.87% 84.34% 84.34% 84.34%
NB 96.85% 85.33% 82.14% 80.76%

XGBoost 99.74% 99.95% 99.84% 90.15%

Table 6 presents the performance metrics of ensemble-based ML classifiers. The RF classifier demon-
strated exceptional performance, with a recall and F1-score of 1.0, indicating flawless detection of DDoS
attacks and no FN. An FPR of 0.0000 confirmed its precision, as there were no FP. Furthermore, the low testing
time of 0.25364 s underscores RF’s suitability of RF for real-time DDoS detection, owing to its high accuracy
and efficiency. The GB classifier also performed commendably, with a recall and F1-score of 0.99, reflecting
high accuracy in detecting attacks. An FPR of 0.0045 was minimal, indicating a very low rate of false alarms.
Although the testing time for GB was 0.53461 s, it remained acceptable for practical applications. The slight
increase in testing time was offset by its near-perfect classification performance, making GB a strong candidate
for DDoS detection. BA, exhibits a recall of 0.98 and an F1-score of 0.97, which are marginally lower than
those of RF and GB. An FPR of 0.0085 suggests a higher false-positive rate, leading to more false alarms.
The most significant drawback of the BA is its testing time, which is substantially higher at 10.23563 s. This
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extended duration could be a limitation in scenarios that require rapid detection. Despite its high accuracy, the
increased computational cost and potential for more false positives may limit BA’s practical use in real-time
DDoS detection. Overall, the analysis revealed that RF offers the best balance between accuracy, precision,
and computational efficiency, making it the most suitable for real-time applications. GB provides nearly equiv-
alent performance with a slight increase in testing time, making it a viable alternative when precision is critical
and minor delays are acceptable. Conversely, bootstrap aggregation (BA), while effective, incurs a significant
computational overhead, hindering its applicability in time-sensitive environments.

Table 6. Performance metrics of ensemble based ML classifiers
Ensemble based ML classifiers Recall FPR F1-score Testing time

RF 1.0 0.0000 1.0 0.25364
GB 0.99 0.0045 0.99 0.53461
BA 0.98 0.0085 0.97 10.23563

Figure 4 presents the ROC curves for various ML models evaluated for their effectiveness in detecting
DDoS attacks. The models included RF (AUC = 1.000), GB (AUC = 0.987), BA (AUC = 0.983), GLM
(AUC = 0.879), SVM (AUC = 0.953), FNN (AUC = 0.929), NB (AUC = 0.970), and XGBoost (AUC =
0.930). Every curve illustrates the trade-off between the TPR and FPR for different threshold settings. The RF
model confirmed perfect discrimination with an AUC of 1.000, indicating that RF can differentiate benign and
malicious packets without any false positives or negatives. This performance level is optimal for critical security
applications that require precision. The performance of the GB and BA models is exemplary, as evidenced
by their AUC values of 0.987 and 0.983, respectively. These frameworks are acceptable for real-time DDoS
detection because they balance a high TPR with a low FPR. In contrast, the GLM model, with an AUC of 0.879,
showed relatively lower performance. This may be due to the linear nature of GLM, which could struggle to
capture the nonlinear patterns inherent in the DDoS attack data. The SVM and FNN models, with AUC values
of 0.953 and 0.929, respectively, demonstrated strong performance, but still fell short of the ensemble methods.
Notably, the NB model (AUC = 0.970) and XGBoost (AUC = 0.930) also showed high effectiveness, although
their slightly lower AUC values suggest a tradeoff between design simplicity and computational efficiency.
Overall, our results highlight the critical role of advanced ML techniques in enhancing network security and
mitigating risks associated with DDoS attacks.

Figure 5 depicts the performance metrics of the RF model on the novel and CIC-DDoS2019 datasets.
The model achieved perfect scores across all metrics for both datasets, with values of 1.0 for ACC, PRC,
RCL, F1-score, and AUC. This indicates that the RF accurately identified DDoS attacks and normal traffic
without errors. Moreover, the model performed well on both datasets, thereby demonstrating its reliability and
adaptability. Such performance is essential for real-time DDoS detection systems to maintain accuracy and
avoid false alarms, thereby ensuring timely threat mitigation.

