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 Internet of things (IoT) is increasingly used in diverse environments such as 

healthcare, industry and agriculture. They carry a risk of adverse effects if 

they make decisions based on faulty information. Software faults, especially 

transient faults are a primary contributor to deficient decision-making. The 

existing fault tolerant mechanisms often suffer from checkpoint overheads as 

checkpoints are placed in all the nodes. This paper describes a novel 

communication induced checkpointing based fault tolerance mechanism 

(CIC-FTM) designed to efficiently recover from transient faults, while 

minimizing useless and forced checkpoints. Long short-term memory 

(LSTM) based deep learning algorithm is used in our approach to predict fault 

occurrences and strategically place checkpoints. The proposed method also in 

turn improve system reliability and performance. Experimental results 

demonstrate the effectiveness of proposed CIC-FTM in IoT environment by 

minimizing the practicable operating time for checkpointing and back 

propagation, compared to traditional fault-tolerance mechanisms. 
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1. INTRODUCTION 

The internet of things (IoT) applications are pervasive in various domains such as smart homes, 

industries, agriculture and healthcare. These applications rely heavily on the integrity of a data transactions 

among interconnected devices to function correctly [1]. Interactions occur through message exchanges, with 

operations and decisions reliant on data transmitted and received across IoT nodes [2], [3]. Sensors collect 

unstructured data, later converted to structured input for IoT processing units. Processors, linked via standard 

networks, exchange messages through dedicated channels to minimize communication delays [4]-[7]. Fog 

computing, positioning computational devices closer to IoT devices, aids time-critical applications. Data 

processing occurs in fog computing instead of cloud computing for swift decision-making. The architecture 

diagram, Figure 1 for agriculture IoT depicts this setup. IoT systems are prone to transient faults during data 

transactions, which can lead to incorrect operations and potential system damage. Software transient faults 

arise from issues like data transactions, server failures and breaches [8]-[10] can disrupt IoT systems but are 

typically recoverable by restarting tasks. Transient faults like sequence number, checksum, null character and 

out-of-range errors that contribute to risks [7], [10]-[13] are detected in this paper’s first contribution.  

Various checkpointing based fault tolerance mechanisms (FTM) are effectively recovering faults, but 

not addressing transient faults and also recovery is at the cost of checkpointing overheads and storage 

overheads. The following observations are found in the literature review-various successful FTMs utilize 

https://creativecommons.org/licenses/by-sa/4.0/
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rollback via checkpointing, categorized as un-coordinated, coordinated and communication induced 

checkpointing (CIC) based FTMs [6], [10], [14]-[21]. Checkpointing saves crucial information temporarily, 

including code, data, status, register contents, environment conditions, access counts of the files, file pointers 

and file related details, ensuring consistent system state [10], [22]. In un-coordinated checkpointing FTMs, 

where checkpoints are set at fixed intervals or strategically, independent of processor operations, causing 

inefficiency due to inconsistent nodes and the Domino effect [8], [10], [11], [23]-[25]. Coordinated 

checkpointing synchronizes processes through system messages to ensure a consistent global state, albeit with 

storage overheads [8], [10]. CIC combines aspects of both techniques, placing checkpoints based on application 

messages to avoid unnecessary ones but risking missing useful ones, necessitating forced checkpoints 

placements for fault recovery [5], [7], [9], [25]. CIC allows designers to place checkpoints based on specific 

conditions conveyed by explicit messages [8], [18], [20], [23]-[29]. Widely used in various applications 

including parallel and distributed computing, CIC-FTMs are under constant research, especially in IoT. 
 

 

 
 

Figure 1. Fog enabled cloud infrastructure 
 

 

Eles et al. [24] integrates error detection and equidistant checkpointing with rollback recovery and 

active replication to handle faults into software architecture, aiming to meet performance and cost constraints 

in safety-critical applications. This approach assumes a limited number of faults and leads to potential time 

overheads even though it primarily handles transient faults. Helary et al. [25] focuses on optimizing the 

checkpointing mechanism in distributed systems by identifying and eliminating redundant checkpoints through 

a communication-based FTM approach. This method has increased complexity and difficulties in dynamic 

environments. The continued research [26] focus on implementation of CIC techniques to determine consistent 

snapshots efficiently by initiating checkpoints through marker messages, logging messages in transit and 

ensuring consistency through regular monitoring. Hence checkpoint overheads are reduced and the approach 

is adaptable to both centralized and decentralized systems but, still faces complexity issues in implementation 

to furnish the constraints and not effectively handling complex failure scenarios. Garcia et al. [22], [30], and 

Vieira et al. [31] explores an advanced checkpointing technique designed to enhance fault tolerance in 

distributed systems using local checkpoints and recovery lines, where each process independently manages its 

checkpoints based on local knowledge and coordination is used to establish consistent global recovery lines. 

