
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 37, No. 3, March 2025, pp. 1785~1796

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v37.i3.pp1785-1796 1785

Journal homepage: http://ijeecs.iaescore.com

Communication induced checkpointing based fault tolerance

mechanism using deep-learning in IoT applications

Sowjanya Lakshmi A1, Vanipriya Ch2
1Department of Computer Science and Engineering, Sir M. Visvesvaraya Institute of Technology, Bengaluru, India

2Department of Master of Computer Application, Sir M. Visvesvaraya Institute of Technology, Bengaluru, India

Article Info ABSTRACT

Article history:

Received Jun 11, 2024

Revised Oct 5, 2024

Accepted Oct 9, 2024

 Internet of things (IoT) is increasingly used in diverse environments such as

healthcare, industry and agriculture. They carry a risk of adverse effects if

they make decisions based on faulty information. Software faults, especially

transient faults are a primary contributor to deficient decision-making. The

existing fault tolerant mechanisms often suffer from checkpoint overheads as

checkpoints are placed in all the nodes. This paper describes a novel

communication induced checkpointing based fault tolerance mechanism

(CIC-FTM) designed to efficiently recover from transient faults, while

minimizing useless and forced checkpoints. Long short-term memory

(LSTM) based deep learning algorithm is used in our approach to predict fault

occurrences and strategically place checkpoints. The proposed method also in

turn improve system reliability and performance. Experimental results

demonstrate the effectiveness of proposed CIC-FTM in IoT environment by

minimizing the practicable operating time for checkpointing and back

propagation, compared to traditional fault-tolerance mechanisms.

Keywords:

Checkpoint at intermediate

node

Communication induced

checkpointing based fault

tolerance mechanism

Long short-term memory

algorithm

Transient faults
This is an open access article under the CC BY-SA license.

Corresponding Author:

Sowjanya Lakshmi A

Department of Computer Science and Engineering, Sir. M. Visvesvaraya Institute of Technology

Bengaluru -562157, India

Email: sowjanya.engg@gmail.com

1. INTRODUCTION

The internet of things (IoT) applications are pervasive in various domains such as smart homes,

industries, agriculture and healthcare. These applications rely heavily on the integrity of a data transactions

among interconnected devices to function correctly [1]. Interactions occur through message exchanges, with

operations and decisions reliant on data transmitted and received across IoT nodes [2], [3]. Sensors collect

unstructured data, later converted to structured input for IoT processing units. Processors, linked via standard

networks, exchange messages through dedicated channels to minimize communication delays [4]-[7]. Fog

computing, positioning computational devices closer to IoT devices, aids time-critical applications. Data

processing occurs in fog computing instead of cloud computing for swift decision-making. The architecture

diagram, Figure 1 for agriculture IoT depicts this setup. IoT systems are prone to transient faults during data

transactions, which can lead to incorrect operations and potential system damage. Software transient faults

arise from issues like data transactions, server failures and breaches [8]-[10] can disrupt IoT systems but are

typically recoverable by restarting tasks. Transient faults like sequence number, checksum, null character and

out-of-range errors that contribute to risks [7], [10]-[13] are detected in this paper’s first contribution.

Various checkpointing based fault tolerance mechanisms (FTM) are effectively recovering faults, but

not addressing transient faults and also recovery is at the cost of checkpointing overheads and storage

overheads. The following observations are found in the literature review-various successful FTMs utilize

https://creativecommons.org/licenses/by-sa/4.0/
mailto:sowjanya.engg@gmail.com

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1785-1796

1786

rollback via checkpointing, categorized as un-coordinated, coordinated and communication induced

checkpointing (CIC) based FTMs [6], [10], [14]-[21]. Checkpointing saves crucial information temporarily,

including code, data, status, register contents, environment conditions, access counts of the files, file pointers

and file related details, ensuring consistent system state [10], [22]. In un-coordinated checkpointing FTMs,

where checkpoints are set at fixed intervals or strategically, independent of processor operations, causing

inefficiency due to inconsistent nodes and the Domino effect [8], [10], [11], [23]-[25]. Coordinated

checkpointing synchronizes processes through system messages to ensure a consistent global state, albeit with

storage overheads [8], [10]. CIC combines aspects of both techniques, placing checkpoints based on application

messages to avoid unnecessary ones but risking missing useful ones, necessitating forced checkpoints

placements for fault recovery [5], [7], [9], [25]. CIC allows designers to place checkpoints based on specific

conditions conveyed by explicit messages [8], [18], [20], [23]-[29]. Widely used in various applications

including parallel and distributed computing, CIC-FTMs are under constant research, especially in IoT.

Figure 1. Fog enabled cloud infrastructure

Eles et al. [24] integrates error detection and equidistant checkpointing with rollback recovery and

active replication to handle faults into software architecture, aiming to meet performance and cost constraints

in safety-critical applications. This approach assumes a limited number of faults and leads to potential time

overheads even though it primarily handles transient faults. Helary et al. [25] focuses on optimizing the

checkpointing mechanism in distributed systems by identifying and eliminating redundant checkpoints through

a communication-based FTM approach. This method has increased complexity and difficulties in dynamic

environments. The continued research [26] focus on implementation of CIC techniques to determine consistent

snapshots efficiently by initiating checkpoints through marker messages, logging messages in transit and

ensuring consistency through regular monitoring. Hence checkpoint overheads are reduced and the approach

is adaptable to both centralized and decentralized systems but, still faces complexity issues in implementation

to furnish the constraints and not effectively handling complex failure scenarios. Garcia et al. [22], [30], and

Vieira et al. [31] explores an advanced checkpointing technique designed to enhance fault tolerance in

distributed systems using local checkpoints and recovery lines, where each process independently manages its

checkpoints based on local knowledge and coordination is used to establish consistent global recovery lines.

This approach reduce checkpointing related overheads and complexity compared to traditional global

checkpointing methods, but faces coordination complexity and challenges in handling partial failures.

