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 The persistent global health crisis initiated by the COVID-19 pandemic 

continues to demand robust and high-throughput diagnostic solutions. While 

gold-standard methods, such as polymerase chain reaction (PCR) testing, are 

accurate, their scalability and turnaround time remain limitations in high-

volume settings. This paper introduces a novel deep learning framework 

designed for rapid and accurate detection of COVID-19 from chest X-ray 

(CXR) imagery. Our methodology leverages a convolutional neural network 

(CNN) architecture, augmented by a crucial pre-processing stage: histogram 

equalization. This step is vital for enhancing the subtle contrast features 

inherent in CXR scans, there by significantly improving the quality of the 

input data and facilitating superior feature extraction by the CNN. The 

model was trained and rigorously validated on a dedicated dataset. 

Performance was systematically quantified using a comprehensive confusion 

matrix, yielding key metrics such as precision and specificity, alongside the 

receiver operating characteristic (ROC) curve. The achieved results are 

highly encouraging, demonstrating a classification accuracy of 98.45%. This 

innovative approach offers a substantial acceleration of the diagnostic 

process, providing a non-invasive and highly effective complementary tool 

for clinicians. Ultimately, this advancement has the potential to streamline 

patient management protocols and alleviate diagnostic pressures on global 

healthcare infrastructures. 
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1. INTRODUCTION 

Healthcare systems across the globe have been heavily strained by the COVID-19 pandemic [1].  

Its fast spread and severity, particularly among vulnerable populations, have placed immense strain on 

diagnostic resources [2]. Chest X-rays (CXR) have emerged as a vital tool for initial diagnosis, but manual 

analysis can be time-consuming and susceptible to human error [3], [4]. 

Deep learning, specifically convolutional neural networks (CNNs), presents a promising solution for 

automating medical image analysis [5], [6]. These powerful networks can extract features from images and 

leverage them for classification tasks [7]. CNNs have already demonstrated success in detecting various 

pathologies like tumors and cancers [8]. This paper proposes a lightweight CNN model designed specifically 

for detecting COVID-19 from CXRs [9]. The model is trained on a publicly available dataset (COVID-QU) 

and utilizes histogram equalization as a pre-processing step [10]. This technique improves image quality, 

similar to how other image processing techniques, like lung segmentation, can be integrated for further 
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analysis in medical imaging tasks like lung nodule detection [11]. Our findings are encouraging, with the 

model achieving an accuracy of 98.45%. This efficient model has the potential to contribute to faster and 

more accurate COVID-19 diagnosis [12], [13]. By automating analysis, such models can alleviate pressure 

on medical personnel and contribute to optimized patient management [14], [15]. 

 

 

2. THE COMPREHENSIVE THEORETICAL BASIS 

Following the exploration of CNNs for COVID-19 detection in CXR images by various studies, this 

research proposes a novel method that incorporates both CNN and long short-term memory (LSTM) 

networks [16]. As of today, COVID-19 is still a global concern. This combined architecture aims to achieve 

even more accurate automatic diagnosis of COVID-19 from CXR images [17]. 

 

 

3. METHOD 

3.1.  CXR image database 

Our model was trained on a selection of the COVID-QU database [18]. This database contains 1,823 

images divided into three categories: 

− COVID-19 positive: 536 images; normal: 668 images; lung virus: 619 images 

For our study, we focused on the three categories this represents a total of 1,823 images. 

Justification for the choice of categories: 

− COVID-19 positive: allows the model to learn the distinctive characteristics of the disease [19]. 

− Normal: serves as a reference for comparison and discrimination. 

− Exclusion from other categories: pulmonary virus: features may overlap those of COVID-19, which may 
cause confusion in the model [20]. 

The sets of images in database are distributed: the difference between Figures 1 and 2 is that Figure 1 

shows a chest affected by COVID-19, with ground-glass opacities, consolidation, and infiltrates. These hazy 

areas in the lungs can appear white on a CXR [21], [22], and are caused by fluid buildup in the lungs. 

The diagram in Figure 3 illustrates the approximate number of people affected by the COVID-19 

pandemic compared to those who were not infected. It shows that the number of affected individuals is close 

to that of the unaffected population [23]. 

 

 

 
 

Figure 1. Images from the dataset used positive COVID-19 

 

 

 
 

Figure 2. Images from the dataset used normal 
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Figure 3. count of images for database used 

 

 

3.2.  Proposed approach 

The study was organized in eight main stages: 

− Image size standardization: all images have been resized to a uniform size to ensure consistency in 

learning. 
 