This approach reduce checkpointing related overheads and complexity compared to traditional global 

checkpointing methods, but faces coordination complexity and challenges in handling partial failures.  

Simon et al. [21] introduces delayed CIC (DCIC) based FTM to improve performance in distributed systems 

by strategically placing checkpoints based on communication delays rather than fixed intervals. This approach 

enhances fault tolerance and self-healing capabilities and minimizes the performance overheads but encounters 
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useless checkpoints. This approach is also not addressing overall fault scenarios in distributed systems. Roberto 

Baldoni et al. [5] propose an index-based CIC algorithm to reduce checkpointing overheads, enhance efficiency 

in distributed systems without centralized control. Despite its innovative approach, the algorithm faces 

limitations such as potential overhead, implementation complexities, scalability concerns, limited fault model 

coverage, significant recovery time and resource utilization issues. 

Luo and Manivannan [27] introduces a fully informed and efficient (FINE) CIC protocol designed to 

minimize checkpointing overhead by reducing forced checkpoints and avoiding the domino effect, ensuring 

coordinated recovery through a fully informed global state. This approach still faces implementation 

complexity issues along with communication overhead and network dependency, in addition. Ahn [9] proposes 

a FTM that combines CIC with message logging to overcome the limitations in existing FTMs in distributed 

systems. His methodology involves forcing checkpoints based on communication patterns and logging all 

messages for replay during recovery and advanced mechanisms to handle dependencies. Despite its benefits, 

the approach faces useless checkpoint overheads, recovery latency and dependency management issues. 

Malhotra and Bala [17] propose a CIC FTM tailored for IoT systems. The protocol is a combination of 

spontaneous checkpointing where each node takes spontaneous checkpoints based on a logistic function that 

estimates the time interval between checkpoints and coordinated checkpointing where nodes take coordinated 

checkpoints using the Takagi-Sugeno (T-S) fuzzy system, which generates results based on definite-39 rules. 

This system uses parameters such as energy, failure rate and received signal strength indicator (RSSI) to avoid 

unnecessary checkpoints. This approach minimizes the number of checkpoints, system overhead and ensuring 

non-blocking processes during checkpointing. In this permanent checkpoints are stored on IoT devices which 

also indirectly leads to considerable useless checkpoints after fault recovery and also fault recovery based on 

specific parameters dependency and since, this protocol is designed specifically for mobile distributed systems, 

has its performance is highly dynamic or large-scale networks with significant number of nodes is not 

thoroughly evaluated. Jaggi and Singh [13] introduce an adaptive checkpointing technique to enhance fault 

tolerance in mobile computing grid (MoG). This approach uses cooperative checkpointing, where nodes in the 

system cooperate to store checkpoint data. If a node lacks stable storage, it uses the storage of other nodes. The 

checkpoint data is replicated across multiple nodes to ensure higher chances of recovery depending on resource 

availability. The checkpointing scheme adapts based on the availability of resources in the MoG making it 

flexible and efficient. But, this approach highly relies on the availability of stable storage and resources in other 

nodes, which might not always be guaranteed in highly dynamic or resource-constrained environments. 

Replicating checkpointing data at multiple nodes can lead to increased network traffic and overhead and as the 

number of nodes increases, managing and coordinating checkpoints across a large number of nodes may become 

complex and less efficient.  

Tan et al. [32] uses long short-term memory (LSTM) networks for detecting faults in non-linear 

dynamical systems. The methodology involves training LSTM model on normal operating data, using it to 

predict future states and detecting predictive faults. This approach can be redesigned for different systems on 

requirement basis even though it is challenging. Absar et al. [33] assess the use of LSTM models for forecasting 

contagious disease outbreaks, focusing on utilizing historical data for early detection. The methodology 

involves training LSTM models on disease data, making predictions and evaluating the model’s performance 

using accuracy metrics. Zhang et al. [34] introduce an LSTM-based autoencoder for network anomaly 

detection aiming to identify unusual traffic patterns with high reconstruction errors and reconstruct normal 

network traffic. This approach not feasible with respect to practical applicability and integration in real-world 

scenarios. Wang et al. [35] focus to improve prediction accuracy and efficiency of an LSTM model used for 

predicting temperature in data centers by optimizing its hyperparameters. This hyperparameters optimization 

technique can be utilized based on domain and requirement specific since it adds on computational costs. 