Simon et al. [21] introduces delayed CIC (DCIC) based FTM to improve performance in distributed systems

by strategically placing checkpoints based on communication delays rather than fixed intervals. This approach

enhances fault tolerance and self-healing capabilities and minimizes the performance overheads but encounters

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Communication induced checkpointing based fault tolerance mechanism using … (Sowjanya Lakshmi A)

1787

useless checkpoints. This approach is also not addressing overall fault scenarios in distributed systems. Roberto

Baldoni et al. [5] propose an index-based CIC algorithm to reduce checkpointing overheads, enhance efficiency

in distributed systems without centralized control. Despite its innovative approach, the algorithm faces

limitations such as potential overhead, implementation complexities, scalability concerns, limited fault model

coverage, significant recovery time and resource utilization issues.

Luo and Manivannan [27] introduces a fully informed and efficient (FINE) CIC protocol designed to

minimize checkpointing overhead by reducing forced checkpoints and avoiding the domino effect, ensuring

coordinated recovery through a fully informed global state. This approach still faces implementation

complexity issues along with communication overhead and network dependency, in addition. Ahn [9] proposes

a FTM that combines CIC with message logging to overcome the limitations in existing FTMs in distributed

systems. His methodology involves forcing checkpoints based on communication patterns and logging all

messages for replay during recovery and advanced mechanisms to handle dependencies. Despite its benefits,

the approach faces useless checkpoint overheads, recovery latency and dependency management issues.

Malhotra and Bala [17] propose a CIC FTM tailored for IoT systems. The protocol is a combination of

spontaneous checkpointing where each node takes spontaneous checkpoints based on a logistic function that

estimates the time interval between checkpoints and coordinated checkpointing where nodes take coordinated

checkpoints using the Takagi-Sugeno (T-S) fuzzy system, which generates results based on definite-39 rules.

This system uses parameters such as energy, failure rate and received signal strength indicator (RSSI) to avoid

unnecessary checkpoints. This approach minimizes the number of checkpoints, system overhead and ensuring

non-blocking processes during checkpointing. In this permanent checkpoints are stored on IoT devices which

also indirectly leads to considerable useless checkpoints after fault recovery and also fault recovery based on

specific parameters dependency and since, this protocol is designed specifically for mobile distributed systems,

has its performance is highly dynamic or large-scale networks with significant number of nodes is not

thoroughly evaluated. Jaggi and Singh [13] introduce an adaptive checkpointing technique to enhance fault

tolerance in mobile computing grid (MoG). This approach uses cooperative checkpointing, where nodes in the

system cooperate to store checkpoint data. If a node lacks stable storage, it uses the storage of other nodes. The

checkpoint data is replicated across multiple nodes to ensure higher chances of recovery depending on resource

availability. The checkpointing scheme adapts based on the availability of resources in the MoG making it

flexible and efficient. But, this approach highly relies on the availability of stable storage and resources in other

nodes, which might not always be guaranteed in highly dynamic or resource-constrained environments.

Replicating checkpointing data at multiple nodes can lead to increased network traffic and overhead and as the

number of nodes increases, managing and coordinating checkpoints across a large number of nodes may become

complex and less efficient.

Tan et al. [32] uses long short-term memory (LSTM) networks for detecting faults in non-linear

dynamical systems. The methodology involves training LSTM model on normal operating data, using it to

predict future states and detecting predictive faults. This approach can be redesigned for different systems on

requirement basis even though it is challenging. Absar et al. [33] assess the use of LSTM models for forecasting

contagious disease outbreaks, focusing on utilizing historical data for early detection. The methodology

involves training LSTM models on disease data, making predictions and evaluating the model’s performance

using accuracy metrics. Zhang et al. [34] introduce an LSTM-based autoencoder for network anomaly

detection aiming to identify unusual traffic patterns with high reconstruction errors and reconstruct normal

network traffic. This approach not feasible with respect to practical applicability and integration in real-world

scenarios. Wang et al. [35] focus to improve prediction accuracy and efficiency of an LSTM model used for

predicting temperature in data centers by optimizing its hyperparameters. This hyperparameters optimization

technique can be utilized based on domain and requirement specific since it adds on computational costs.

The detailed survey outlines that coordinated and un-coordinated checkpointing encounters

checkpointing overheads and inefficiencies. While addressing the challenges in optimizing the checkpointing

based FTMs, the existing techniques like DCIC encounters useless checkpoints, index-based CIC algorithms

face issues like checkpointing overheads and implementation complexities. Adaptive checkpointing in mobile

computing grids is resource-dependent and may not always be feasible in dynamic environments like IoT.

Protocols tailored for IoT systems need to minimize number of checkpoints, useless checkpoints and efficiently

recover transient faults with minimal resource utilization. The main contributions of this research are as

follows:

− The research introduces a novel checkpoint at intermediate node (CIN) CIC-FTM for IoT environments

that strategically place checkpoints only just before predicted faulty nodes by integrating LSTM-deep

learning algorithms. This minimizes useless and forced checkpoints, unlike traditional methods that place

checkpoints indiscriminately across all/many nodes, and also addresses the deficiencies of existing FTMs.

− Describing transient fault occurrence scenarios and implementation of the fault detection algorithms.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1785-1796

1788

− Our approach uses LSTM-deep learning for training using history of fault occurrences and new message

logs and predicting new fault occurrence.

The remaining sections are arranged as follows: section 2 describes the proposed methodology that

includes transient fault detection, LSTM algorithm for predicting fault occurrence and CIN CIC-FTM

operational mechanism for placing checkpoints and fault recovery. Section 3 explains experimental setup,

section 4 about results analysis and finally section 5 concludes the research work.

2. METHOD

The proposed methodology integrates novel CIN CIC-FTM that strategically place checkpoints based

on LSTM predictions that minimizes checkpointing overheads and enhances system performance by transient

fault recovery. The step-by-step description starts with system architecture diagram, Figure 2 starts from data

collection, pre-processing that include handling missing values, removing outliers and ensuring consistency,

transient fault detection, prediction of fault occurrences using LSTM and checkpoint placement and fault

recovery using CIN CIC-FTM.