4.3. Comparative analysis of DDoS detection techniques
Table 7 presents a summary of several schemes, showing key performance metrics, such as ACC,

PRC, RCL, and F1-score. NFBoost, as referenced in [20], confirmed an accuracy of 98.2%. The REAODE
model in [21] has an accuracy of 90.51%. According to [22], the boosting ensemble classifier achieved an
accuracy of 99.4%. the authors in [23] do not provided the custom dataset. The researches [20]-[23] did not
specify the precision, recall, and F1-score for this model. They indicated a strong performance in terms of
accuracy, but the lack of information on other metrics leaves a gap in fully evaluating the model’s efficiency
in distinguishing between attack and non-attack scenarios. Alashhab et al. [24], the ensemble online model
boasts an accuracy of 99.2%, with precision, recall, and F1-scores at 98.78%, 98.81%, and 98.78% respectively.
Christila and Sivakumar [25], an accuracy of 99.42% was achieved. Our ENRF method surpassed all the other
models, achieving 100% ACC, PRC, RCL, and F1-scores. This validates that the ENRF model is highly
reliable and effective for detecting DDoS attacks, making it the strongest solution among those compared.
The critical analysis shows that the reason behind achieving a perfect score is that ENRF utilizes PCA for
feature selection, which effectively reduces the dimensionality of the dataset while retaining the most significant
features. This minimizes noise and improves the focus of the model on relevant data. In addition, the power of
the ensemble, by combining multiple RF, enhances the accuracy by aggregating the predictions of numerous
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decision trees, thereby reducing the likelihood of overfitting to any particular dataset. Systematic tuning of
hyperparameters, such as the number of estimators, max depth, and criterion for splitting, ensures that the RF
classifiers are optimized for the best performance. In future work, the focus will be on ensuring that the novel
dataset comprehensively covers all the possible DDoS attack scenarios.
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Figure 4. ROC curves for various machine learning models on a novel DDoS detection dataset
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Figure 5. Performance metrics for the RF model on two datasets (novel dataset and CIC-DDoS2019)

Table 7. Comparison of DDoS attack detection models. * stands for not specified
Model with reference Accuracy Precision Recall F1-score

NFBoost [20] 0.982 - 0.992 * * *
RFAODE [21] 0.9051 * * *

Boosting ensemble classifier [22] 0.993 0.993 * 0.996
Ensemble K-means and RF [23] 1.0 1.0 1.0 1.0

Ensemble online [24] 0.992 0.9878 0.9881 0.9878
MEDR-DDoSAD [25] 0.9942 0.9938 0.9942 0.9940
Proposed model-ENRF 1.0 1.0 1.0 1.0

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 2, May 2025: 1073–1085



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1083

5. CONCLUSION
The ENRF algorithm stands out as the optimal solution for mitigating DDoS attacks in SDN control

planes. The method uses several decision trees to increase detection accuracy. On the other hand, ENRF can
resist overfitting to become an effective approach for detecting complex patterns associated with DDoS attacks.
Most studies used unique datasets that are not publicly available, making it difficult for others to test and verify
their results. This research ensures that both the generated and other public datasets are utilized to test different
models. The proposed framework can be adapted to verify attack patterns and network behavior. Furthermore,
the integration of the ENRF technique within the SDN control plane ensures the continuous monitoring and
rapid detection of anomalous activities, effectively mitigating potential threats before escalating. Future work
will extend this dataset to include diverse real-world network scenarios. This will improve the adaptability to
new threats. Additionally, innovative feature selection methods using PCA will be explored to optimize the
input features and boost the overall performance and efficiency. These efforts are aimed at providing effective
and reliable protection against DDoS attacks from SDN environment.
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