The detailed survey outlines that coordinated and un-coordinated checkpointing encounters 

checkpointing overheads and inefficiencies. While addressing the challenges in optimizing the checkpointing 

based FTMs, the existing techniques like DCIC encounters useless checkpoints, index-based CIC algorithms 

face issues like checkpointing overheads and implementation complexities. Adaptive checkpointing in mobile 

computing grids is resource-dependent and may not always be feasible in dynamic environments like IoT. 

Protocols tailored for IoT systems need to minimize number of checkpoints, useless checkpoints and efficiently 

recover transient faults with minimal resource utilization. The main contributions of this research are as 

follows: 

− The research introduces a novel checkpoint at intermediate node (CIN) CIC-FTM for IoT environments 

that strategically place checkpoints only just before predicted faulty nodes by integrating LSTM-deep 

learning algorithms. This minimizes useless and forced checkpoints, unlike traditional methods that place 

checkpoints indiscriminately across all/many nodes, and also addresses the deficiencies of existing FTMs. 

− Describing transient fault occurrence scenarios and implementation of the fault detection algorithms. 
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− Our approach uses LSTM-deep learning for training using history of fault occurrences and new message 

logs and predicting new fault occurrence. 

The remaining sections are arranged as follows: section 2 describes the proposed methodology that 

includes transient fault detection, LSTM algorithm for predicting fault occurrence and CIN CIC-FTM 

operational mechanism for placing checkpoints and fault recovery. Section 3 explains experimental setup, 

section 4 about results analysis and finally section 5 concludes the research work. 

 

 

2. METHOD 

The proposed methodology integrates novel CIN CIC-FTM that strategically place checkpoints based 

on LSTM predictions that minimizes checkpointing overheads and enhances system performance by transient 

fault recovery. The step-by-step description starts with system architecture diagram, Figure 2 starts from data 

collection, pre-processing that include handling missing values, removing outliers and ensuring consistency, 

transient fault detection, prediction of fault occurrences using LSTM and checkpoint placement and fault 

recovery using CIN CIC-FTM. 
 

 

 
 

Figure 2. Block diagram of CIN CIC-FTM using LSTM 
 
 

Data collection and processing: initially, the sensors readings like temperature, humidity, water level, 

light and moisture in IoT agriculture scenario, are configured and collected every minute (adaptable based on 

application requirement). We simulate the proposed model on Google Colab using Python 3.7, utilizing Python 

libraries including Pandas, OS, Pickle, Socket, Numpy, Crcmode, Tracemalloc, Psutil, Matplotlib, Keras and 

TensorFlow. Messages between processes were generated using exponential distribution spanning between 4 

to 100 processes. Periodically save the state of each sensor/edge node and communication state using ‘Pickle’ 

library to serialize and store the state. Messages exchanged using ‘Socket’ library between nodes were logged 

in local and central database to enable recovery. A coordinator node is designated to manage checkpointing. 

Transient fault detection: fault detection algorithms (refer Algorithm 1 to 4) are implemented to 

identify transient faults. Transient faults are software faults and temporary that occur during runtime of the 

system. Transient faults appear to be unpredictable for a very short period of time whose impact is anomalously 

large on IoT system while decision-making and actuating. Also, frequency of these transient fault occurrences 

is exponentially proportional to abnormality in system actions [4], [8]-[10], [12], [36]. In IoT applications the 

most frequently appearing transient faults are i) if there is incorrect/missing sequence number in packet of 

information flow, the system responds differently, and then the sequence number fault – F1 is detected. The 

information is of two types – payload and command sequence number. ii) If integrity of the information is 

affected, checksum fault – F2 is detected and checksum based fault detection technique is used. iii) Integrity 

of the information is also verified by checking the length of the message. If the length of the message received 

or transmitted is not as expected or received data is irrelevant with its previously generated pattern, then such 

fault is represented as null character fault – F3. (iv) When the information received or transmitted is beyond 

the payload range, the out of range fault – F4 is detected. The transient faults detected using the fault detection 

algorithms affect the fault occurrence scenarios by designing occurrence semantics in my work. The detected 

faults, their occurrence and fault states are logged. 
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Algorithm 1. To detect fault F1 
Initialize:  expected_seq_num = 0 

tolerance_threshold = 5  // Adjust as needed 

Function 

detect_seq_num_fault(received_seq_num): 

  if received_seq_num = = expected_seq_num: 