Figure 2. Block diagram of CIN CIC-FTM using LSTM

Data collection and processing: initially, the sensors readings like temperature, humidity, water level,

light and moisture in IoT agriculture scenario, are configured and collected every minute (adaptable based on

application requirement). We simulate the proposed model on Google Colab using Python 3.7, utilizing Python

libraries including Pandas, OS, Pickle, Socket, Numpy, Crcmode, Tracemalloc, Psutil, Matplotlib, Keras and

TensorFlow. Messages between processes were generated using exponential distribution spanning between 4

to 100 processes. Periodically save the state of each sensor/edge node and communication state using ‘Pickle’

library to serialize and store the state. Messages exchanged using ‘Socket’ library between nodes were logged

in local and central database to enable recovery. A coordinator node is designated to manage checkpointing.

Transient fault detection: fault detection algorithms (refer Algorithm 1 to 4) are implemented to

identify transient faults. Transient faults are software faults and temporary that occur during runtime of the

system. Transient faults appear to be unpredictable for a very short period of time whose impact is anomalously

large on IoT system while decision-making and actuating. Also, frequency of these transient fault occurrences

is exponentially proportional to abnormality in system actions [4], [8]-[10], [12], [36]. In IoT applications the

most frequently appearing transient faults are i) if there is incorrect/missing sequence number in packet of

information flow, the system responds differently, and then the sequence number fault – F1 is detected. The

information is of two types – payload and command sequence number. ii) If integrity of the information is

affected, checksum fault – F2 is detected and checksum based fault detection technique is used. iii) Integrity

of the information is also verified by checking the length of the message. If the length of the message received

or transmitted is not as expected or received data is irrelevant with its previously generated pattern, then such

fault is represented as null character fault – F3. (iv) When the information received or transmitted is beyond

the payload range, the out of range fault – F4 is detected. The transient faults detected using the fault detection

algorithms affect the fault occurrence scenarios by designing occurrence semantics in my work. The detected

faults, their occurrence and fault states are logged.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Communication induced checkpointing based fault tolerance mechanism using … (Sowjanya Lakshmi A)

1789

Algorithm 1. To detect fault F1
Initialize: expected_seq_num = 0

tolerance_threshold = 5 // Adjust as needed

Function

detect_seq_num_fault(received_seq_num):

 if received_seq_num = = expected_seq_num:

 // Received sequence number is as

expected

 expected_seq_num += 1

 return NO_FAULT

else if received_seq_num < expected_seq_num:

 // Received a duplicate sequence number

 return "Duplicate Sequence Number Detected"

 else if received_seq_num -

expected_seq_num > tolerance_threshold:

// Sequence number gap exceeds the

tolerance threshold

 return "Sequence Number Gap Detected"

else:

 // Sequence number gap is within the

tolerance threshold

 expected_seq_num =

received_seq_num + 1

 return NO_FAULT

Algorithm 2. To detect fault F2 Algorithm 3. To detect fault F3
Function calculate_chksum(data):

//Calculate a checksum value for the given

data

 chksum = 0

 for each byte in data:

 chksum += byte

 // Add the value of each byte to the

checksum

 return checksum

Function

detect_chksum_fault(received_data,

received_chksum):

expected_chksum =

calculate_chksum(received_data)

if received_chksum == expected_chksum:

 //Checksum matches, data is intact

 return NO_FAULT

 else:

 //Checksum mismatch, data is corrupted

 return "Checksum Mismatch Detected"

fault =

detect_chksum_fault(received_data,

received_chksum)

if fault != NO_FAULT: print(fault)

while true:

 // Wait for incoming data

 trg_data = receiveData()

 src_data = sentData()

// Check for null character

 if hasNullCharacter(src_data,trg_data):

logError("Null character detected in the

transmitted data")

else:

// Null character not detected, process the

data

 processData(data)

// Function to check for null character

function

hasNullCharacter(src_data,trg_data):

 if length(src_data) !=

length(trg_data):

 return true

 for character in trg_data:

 if character == '\0'

 return true

 return false

Algorithm 4. To detect fault F4
//For different types of sensors it is

essential to configure range values. Based

on configuration, error is detected

// Initialize variables

expectedMinValuea = 0, expectedMaxValue =

100

receivedMinValue = 0, receivedMaxValue =

0

// Function to check if the received data is

within the expected range

function isDataInRange(data):

 if data >= expectedMinValue and data

<= expectedMaxValue:

 return true

 else:

 return false

// Function to calculate the checksum

function calculateChecksum(data):

 checksum = 0

 for value in data:

 checksum += value

 return checksum % 256

// Main program loop

while true:

 // Wait for incoming message

 message = receiveMessage()

// Extract the data, received minimum value,

received maximum value, and checksum from

the message

 data = extractData(message)

 receivedMinValue =

extractMinValue(message)

 receivedMaxValue =

extractMaxValue(message)

 receivedChecksum =

extractChecksum(message)

 // Verify the checksum

 calculatedChecksum =

calculateChecksum(data)

 if calculatedChecksum ==

receivedChecksum:

 // Checksum is valid, now check for data

range

 if receivedMinValue >=

expectedMinValue and receivedMaxValue <=

expectedMaxValue:

 // Data range is within the expected range

 if isDataInRange(data):

 // Data is within the expected range,

process the data

 processData(data)

 else:

 // Data is out of range

 logError("Received data

is out of range")

 else:

// Received range is out of the expected

range

 logError("Received data range

is out of the expected range")

 else:

// Checksum is invalid

 logError("Invalid checksum

detected")

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1785-1796

1790

Prediction of fault occurrence: the LSTM network takes collected sequential input data at various time

stamps and historical data of fault occurrences for training purposes and trained with multiple epochs to predict

the next faulty node. This predicted output is logged as a historical dataset on every new prediction. Dataset

also includes timestamps and labels indicating whether a fault occurred. Split the dataset into training,

validation and test sets. The training set is used to train the LSTM model, the validation set is used to tune

hyperparameters and the test set is used to evaluate the model. The LSTM model has an input layer, layers of

LSTM and a dense output layer. Train the LSTM model on the training data and validate it using the validation

data. The model is evaluated on the test data using relevant metrics as accuracy, precision, recall and F1-score.