𝑝𝑥(𝑥𝑘) = 𝑝(𝑥 = 𝑥𝑘) =
𝑛𝑘

𝑛
, 0 ≤ 𝑘 < 𝐿 (1) 

 

xk : discrete intensity level (gray level);  

L: total number of possible intensity levels 

nk: absolute frequency (pixel count) and n is total number of pixels in the image 

px(xk): probability mass function (PMF) or normalized frequency 

− Convert images to grayscale 

The grayscale conversion allowed focus on texture and brightness information, while reducing data 

complexity with function grayscale in python [24]. Breakdown of data into learning and validation sets: 80% 

of the data were used for model learning (learning set). 20% of the data were used to assess the reliability of 

the model (validation set) [25], [26]. 

− Design of the CNN architecture 

The CNN architecture was defined by specifying the number and type of convolutional and fully 

connected layers [27]. The CNN architecture plays a crucial role in its ability to effectively detect COVID-19 

from CXRs [28], [29]. This architecture Figure 4 is defined by specifying several key elements: number and 

type of convolutional layers and fully connected layers [30]. 

 

 

 
 

Figure 4. Architecture CNN used 
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4. RESULTS AND DISCUSSION 

Model drive setup, the hyperparameters of the model, such as the learning rate and the number of 

eras, have been optimized to obtain the best results [30]. While defining the CNN architecture is essential, 

achieving optimal performance often requires fine-tuning the model’s hyperparameters [31]. These are 

settings that control the learning process but aren’t directly learned by the model itself [32]. 

Model training launch, the model was trained on the learning set and its performance was evaluated 

on the validation set [33]. By following these steps, we were able to develop a CNN model capable of 

detecting COVID-19 from CXRs with high accuracy and reliability [34]. Optimizing these hyperparameters 

can significantly improve the model’s ability to detect COVID-19 in CXRs [35]. In Figure 5 which show the 

graph or accuracy and Figure 6 which show evolution of loss value [36]. 

 

 

 
 

Figure 5. Accuracy value 

 

 

 
 

Figure 6. Loss value 

 

 

Last phase of the study, upon the completion of the CNN training phase, two subsequent critical 

steps are undertaken to rigorously quantify and validate the model’s predictive performance on the unseen 

test data:  
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4.1.  Visualize the confusion matrix 

The confusion matrix serves as an essential diagnostic tool for visualizing a model’s predictive 

accuracy by mapping forecasted outcomes against actual ground truth values. This structured representation 

facilitates a comprehensive evaluation of performance, as it highlights specific patterns of successful 

classifications and systematic errors across different categories [36]. Furthermore, by isolating these 

predictive discrepancies, researchers can derive critical secondary metrics such as precision, recall,  

and the F1-score to gain deeper insights into the algorithm’s reliability in complex decision-making 

scenarios. 

 

4.2.  Display the receiver operating characteristic (ROC) curve 

The ROC curve illustrated in Figure 7 depicts the relationship between the true positive rate and the 

false positive rate across various threshold settings. This graphical representation serves as a critical 

diagnostic tool to evaluate the model’s fundamental capacity to discriminate effectively between positive and 

negative classes [36]. By analyzing the area under this curve (AUC), researchers can quantify the overall 

diagnostic accuracy and determine the optimal balance between sensitivity and specificity for the given 

classification task. 

 

 

 
 

Figure 7. Graph of the ROC 

 

 

5. CONCLUSION 

This research demonstrates a robust and efficient approach to COVID-19 detection through the 

optimization of CNNs and advanced image processing techniques. By balancing architectural simplicity with 

high diagnostic precision, the proposed system offers a viable solution for rapid screening in resource-

constrained environments. Ultimately, this study contributes a scalable methodology to the field of medical 

imaging, providing a foundation for future automated diagnostic tools in respiratory health. 

The proposed method achieved an accuracy of 98.4%, confirming its effectiveness. Future work will 

require a more extensive image database to refine evaluation and enhance robustness. Additional techniques 

such as segmentation may further improve accuracy and resilience. In terms of future perspectives, we aim to 

strengthen the model with larger image datasets and advanced preprocessing and learning methodologies, 

integrate the approach into clinical diagnostic systems for early COVID‑19 detection, and explore broader 

applications for other lung pathologies. By addressing these directions, we anticipate further advancements in 

COVID‑19 detection and meaningful contributions to medical imaging research. 
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