    // Received sequence number is as 

expected 

   expected_seq_num += 1 

   return NO_FAULT 

else if received_seq_num < expected_seq_num: 

 // Received a duplicate sequence number 

 return "Duplicate Sequence Number Detected" 

  else if received_seq_num - 

expected_seq_num > tolerance_threshold: 

// Sequence number gap exceeds the 

tolerance threshold 

 return "Sequence Number Gap Detected" 

else: 

   // Sequence number gap is within the 

tolerance threshold 

      expected_seq_num = 

received_seq_num + 1 

      return NO_FAULT 

 

Algorithm 2. To detect fault F2 Algorithm 3. To detect fault F3 
Function calculate_chksum(data): 

//Calculate a checksum value for the given 

data 

      chksum = 0 

      for each byte in data: 

 chksum += byte  

  // Add the value of each byte to the 

checksum 

 return checksum 

Function 

detect_chksum_fault(received_data, 

received_chksum): 

expected_chksum = 

calculate_chksum(received_data) 

if received_chksum == expected_chksum: 

  //Checksum matches, data is intact 

    return NO_FAULT 

  else:  

 //Checksum mismatch, data is corrupted 

    return "Checksum Mismatch Detected" 

fault = 

detect_chksum_fault(received_data, 

received_chksum) 

if fault != NO_FAULT: print(fault) 

while true: 

 // Wait for incoming data 

    trg_data = receiveData() 

    src_data = sentData() 

// Check for null character 

    if hasNullCharacter(src_data,trg_data):  

logError("Null character detected in the 

transmitted data") 

else: 

// Null character not detected, process the 

data 

        processData(data) 

// Function to check for null character 

function 

hasNullCharacter(src_data,trg_data): 

     if length(src_data) != 

length(trg_data): 

 return true     

          for character in trg_data: 

                 if character == '\0'  

            return true 

    return false 

 

Algorithm 4. To detect fault F4 
//For different types of sensors it is 

essential to configure range values. Based 

on configuration, error is detected  

// Initialize variables 

expectedMinValuea = 0, expectedMaxValue = 

100 

receivedMinValue = 0, receivedMaxValue = 

0 

// Function to check if the received data is 

within the expected range 

function isDataInRange(data): 

    if data >= expectedMinValue and data 

<= expectedMaxValue: 

        return true 

    else: 

        return false 

// Function to calculate the checksum 

function calculateChecksum(data): 

    checksum = 0 

    for value in data: 

        checksum += value 

    return checksum % 256 

// Main program loop 

while true: 

 // Wait for incoming message 

    message = receiveMessage() 

// Extract the data, received minimum value, 

received maximum value, and checksum from 

the message 

    data = extractData(message) 

    receivedMinValue = 

extractMinValue(message) 

    receivedMaxValue = 

extractMaxValue(message) 

    receivedChecksum = 

extractChecksum(message) 

 // Verify the checksum 

    calculatedChecksum = 

calculateChecksum(data) 

    if calculatedChecksum == 

receivedChecksum: 

 // Checksum is valid, now check for data 

range 

        if receivedMinValue >= 

expectedMinValue and receivedMaxValue <= 

expectedMaxValue: 

 // Data range is within the expected range 

            if isDataInRange(data): 

 // Data is within the expected range, 

process the data 

                processData(data) 

            else: 

                // Data is out of range 

                logError("Received data 

is out of range") 

        else: 

// Received range is out of the expected 

range 

            logError("Received data range 

is out of the expected range") 

    else: 

// Checksum is invalid 

        logError("Invalid checksum 

detected") 
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Prediction of fault occurrence: the LSTM network takes collected sequential input data at various time 

stamps and historical data of fault occurrences for training purposes and trained with multiple epochs to predict 

the next faulty node. This predicted output is logged as a historical dataset on every new prediction. Dataset 

also includes timestamps and labels indicating whether a fault occurred. Split the dataset into training, 

validation and test sets. The training set is used to train the LSTM model, the validation set is used to tune 

hyperparameters and the test set is used to evaluate the model. The LSTM model has an input layer, layers of 

LSTM and a dense output layer. Train the LSTM model on the training data and validate it using the validation 

data. The model is evaluated on the test data using relevant metrics as accuracy, precision, recall and F1-score.  