LSTM, an advanced recurrent neural network (RNN) version, retains vital data, discarding less useful.

LSTM includes input, forget and output gates [34]. The forget gate, represented by “ft”, discards irrelevant

data. It’s determined by a sigmoid function based on weights and bias. Input “Xt” feeds into the network, with

the forget gate deciding if “ht−1” output is relevant to current data. Activation function

“(ht-1+Xt)” determines relevance, closer to zero implies irrelevance, otherwise relevance. Figure 3 shows the

LSTM unit with its components.

Figure 3. Basic LSTM cell

The “ft” is a forget gate function, that forgets, or ignores the irrelevant information. “Wtf”, are the

weights and “bsf” the bias of the forget gate, σ is a sigmoid curve, and "." implies multiplication of the matrix.

The next step is to determine, using two procedures, which new knowledge is present in the cell state. The

input gate first determines which states are updated, and then the “tanh” activation function is used to generate

a vector of potential new values. The current cell state “Ct” is then changed using outputs from the input gate,

the forget gate, and the “tanh” layer. Finally, the output gate and a “tanh” function are used to calculate the

output of network “ht”, Where “Wto”, is the input weight and “bso” the bias of the output gate, respectively.

𝑓𝑡 = 𝜎(𝑊𝑡𝑓 . [ℎ𝑡−1,𝑋𝑡] + 𝑏𝑠𝑓 (1)

𝑖𝑡 = 𝜎(𝑊𝑡𝑖 . [ℎ𝑡−1,𝑋𝑡] + 𝑏𝑠𝑖 (2)

~𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑡𝑐 . [ℎ𝑡−1,𝑋𝑡] + 𝑏𝑠𝑐 (3)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ ~𝐶𝑡 (4)

𝑂𝑡 = 𝜎(𝑊𝑡𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑠𝑜) (5)

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ (𝐶𝑡) (6)

𝑦𝑡+𝑛 = 𝑂𝑛(𝑦𝑡,𝑦𝑡+1,𝑦𝑡+2….𝑦𝑡+𝑛−1) (7)

Dropout regularization combats over-fitting by removing certain neurons. Each hidden unit in a neural

network is trained using a random sample of others. LSTM networks predict ‘n’ time steps ahead, contrasting

projected with actual values. Input data“Xt”at time stamp “t”is processed sequentially with a sliding window

method. LSTM predicts the next faulty node within the e (size-15). The first sample of input is x1, second is x2

and so Xt={xt-1, xt, xt+1}. This input taken at “WL” window length is {xt−w, xt+1-w...xt−1} used for prediction. The

LSTM network is trained with “n” epochs and “Yt” is output –predicted faulty node and “On” is LSTM network

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Communication induced checkpointing based fault tolerance mechanism using … (Sowjanya Lakshmi A)

1791

output. LSTM’s advantage lies in predicting future values while remembering past ones, until the required

multistep predictions are made.

Checkpoint placement and fault recovery using CIN CIC-FTM: the core of the CIN CIC-FTM is the

prediction of potential fault occurrences using LSTM network. The predicted faults occurrences are logged as

fault history. Initially, local checkpoints are placed at nodes after significant system events. Later after training

LSTM model, forced checkpoints are placed at latest consistent node prior to predicted faulty node. This is

done dynamically, with the model continuously updating its predictions as new data is processed. The

checkpointing process involves saving the current state of the system, including the process data and current

status of the messages being processed. The system upon fault detection checks whether the current node or its

preceding node has valid checkpoints. The system initiates a rollback to the most recent checkpoint, allowing

the process to restart from the known good (fault free) state and preventing the spread of faults through the

system. After successful recovery and the stabilization of the process, the forced checkpoints that are already

logged as fault history are erased from the local memory and the system continues to operate with the LSTM

model adjusting its predictions based on the fault history. This approach specifically reduce the storage

overheads because of checkpoints. The algorithm is given in Algorithm 5 and working principle is explained

as shown in Figure 4.

Algorithm 5. CIN CIC-FTM
Import libraries: numpy, tensorflow,

sequential, LSTM, dense, pickle, os

Load historical data for fault

prediction

def load_dta(file_path):

 load historical data related to

transient faults

 data = np.load(file_path)

 return data

Build and train LSTM model

def build_lstm_model(input_set): model =

Sequential()

 # predict fault occurrences

def predict_faults(model, x_input):

 predictions = model.predict(x_input)

 return predictions

Place checkpoints based on predictions

def place_checkpoints(nodes,predictions,

threshold=0.65):

 checkpoints = []

 for i, predictions in

enumerate(predictions):

 if predictions > threshold:

 checkpoints.append(nodes[i])

 return checkpoints

Save system state as checkpoint

def save_checkpoint(node, state,

checkpoint_dir):

checkpoint_path=os.path.join(checkpoint_di

r, f’checkpoint_node_{node}.pk1’)

 with open(checkpoint_path, ‘wb’) as

file:

 pickle.dump(state, file)