LSTM, an advanced recurrent neural network (RNN) version, retains vital data, discarding less useful. 

LSTM includes input, forget and output gates [34]. The forget gate, represented by “ft”, discards irrelevant 

data. It’s determined by a sigmoid function based on weights and bias. Input “Xt” feeds into the network, with 

the forget gate deciding if “ht−1” output is relevant to current data. Activation function  

“(ht-1+Xt)” determines relevance, closer to zero implies irrelevance, otherwise relevance. Figure 3 shows the 

LSTM unit with its components. 

 

 

 
 

Figure 3. Basic LSTM cell 

 

 

The “ft” is a forget gate function, that forgets, or ignores the irrelevant information. “Wtf”, are the 

weights and “bsf” the bias of the forget gate, σ is a sigmoid curve, and "." implies multiplication of the matrix. 

The next step is to determine, using two procedures, which new knowledge is present in the cell state. The 

input gate first determines which states are updated, and then the “tanh” activation function is used to generate 

a vector of potential new values. The current cell state “Ct” is then changed using outputs from the input gate, 

the forget gate, and the “tanh” layer. Finally, the output gate and a “tanh” function are used to calculate the 

output of network “ht”, Where “Wto”, is the input weight and “bso” the bias of the output gate, respectively. 

 

𝑓𝑡 =  𝜎(𝑊𝑡𝑓 . [ℎ𝑡−1,𝑋𝑡 ] + 𝑏𝑠𝑓 (1) 

 

𝑖𝑡 =  𝜎(𝑊𝑡𝑖 . [ℎ𝑡−1,𝑋𝑡 ] + 𝑏𝑠𝑖  (2) 

 

~𝐶𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑡𝑐 . [ℎ𝑡−1,𝑋𝑡 ] + 𝑏𝑠𝑐  (3) 

 

𝐶𝑡 =  𝑓𝑡 ∗  𝐶𝑡−1  + 𝑖𝑡 ∗  ~𝐶𝑡 (4) 

 

𝑂𝑡 =  𝜎( 𝑊𝑡𝑜 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑠𝑜) (5) 

 

ℎ𝑡 =  𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ (𝐶𝑡) (6) 

 

𝑦𝑡+𝑛 =  𝑂𝑛( 𝑦𝑡,𝑦𝑡+1,𝑦𝑡+2….𝑦𝑡+𝑛−1) (7) 

 

Dropout regularization combats over-fitting by removing certain neurons. Each hidden unit in a neural 

network is trained using a random sample of others. LSTM networks predict ‘n’ time steps ahead, contrasting 

projected with actual values. Input data“Xt”at time stamp “t”is processed sequentially with a sliding window 

method. LSTM predicts the next faulty node within the e (size-15). The first sample of input is x1, second is x2 

and so Xt={xt-1, xt, xt+1}. This input taken at “WL” window length is {xt−w, xt+1-w...xt−1} used for prediction. The 

LSTM network is trained with “n” epochs and “Yt” is output –predicted faulty node and “On” is LSTM network 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 Communication induced checkpointing based fault tolerance mechanism using … (Sowjanya Lakshmi A) 

1791 

output. LSTM’s advantage lies in predicting future values while remembering past ones, until the required 

multistep predictions are made. 

Checkpoint placement and fault recovery using CIN CIC-FTM: the core of the CIN CIC-FTM is the 

prediction of potential fault occurrences using LSTM network. The predicted faults occurrences are logged as 

fault history. Initially, local checkpoints are placed at nodes after significant system events. Later after training 

LSTM model, forced checkpoints are placed at latest consistent node prior to predicted faulty node. This is 

done dynamically, with the model continuously updating its predictions as new data is processed. The 

checkpointing process involves saving the current state of the system, including the process data and current 

status of the messages being processed. The system upon fault detection checks whether the current node or its 

preceding node has valid checkpoints. The system initiates a rollback to the most recent checkpoint, allowing 

the process to restart from the known good (fault free) state and preventing the spread of faults through the 

system. After successful recovery and the stabilization of the process, the forced checkpoints that are already 

logged as fault history are erased from the local memory and the system continues to operate with the LSTM 

model adjusting its predictions based on the fault history. This approach specifically reduce the storage 

overheads because of checkpoints. The algorithm is given in Algorithm 5 and working principle is explained 

as shown in Figure 4. 

 

Algorithm 5. CIN CIC-FTM 
Import libraries: numpy, tensorflow, 

sequential, LSTM, dense, pickle, os 

# Load historical data for fault 

prediction 

def load_dta(file_path): 

  load historical data related to 

transient faults 

  data = np.load(file_path) 

  return data 

# Build and train LSTM model 

def build_lstm_model(input_set):  model = 

Sequential()  

 # predict fault occurrences 

def predict_faults(model, x_input): 

  predictions = model.predict(x_input) 

  return predictions 

# Place checkpoints based on predictions              

def place_checkpoints(nodes,predictions, 

threshold=0.65): 

  checkpoints = [ ] 

  for i, predictions in 

enumerate(predictions): 

    if predictions > threshold: 

       checkpoints.append(nodes[i]) 

  return checkpoints   

# Save system state as checkpoint 

def save_checkpoint(node, state, 

checkpoint_dir): 

checkpoint_path=os.path.join(checkpoint_di

r, f’checkpoint_node_{node}.pk1’) 

  with open(checkpoint_path, ‘wb’) as 

file: 

  pickle.dump(state, file) 

# Fault detection 

def 

detect_faults(nodes,predictions,current_st

ate): 

  faulty_nodes = [ ] 

  for i, node in enumerate(nodes): 

    if predictions[i] > 0.65 and 

current_state[node]== ‘faulty’:       

faulty_node.append(node) 

    return faulty_nodes 

# Fault recovery using checkpoints 

def recover_from_fault(node, 

checkpoint_dir): 

checkpoint_path=os.path.join(checkpoint_di

r, f’checkpoint_node_{node}.pk1’) 

  with open(checkpoint_path, ‘rb’)as file: 

  state = pickle.load(file) 

return state 

model.add(LSTM(50,activation=’relu’, 

input_set=input_set)) 

  model.add(Dense(1)) 

  model.compile(optimizer = ‘adam’, loss = 

‘mse’) 

  return model 

def train_lstm_model(model,x_train,y_train, 

epochs=1000): 

  model.fit(x_train, y_train, epochs = 

epochs, erbose =1) 

  return model 

# Main process to run CIN CIC-FTM 

  def 

cin_cic_ftm_process(nodes,fault_data_file, 

checkpoint_dir, current_state): 

  data = load_data(fault_data_file) 

  x_train, y_train = data[‘x_train], 

data[‘y_train’] 

  input_set = (x_train.set[1], 

x_train.set[2]) 

  # Build and train the LSTM model 

    model = build_lstm_model(input_set) 

    model = train_lstm_model(model, 

x_train, y_train) 

  # Predict faults 

    predictions = predict_faults(model, 

x_train) 

# Place checkpoints based on predictions 

    checkpoints= place_checkpoints(node, 

predictions) 

    for node in checkpoints: 

      state = current_state[node] 

      save_checkpoint(node, state, 

checkpoint_dir) 

# Detect faults 

faulty_nodes=detect_faults(nodes,prediction

s, current_state) 

# Recover from faults 

  for node in faulty_nodes: 

recovered_State=recover_from_fault(node, 

checkpoint_dir) 

current_state[node] = recovered_state 

  return current_state 

# Example usage 

nodes = [‘node1’, ‘node2’, ‘node3’, 

‘node4’] 

fault_data_file = ‘fault_data.npz’ 

checkpoint_dir = ‘checkpoints’ 

current_state = {‘node1’: ‘normal’, 

‘node2’: ‘normal’, ‘node3’: ‘normal’, 

‘node4’: ‘normal’} 

final_state=cin_cic_ftm_process(nodes, 

fault_data_file, checkpoint_dir, 

current_state) 
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This algorithm provides a detailed framework for implementing the CIN CIC-FTM in Python, 

enabling efficient fault prediction, strategic checkpoint placement and fault recovery in IoT applications. The 

‘load_data’ function loads historical fault data for training the LSTM model. The data is expected to be in a 

‘.npz’ file containing training and testing datasets. The LSTM model is built using TensorFlow’s Keras API, 

with an input layer, LSTM layer and output dense layer. The model is trained on the historical fault data. The 

checkpoints are placed on nodes where the predicted fault probability exceeds a certain threshold (0.65). The 

state of these nodes is saved using the ‘pickle’ library. The main function ‘cin_cic_ftm_process’ integrates all 

steps and processes the nodes in the IoT network to place checkpoints and perform fault recovery. 