Fault detection

def

detect_faults(nodes,predictions,current_st

ate):

 faulty_nodes = []

 for i, node in enumerate(nodes):

 if predictions[i] > 0.65 and

current_state[node]== ‘faulty’:

faulty_node.append(node)

 return faulty_nodes

Fault recovery using checkpoints

def recover_from_fault(node,

checkpoint_dir):

checkpoint_path=os.path.join(checkpoint_di

r, f’checkpoint_node_{node}.pk1’)

 with open(checkpoint_path, ‘rb’)as file:

 state = pickle.load(file)

return state

model.add(LSTM(50,activation=’relu’,

input_set=input_set))

 model.add(Dense(1))

 model.compile(optimizer = ‘adam’, loss =

‘mse’)

 return model

def train_lstm_model(model,x_train,y_train,

epochs=1000):

 model.fit(x_train, y_train, epochs =

epochs, erbose =1)

 return model

Main process to run CIN CIC-FTM

 def

cin_cic_ftm_process(nodes,fault_data_file,

checkpoint_dir, current_state):

 data = load_data(fault_data_file)

 x_train, y_train = data[‘x_train],

data[‘y_train’]

 input_set = (x_train.set[1],

x_train.set[2])

 # Build and train the LSTM model

 model = build_lstm_model(input_set)

 model = train_lstm_model(model,

x_train, y_train)

 # Predict faults

 predictions = predict_faults(model,

x_train)

Place checkpoints based on predictions

 checkpoints= place_checkpoints(node,

predictions)

 for node in checkpoints:

 state = current_state[node]

 save_checkpoint(node, state,

checkpoint_dir)

Detect faults

faulty_nodes=detect_faults(nodes,prediction

s, current_state)

Recover from faults

 for node in faulty_nodes:

recovered_State=recover_from_fault(node,

checkpoint_dir)

current_state[node] = recovered_state

 return current_state

Example usage

nodes = [‘node1’, ‘node2’, ‘node3’,

‘node4’]

fault_data_file = ‘fault_data.npz’

checkpoint_dir = ‘checkpoints’

current_state = {‘node1’: ‘normal’,

‘node2’: ‘normal’, ‘node3’: ‘normal’,

‘node4’: ‘normal’}

final_state=cin_cic_ftm_process(nodes,

fault_data_file, checkpoint_dir,

current_state)

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1785-1796

1792

This algorithm provides a detailed framework for implementing the CIN CIC-FTM in Python,

enabling efficient fault prediction, strategic checkpoint placement and fault recovery in IoT applications. The

‘load_data’ function loads historical fault data for training the LSTM model. The data is expected to be in a

‘.npz’ file containing training and testing datasets. The LSTM model is built using TensorFlow’s Keras API,

with an input layer, LSTM layer and output dense layer. The model is trained on the historical fault data. The

checkpoints are placed on nodes where the predicted fault probability exceeds a certain threshold (0.65). The

state of these nodes is saved using the ‘pickle’ library. The main function ‘cin_cic_ftm_process’ integrates all

steps and processes the nodes in the IoT network to place checkpoints and perform fault recovery.

Consider Figure 4 as an example for understanding CIN CIC-FTM. Firstly, CIN based CIC induces

checkpoints C1 and C2 at node N2,1 and N3,2 as these nodes are predicted to have faults based on LSTM

algorithm. The sequence of message transmission is- message M1 is sent from process P4 to P3, message M2

from P1 to P3, and so on. If at M5, a fault is detected, CIC-FTM initiates the rollback propagation [37] and

will rollback to the latest placed checkpoint, C1 and restarts from C1. Again, if fault is not recovered at M5,

the system will rollback to next latest checkpoint C2 and restarts from there. Still if fault is not recovered, then

FTM returns to initial states and restarts the process from initial states. Still if fault is not recovered, the FTM

concludes its hardware fault.

Figure 4. Example for checkpoint at intermediate node based CIC-FTM

3. RESULT AND DISCUSSION

In this section, we simulate the proposed model on the Google Colab platform using Python 3.7.

Discrete event simulation spans 4-100 processes, generating messages via exponential distribution. Sensor

frequency, set to one minute, adaptable based on application requirements. The sensors used in IoT agriculture

include temperature, humidity, water level, light, and moisture sensors. Training involves 7000+ dataset, 1000+

for testing under diverse scenarios. Each scenario undergoes 1-15 tests, averaging parameters for assessment.

Reconfiguring the sensor frequency to suit the needs of the application is possible.

The performance parameters for prediction of fault nodes using LSTM model are i) precision, “P”, is

the percentage of values identified precisely; ii) recall, “R”, which is the number of positive class prediction

out of all positive examples; and iii) F1-score, “F1”, which is the harmonic mean of precision and recall,

provides a more accurate picture of cases that were incorrectly classified than the accuracy metric. The

accuracy is defined as in expression (11), where true negative=“TN”, true positive=“TP” and false

positive=“FP”, false negative=“FN”. Among the various loss functions, root mean squared error (RMSE) is

the appropriate metric to evaluate time series [38] prediction models and it is defined as in expression (12),

where, “n” is number of nodes, “i” is number of iterations, “yi” is real output, “yp
i ” is desired output. The larger

RMSE indicates less accuracy and least RMSE indicates highest accuracy [39]:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (8)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (9)

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 (10)

(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒) = ((
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
), (

𝐹𝑁+𝐹𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
)) (11)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Communication induced checkpointing based fault tolerance mechanism using … (Sowjanya Lakshmi A)

1793

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑝

𝑖)2𝑛
𝑖=1 (12)

Hyperparameters are used to tune the LSTM based prediction models. The most important

hyperparameter combination that have direct impact on model performance are as mentioned in Table 1 with

the threshold value of 0.65 for which the prediction accuracy obtained is 98.5% as tabulated in Table 2 and

shown in Figure 5. The integration of the LSTM-based deep learning algorithm showed high accuracy in

predicting fault occurrences as shown in Figure 5. The LSTM model was trained and validated using historical

fault data and it successfully identified transient fault occurrences with an accuracy of 98.5% accuracy, as

measured by standard metrics including precision, recall and F1-score as tabulated in Table 2.