Consider Figure 4 as an example for understanding CIN CIC-FTM. Firstly, CIN based CIC induces 

checkpoints C1 and C2 at node N2,1 and N3,2 as these nodes are predicted to have faults based on LSTM 

algorithm. The sequence of message transmission is- message M1 is sent from process P4 to P3, message M2 

from P1 to P3, and so on. If at M5, a fault is detected, CIC-FTM initiates the rollback propagation [37] and 

will rollback to the latest placed checkpoint, C1 and restarts from C1. Again, if fault is not recovered at M5, 

the system will rollback to next latest checkpoint C2 and restarts from there. Still if fault is not recovered, then 

FTM returns to initial states and restarts the process from initial states. Still if fault is not recovered, the FTM 

concludes its hardware fault. 

 

 

 
 

Figure 4. Example for checkpoint at intermediate node based CIC-FTM 

 

 

3. RESULT AND DISCUSSION 

In this section, we simulate the proposed model on the Google Colab platform using Python 3.7. 

Discrete event simulation spans 4-100 processes, generating messages via exponential distribution. Sensor 

frequency, set to one minute, adaptable based on application requirements. The sensors used in IoT agriculture 

include temperature, humidity, water level, light, and moisture sensors. Training involves 7000+ dataset, 1000+ 

for testing under diverse scenarios. Each scenario undergoes 1-15 tests, averaging parameters for assessment. 

Reconfiguring the sensor frequency to suit the needs of the application is possible. 

The performance parameters for prediction of fault nodes using LSTM model are i) precision, “P”, is 

the percentage of values identified precisely; ii) recall, “R”, which is the number of positive class prediction 

out of all positive examples; and iii) F1-score, “F1”, which is the harmonic mean of precision and recall, 

provides a more accurate picture of cases that were incorrectly classified than the accuracy metric. The 

accuracy is defined as in expression (11), where true negative=“TN”, true positive=“TP” and false 

positive=“FP”, false negative=“FN”. Among the various loss functions, root mean squared error (RMSE) is 

the appropriate metric to evaluate time series [38] prediction models and it is defined as in expression (12), 

where, “n” is number of nodes, “i” is number of iterations, “yi” is real output, “yp
i ” is desired output. The larger 

RMSE indicates less accuracy and least RMSE indicates highest accuracy [39]: 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (9) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

 

(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒) = (( 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
), ( 

𝐹𝑁+𝐹𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
)) (11) 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑝

𝑖 )2𝑛
𝑖=1  (12) 

 

Hyperparameters are used to tune the LSTM based prediction models. The most important 

hyperparameter combination that have direct impact on model performance are as mentioned in Table 1 with 

the threshold value of 0.65 for which the prediction accuracy obtained is 98.5% as tabulated in Table 2 and 

shown in Figure 5. The integration of the LSTM-based deep learning algorithm showed high accuracy in 

predicting fault occurrences as shown in Figure 5. The LSTM model was trained and validated using historical 

fault data and it successfully identified transient fault occurrences with an accuracy of 98.5% accuracy, as 

measured by standard metrics including precision, recall and F1-score as tabulated in Table 2.  

 

 

Table 1. Hyperparameter values for highest accuracy 
Hyperparameters Values 

Window-size 15 

Dropout-rate 0.2 

Regularizer L2 
Regularizer-rate 0.014 

Epochs 1000 

Activation-function ReLu 
Learning-rate 0.012 

 

 

Table 2. Average performance metrics of LSTM model 
Epochs % Accuracy Recall F1-score 

50 98.4 98.2 98 
100 98.5 98.23 98.12 

200 98.6 98.4 98.2 

500 98.5 98.2 98.1 
1000 98.6 98.3 98 

Average (from 50 to 1000 epochs) 98.52 98.23 98.1 

 

 

An average recall of 98.23% indicated that, out of all the actual fault occurrences, the LSTM model 

successfully predicted 98.23% of them and this high recall value indicates that the model is very effective at 

detecting most of the faults that occur, minimizing the risk of unpredicted faults which leads to system failures. 

An F1-score of 98.1% indicates that the LSTM model has a well-balanced performance, with both high recall 

and high precision. This indicates the model is reliable in predicting faults with minimal false alarms, which is 

critical for efficient fault management in IoT systems. Now, the proposed CIN CIC-FTM places the 

checkpoints at the identified faulty nodes. The Figure 6 shows average number of checkpoints placed, average 

number of useless checkpoints, memory consumption and CPU consumption for checkpointing in the network, 

and average back propagation time and fault recovery time, when the network is of different node sizes like, 4 

nodes, 10 nodes, 40 nodes and 100 nodes. 