Table 1. Hyperparameter values for highest accuracy
Hyperparameters Values

Window-size 15

Dropout-rate 0.2

Regularizer L2
Regularizer-rate 0.014

Epochs 1000

Activation-function ReLu
Learning-rate 0.012

Table 2. Average performance metrics of LSTM model
Epochs % Accuracy Recall F1-score

50 98.4 98.2 98
100 98.5 98.23 98.12

200 98.6 98.4 98.2

500 98.5 98.2 98.1
1000 98.6 98.3 98

Average (from 50 to 1000 epochs) 98.52 98.23 98.1

An average recall of 98.23% indicated that, out of all the actual fault occurrences, the LSTM model

successfully predicted 98.23% of them and this high recall value indicates that the model is very effective at

detecting most of the faults that occur, minimizing the risk of unpredicted faults which leads to system failures.

An F1-score of 98.1% indicates that the LSTM model has a well-balanced performance, with both high recall

and high precision. This indicates the model is reliable in predicting faults with minimal false alarms, which is

critical for efficient fault management in IoT systems. Now, the proposed CIN CIC-FTM places the

checkpoints at the identified faulty nodes. The Figure 6 shows average number of checkpoints placed, average

number of useless checkpoints, memory consumption and CPU consumption for checkpointing in the network,

and average back propagation time and fault recovery time, when the network is of different node sizes like, 4

nodes, 10 nodes, 40 nodes and 100 nodes.

Figure 5. LSTM fault prediction accuracy

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1785-1796

1794

Figure 6. Checkpoints count and resource consumption by CIN CIC-FTM

The observations are:

− The CIN CIC-FTM using LSTM places checkpoints at predicted faulty nodes that are 15% of the total

number of nodes in the network, hence significantly reduces the number of forced and useless checkpoints

compared to existing methods [9], [17], [21], [22], [39] that often place checkpoints indiscriminately across

multiple nodes.

− The CIN CIC-FTM makes targeted checkpoint placement just before nodes predicted to be faulty. These

checkpoints become useless only if fault recovery is successful by restarting from the most recently placed

checkpoint, preventing the need to rollback to subsequent ones. As a result, the number of useless

checkpoints is minimized-less than 10% of the total number of checkpoints.

− Existing checkpointing methods involve frequent, periodic and indiscriminate checkpoint placements [5],

[9], [13], [17], [21], [22], [24], [25], [27], [32], [39], leading to unnecessary memory consumption due to

the storage of multiple and useless checkpoints. The CPU is loaded with the continuous monitoring and

processing of these checkpoints, reducing system efficiency [5], [9], [13], [17], [39]. In contrast, the CIN

CIC-FTM, since the checkpoints are placed at targeted nodes based on high accurately predicted nodes,

minimizes the memory consumption- by reducing the number of checkpoints stored and the CPU

consumption- as the system is not required to constantly process and manage an excessive number of

checkpoints.

− IoT networks face challenges with respect to its dynamic behavior and resource constraints [5], [9], [13],

[22], [25], [27], [39]. The reduction in memory and CPU consumption not only impress the overall

efficiency of the system but also ensures that the IoT applications can continue to operate effectively even

in resource-limited scenarios.

− Back propagation time refers to the time required to rollback to the recently placed checkpoint from the

fault detected node. Fault recovery time refers to the time taken to recover from a fault, by loading the

previous consistent checkpoint and resuming execution from that checkpoint onwards. It includes the time

required to transfer data from checkpoint storage to the program’s memory, reinitialize the execution state

and continue its execution. The results indicate that the CIN CIC-FTM reduces the back propagation time

and fault recovery time by considerable margin compared to existing checkpointing techniques, which

suffer from inefficiencies due to inconsistent node states and the domino effect [5], [9], [13], [24], [39],

[40]. Because of predicted and targeted checkpointing approach, the overall number of checkpoints are

reduced and are placed just before nodes predicted to be faulty, the back propagation time and fault recovery

time are significantly reduced in turn allowing for quicker system response, even in presence of transient

faults.

4. CONCLUSION

The increasing reliance on IoT applications across various sectors such as healthcare, industry and

agriculture focus on the critical need for robust FTMs. Transient software faults pose significant risks to the

performance and reliability of these systems. The existing FTMs struggle with inefficiencies related to

checkpointing overheads, as checkpoints are typically placed frequently, periodically and indiscriminately

across all nodes, leading to useless and forced checkpoints, followed by domino effect and unnecessary

resource consumption. The research introduces a novel CIN based CIC-FTM that incorporates LSTM deep

learning algorithms to predict fault occurrences and strategically place checkpoints before the predicted faulty

nodes. The prediction accuracy obtained is 98.5%. This reduces the number of checkpoints placed, that is at

<15% nodes of the overall nodes and <10% of them go useless, which proportionally reduces rollback time

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Communication induced checkpointing based fault tolerance mechanism using … (Sowjanya Lakshmi A)

1795

and fault recovery time as discussed in results section. Hence the storage overheads, rollback-restart-recovery

process overheads and overall checkpointing overheads, are significantly reduced. The CIN CIC-FTM also

ensures that IoT systems can operate more efficiently, even in resource-constrained scenarios, making the CIC-

FTM a promising solution for enhancing the robustness of IoT applications against transient faults. The

proposed FTM is flexible to i) rescale for more than 100 node and complex IoT network with a high density

interconnected devices and ii) other IoT applications like smart cities, healthcare and industrial automation. To

address the dynamic nature of IoT environments, future research could focus on developing adaptive and self-

learning FTMs. By continuously learning from new data and adapting the checkpointing strategy considering this

research as the baseline approach, the system could improve its fault prediction accuracy and efficiency over time.

ACKNOWLEGDEMENT

The authors would like to take this opportunity to acknowledge, the Doctoral Committee members

for their guidance and Sir. M. Visvesvaraya Institute of Technology, Bengaluru, India for providing the

necessary facilities to support this research work.

REFERENCES
[1] K. Ashton, “That internet of things thing,” RFID Journal, vol. 22, no. 7, pp. 97–114, 2009.
[2] F. Cristian, “Understanding fault-tolerant distributed systems,” Communications of the ACM, vol. 34, no. 2, pp. 56–78, Feb. 1991,

doi: 10.1145/102792.102801.