 

 

 
 

Figure 5. LSTM fault prediction accuracy 
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Figure 6. Checkpoints count and resource consumption by CIN CIC-FTM 

 

 

The observations are: 

− The CIN CIC-FTM using LSTM places checkpoints at predicted faulty nodes that are 15% of the total 

number of nodes in the network, hence significantly reduces the number of forced and useless checkpoints 

compared to existing methods [9], [17], [21], [22], [39] that often place checkpoints indiscriminately across 

multiple nodes. 

− The CIN CIC-FTM makes targeted checkpoint placement just before nodes predicted to be faulty. These 

checkpoints become useless only if fault recovery is successful by restarting from the most recently placed 

checkpoint, preventing the need to rollback to subsequent ones. As a result, the number of useless 

checkpoints is minimized-less than 10% of the total number of checkpoints. 

− Existing checkpointing methods involve frequent, periodic and indiscriminate checkpoint placements [5], 

[9], [13], [17], [21], [22], [24], [25], [27], [32], [39], leading to unnecessary memory consumption due to 

the storage of multiple and useless checkpoints. The CPU is loaded with the continuous monitoring and 

processing of these checkpoints, reducing system efficiency [5], [9], [13], [17], [39]. In contrast, the CIN 

CIC-FTM, since the checkpoints are placed at targeted nodes based on high accurately predicted nodes, 

minimizes the memory consumption- by reducing the number of checkpoints stored and the CPU 

consumption- as the system is not required to constantly process and manage an excessive number of 

checkpoints.  

− IoT networks face challenges with respect to its dynamic behavior and resource constraints [5], [9], [13], 

[22], [25], [27], [39]. The reduction in memory and CPU consumption not only impress the overall 

efficiency of the system but also ensures that the IoT applications can continue to operate effectively even 

in resource-limited scenarios. 

− Back propagation time refers to the time required to rollback to the recently placed checkpoint from the 

fault detected node. Fault recovery time refers to the time taken to recover from a fault, by loading the 

previous consistent checkpoint and resuming execution from that checkpoint onwards. It includes the time 

required to transfer data from checkpoint storage to the program’s memory, reinitialize the execution state 

and continue its execution. The results indicate that the CIN CIC-FTM reduces the back propagation time 

and fault recovery time by considerable margin compared to existing checkpointing techniques, which 

suffer from inefficiencies due to inconsistent node states and the domino effect [5], [9], [13], [24], [39], 

[40]. Because of predicted and targeted checkpointing approach, the overall number of checkpoints are 

reduced and are placed just before nodes predicted to be faulty, the back propagation time and fault recovery 

time are significantly reduced in turn allowing for quicker system response, even in presence of transient 

faults. 

 

 

4. CONCLUSION 

The increasing reliance on IoT applications across various sectors such as healthcare, industry and 

agriculture focus on the critical need for robust FTMs. Transient software faults pose significant risks to the 

performance and reliability of these systems. The existing FTMs struggle with inefficiencies related to 

checkpointing overheads, as checkpoints are typically placed frequently, periodically and indiscriminately 

across all nodes, leading to useless and forced checkpoints, followed by domino effect and unnecessary 

resource consumption. The research introduces a novel CIN based CIC-FTM that incorporates LSTM deep 

learning algorithms to predict fault occurrences and strategically place checkpoints before the predicted faulty 

nodes. The prediction accuracy obtained is 98.5%. This reduces the number of checkpoints placed, that is at 

<15% nodes of the overall nodes and <10% of them go useless, which proportionally reduces rollback time 
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and fault recovery time as discussed in results section. Hence the storage overheads, rollback-restart-recovery 

process overheads and overall checkpointing overheads, are significantly reduced. The CIN CIC-FTM also 

ensures that IoT systems can operate more efficiently, even in resource-constrained scenarios, making the CIC-

FTM a promising solution for enhancing the robustness of IoT applications against transient faults. The 

proposed FTM is flexible to i) rescale for more than 100 node and complex IoT network with a high density 

interconnected devices and ii) other IoT applications like smart cities, healthcare and industrial automation. To 

address the dynamic nature of IoT environments, future research could focus on developing adaptive and self-

learning FTMs. By continuously learning from new data and adapting the checkpointing strategy considering this 

research as the baseline approach, the system could improve its fault prediction accuracy and efficiency over time. 
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