[3] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo, “BlueGene/L failure analysis and prediction models,” in
Proceedings of the International Conference on Dependable Systems and Networks, 2006, pp. 425–434, doi: 10.1109/DSN.2006.18.

[4] S. Kalaiselvi and V. Rajaraman, “A survey of checkpointing algorithms for parallel and distributed computers,” Sadhana, vol. 25,

no. 489–510, 2000.
[5] R. Baldoni, F. Quaglia, and P. Fornara, “An index-based checkpointing algorithm for autonomous distributed systems,” IEEE

Transactions on Parallel and Distributed Systems, vol. 10, no. 2, pp. 181–192, 1999, doi: 10.1109/71.752783.

[6] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault tolerance mechanisms and checkpoint/restart implementations
for high performance computing systems,” Journal of Supercomputing, vol. 65, no. 3, pp. 1302–1326, 2013, doi: 10.1007/s11227-

013-0884-0.

[7] E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, “A survey of rollback-recovery protocols in message-passing systems,”
ACM Computing Surveys, vol. 34, no. 3, pp. 375–408, 2002, doi: 10.1145/568522.568525.

[8] R. Garg and P. Kumar, “A review of fault tolerant checkpointing protocols for mobile computing systems,” International Journal

of Computer Applications, vol. 3, no. 2, pp. 8–19, 2010, doi: 10.5120/710-998.
[9] J. Ahn, “Communication-induced checkpointing with message logging beyond the piecewise deterministic (PWD) model for

distributed systems,” Electronics, vol. 10, no. 12, p. 1428, Jun. 2021, doi: 10.3390/electronics10121428.

[10] B. H. Sababha and O. A. Rawashdeh, “Evaluation of communication induced checkpointing in resource constrained embedded
systems,” in Proceedings of the ASME Design Engineering Technical Conference, 2011, vol. 3, no. PARTS A AND B, pp. 39–45,

doi: 10.1115/DETC2011-48634.

[11] H.-D. Ma, “Internet of things: objectives and scientific challenges,” Journal of Computer Science and Technology, vol. 26, no. 6,
pp. 919–924, Nov. 2011, doi: 10.1007/s11390-011-1189-5.

[12] J. Tsai, S.-Y. Kuo, and Y.-M. Wang, “Theoretical analysis for communication-induced checkpointing protocols with rollback-

dependency trackability,” IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 10, pp. 963–971, 1998.
[13] P. K. Jaggi and A. K. Singh, “Adaptive checkpointing for fault tolerance in an autonomous mobile computing grid,” in 2014

International Conference on Contemporary Computing and Informatics (IC3I), Nov. 2014, pp. 553–557, doi:
10.1109/IC3I.2014.7019711.

[14] G. H. Adday, S. K. Subramaniam, Z. A. Zukarnain, and N. Samian, “Fault tolerance structures in wireless sensor networks (WSNs):

survey, classification, and future directions,” Sensors, vol. 22, no. 16, p. 6041, Aug. 2022, doi: 10.3390/s22166041.
[15] A. Sowjanya Lakshmi, C. Vani Priya, and G. Gupta, “Communication induced checkpointing based fault tolerance mechanism – a

review and CIAC-FTM framework in IoT environment,” in 2022 International Conference on Computing, Communication, and

Intelligent Systems (ICCCIS), Nov. 2022, pp. 1–6, doi: 10.1109/ICCCIS56430.2022.10037637.
[16] A. Sari and M. Akkaya, “Fault tolerance mechanisms in distributed systems,” International Journal of Communications, Network

and System Sciences, vol. 08, no. 12, pp. 471–482, 2015, doi: 10.4236/ijcns.2015.812042.

[17] N. Malhotra and M. Bala, “Fault-tolerant communication induced checkpointing and recovery protocol using IoT,” Tech Science
Press, Intelligent Automation & Soft Computing, vol. 30, no. 3, pp. 945–960, 2021, doi: 10.32604/iasc.2021.019082.

[18] M. T. Moghaddam and H. Muccini, “Fault-tolerant IoT: a systematic mapping study,” in Software Engineering for Resilient

Systems: 11th International Workshop, 2019, pp. 67–84, doi: 10.1007/978-3-030-30856-8_5.
[19] L. Alvisi, E. Elnozahy, S. Rao, S. A. Husain, and A. De Mel, “An analysis of communication induced checkpointing,” in Digest of

Papers. Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing (Cat. No. 99CB36352), 19999, pp. 242–249,

doi: 10.1109/FTCS.1999.781058.
[20] M. Castro-León, H. Meyer, D. Rexachs, and E. Luque, “Fault tolerance at system level based on RADIC architecture,” Journal of

Parallel and Distributed Computing, vol. 86, pp. 98–111, 2015, doi: 10.1016/j.jpdc.2015.08.005.

[21] A. C. Simón, S. E. Pomares Hernandez, J. R. Perez Cruz, R. Ben Halima, and H. Hadj Kacem, “Self-healing in autonomic distributed
systems based on delayed communication-induced checkpointing,” International Journal of Autonomous and Adaptive

Communications Systems, vol. 9, no. 3–4, pp. 183–200, 2016, doi: 10.1504/IJAACS.2016.079621.

[22] I. C. Garcia and L. E. Buzato, “Checkpointing using local knowledge about recovery lines.” University of Campinas, Brazil,
pp. IC-99–22, 1999.

[23] J. Dongarra, T. Herault, and Y. Robert, “Fault tolerance techniques for high-performance computing,” in Computer

Communications and Networks, Springer, Cham, 2015, pp. 3–85.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1785-1796

1796

[24] P. Eles, V. Izosimov, P. Pop, and Z. Peng, “Synthesis of fault-tolerant embedded systems,” in 2008 Design, Automation and Test

in Europe, Mar. 2008, pp. 1117–1122, doi: 10.1109/DATE.2008.4484825.
[25] J.-M. Hélary, A. Mostefaoui, R. H. B. Netzer, and M. Raynal, “Communication-based prevention of useless checkpoints in

distributed computations,” Distributed Computing, vol. 13, no. 1, pp. 29–43, Jan. 2000, doi: 10.1007/s004460050003.

[26] J.-M. Helary, A. Mostefaoui, and M. Raynal, “Communication-induced determination of consistent snapshots,” IEEE Transactions
on Parallel and Distributed Systems, vol. 10, no. 9, pp. 865–887, 1999, doi: 10.1109/ftcs.1998.689472.

[27] Y. Luo and D. Manivannan, “FINE: a fully informed and efficient communication-induced checkpointing protocol for distributed

systems,” Journal of Parallel and Distributed Computing, vol. 69, no. 2, pp. 153–167, 2009, doi: 10.1016/j.jpdc.2008.07.012.
[28] H. Y. Teh, A. W. Kempa-Liehr, and K. I.-K. Wang, “Sensor data quality: a systematic review,” Journal of Big Data, vol. 7, no. 1,

p. 11, Dec. 2020, doi: 10.1186/s40537-020-0285-1.

[29] M. Christodorescu and S. Jha, “Static analysis of executables to detect malicious patterns,” in Proceedings of the 12th USENIX
Security Symposium, 2003, pp. 169–186.

[30] I. C. Garcia, G. M. D. Vieira, and L. E. Buzato, “A rollback in the history of communication-induced checkpointing,” arXiv preprint

arXiv, :1702.06167, 2019, [Online]. Available: http://arxiv.org/abs/1702.06167.
[31] G. M. D. Vieira, G. M. D. Vieira, I. C. Garcia, I. C. Garcia, L. E. Buzato, and L. E. Buzato, “Systematic analysis of index-based

checkpointing algorithms using simulation,” in SCTF ’01: Proc. of the IX Brazilian Symposium on Fault-Tolerant Computing, 2001,

pp. 31–42.
[32] Y. Tan, C. Hu, K. Zhang, K. Zheng, E. A. Davis, and J. S. Park, “LSTM-based anomaly detection for non-linear dynamical system,”

IEEE Access, vol. 8, pp. 103301–103308, 2020, doi: 10.1109/ACCESS.2020.2999065.

[33] N. Absar, N. Uddin, M. U. Khandaker, and H. Ullah, “The efficacy of deep learning based LSTM model in forecasting the outbreak
of contagious diseases,” Infectious Disease Modelling, vol. 7, no. 1, pp. 170–183, Mar. 2022, doi: 10.1016/j.idm.2021.12.005.

[34] L. Zhang, W. Da Zhou, P. C. Chang, J. W. Yang, and F. Z. Li, “Iterated time series prediction with multiple support vector regression

models,” Neurocomputing, vol. 99, pp. 411–422, 2013, doi: 10.1016/j.neucom.2012.06.030.
[35] S. Wang, C. Ma, Y. Xu, J. Wang, and W. Wu, “A hyperparameter optimization algorithm for the LSTM temperature prediction

model in data center,” Scientific Programming, vol. 2022, pp. 1–13, Dec. 2022, doi: 10.1155/2022/6519909.
[36] F. Quaglia, R. Baldoni, and B. Ciciani, “On the no-Z-cycle property in distributed executions,” Journal of Computer and System

Sciences, vol. 61, no. 3, pp. 400–427, 2000, doi: 10.1006/jcss.2000.1720.

[37] J. BrzeziŃski, J.-M. Helary, and M. Raynal, “Semantics of recovery lines for backward recovery in distributed systems,” Annales
Des Télécommunications, vol. 50, no. 11–12, pp. 874–887, 1995, doi: 10.1007/bf03005244.

[38] M. Said Elsayed, N. A. Le-Khac, S. Dev, and A. D. Jurcut, “Network anomaly detection using LSTM based autoencoder,” in

Q2SWinet 2020 - Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, 2020,
pp. 37–45, doi: 10.1145/3416013.3426457.

[39] B. K. Saraswat, R. Suryavanshi, and D. Yadav, “A comparative study of checkpointing algorithms for distributed systems,”

International Journal of Pure and Applied Mathematics, vol. 118, no. 20, pp. 1595–1603, 2018.
[40] D. Briatico, A. Ciuffoletti, and L. Simoncini, “A distributed domino effect free recovery algorithm,” Symposium on Reliability in

Distributed Software and Database Systems, vol. 84, pp. 207–215, 1984.

BIOGRAPHIES OF AUTHORS

Sowjanya Lakshmi A is a Research Scholar pursuing Ph.D. at Research Center

of Department of Computer Science and Engineering, Sir. M. Visvesvaraya Institute of

Technology, Bengaluru, India under Visvesvaraya Technological University, Belagavi,

India. Her specialization area is internet of things, artificial intelligence, machine learning,

and data analytics. She has more than 13 years of experience in teaching and research and

currently working as Assistant Professor in the Department of Information Science and

Engineering. She has published papers in National and International Journals. She can be

contacted at email: sowjanya.engg@gmail.com.

Vanipriya Ch is Professor and Head of the department of MCA, Sir. M.

Visvesvaraya Institute of Technology, Bengaluru, India. She holds a Ph.D. degree in

Computer Science and Engineering with specialization in Sentimental Analysis. She has 23

years of Teaching and Research. Her research areas are artificial intelligence, machine

learning, data mining, and sentimental analysis. She has patent on her innovative idea and

published papers in Scopus indexed Journals. She can be contacted at email:

vanipriya_is@sirmvit.edu.

https://orcid.org/0009-0003-4786-7541
https://webofscience.com/wos/author/record/KPY-3734-2024
https://orcid.org/0000-0002-5699-6949
https://www.scopus.com/authid/detail.uri?authorId=55941103700
https://webofscience.com/wos/author/record/AAX-7778-2021

