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Abstract 
Development of sensor technologies and the prevalence of electronic communication services 

provide us with a huge amount of data on human communication behavior, including face-to-face 
conversations, e-mail exchanges, phone calls, message exchanges and other types of interactions in 
various online forums. These indirect or direct interaction form potential bridges of the virus spread. For a 
long time, the study of virus spread is based on the aggregate static network. However, the interaction 
patterns containing diverse temporal properties may affect dynamic processes as much as the network 
topology does. Some empirical studies show, the activation time and duration of vertices and links are 
highly heterogeneous, which means intense activity may be followed by longer intervals inactivity. We take 
heterogeneous distribution of the node inter-activation time as the research background to build an 
asynchronous communication model. The two sides of the communication don't have to be active at the 
same time. One derives the threshold of virus spreading on the communication mode and analyzes the 
reason the heterogeneous distribution of the vertex inter-activation time suppress the spread of virus. At 
last, the analysis and results from the model are verified on the BA network. 
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1. Introduction 
The network topology which is formed by the interaction between individuals plays a 

fundamental role in the process of determining the epidemic spread [1]. The original study of 
epidemiology [2] is based on homogeneous mixing hypothesis, assuming that all people have 
the same opportunity to contact with other individuals in the populations. The assumption and 
the corresponding results were challenged by the empirical study, the interactions in the 
populations can use a meaningful network structure to better describe [3]. A large number of 
empirical studies show that the node degree distribution in many of reality network obey power-
law distribution with heavy-tailed, which is conducive to the spread of virus. 

Communication between individuals is the basis of the human society. Nowadays  
technology, such as sensor devices and online communication services provide us with a large 
number of records of interaction between individuals, including face-to-face meetings, E-mail, 
and telephone communication etc.. A traditional way to describe these data is to represent them 
as an aggregate static network, in which an edge is established if interaction between the two 
ends of it taked place at least once [3]. 

Another richer representation of this type of data is the temporal network model [4-13], 
in which the connection between two nodes only exist at the time of an event. A large number of 
these data usually consists of a sequence of interactive events. Every event is a triplet, i.e., the 
IDs of two individuals involved in the event and the time of the event. Some studies of the 
temporal network  focused on the impact of interevent time bursty on the spread of information 
or virus. 

However, many human interactions are not always face to face or synchronous 
communication mode, such as E-mail exchange, short message, Twitter, WeChat etc.. Not all 
sent information can be accepted by the recipient, such as the recipient refuses to open a 
suspicious mail or refuse to click the link received etc.. This kind of asynchronous 
communication mode can be represented by a sequence of two-tuples, which consist of the ID 
of an individual and the individual activation time when the individual send or accept some 
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object, such as an E-mail, short message, to or from another. When a node i sends a message 
to another node j at the time t1, node j in its active time t2 to decide whether to accept this 
message, where t1<t2 . It is worthy of attention what the heterogeneous distribution of individual 
inter-activation time come into being the impact on the asynchronous information transmission 
and virus propagation and how the heterogeneous behaviour pattern of individuals impact on 
asynchronous transmission. 

 
 

2. Model 
In some temporal network literature, any two active nodes are likely to build a 

temporal edge. But the reality is that the nodes contacted with a node, which are called 
neighbor nodes of the node, are at a certain scope. The various factors decide the range of an 
individul contact, such as geographical areas of individual activity, the social circle of individual 
life and learning, kinship and hobby and so on. Between one node and all of its possible 
interaction nodes are established links, which constitutes a static aggregation network 
descripting node activity range and is denoted by G. Email exchange system, for example, 
nodes is formed by email account address in system and edges are established between each 
email user and users of his or her email address list, which constitute a static network. So in the 
network, the vast majority of activities are carried out between the adjacent nodes. Does not 
rule out, a very small amount of interactions don’t take place between the adjacent nodes, it will 
lead to some small changes in originally static network structure. When a node is activated, it 
can interact with its neighbours rather than any other node in the network. The static network 
topology and node activation sequence properties affect the spread behavior on networks 
together. 

The mathematical epidemiological model that is probably the most widely used for 
theorizing about and emulating epidemics is the so-called the SIR (Susceptible-Infected-
Recovered) model. In the SIR model, with which we are concerned in the present report, each 
individual belongs to either a S (susceptible), I (infected), or R (recovered) state at any given 
time. When a susceptible individual contact with an infected individual, the former may be 
infected at an infection rate. 

In our model, an action of an individual, such as sending a short message or receiving a 
email, is called as an activation event of the node. There is a difference in meaning between the 
inter-activation time of a node and the inter-event time of an edge. The former is based on the 
behavior of an individual and the latter is based on the interaction between two individuals.  

In the model of the bursts of node inter-activation time from a recent literature [11], at 
each time point, an activated node choose randomly another activated node to build an edge 
between them. If one of the two nodes is I state node and the other is S state node, the I state 
node will infect the S state node with some probability. Clearly, the model and the previous 
models have one thing in common, that is, the synchronous interaction, such as phone call, 
video meeting, real-time files, etc. However, many cases are closer to the asynchronous 
communication, such as E-mail exchange, SMS, Twitter, BBS and other network 
communication way, which the two sides of the communication can be active at different times. 
At each time t, each active node in the model can accept from neighboring nodes some 
information or send some information to a neighbor. In reality, user may send or receive a group 
of information to or from more users at the same time. For simplicity, as long as the time scale is 
small enough, it can be considered that information is only sent to one of its adjacent node from 
an activated node at a time. 

In our model, all nodes are S state at initial moment except from a node i which is I 
state. When the initial infected node i is activated, it choose randomly one of its neighbor nodes 
j and send node j a message containing infection content no matter whether node j is currently 
activated . Then the node i becomes inactive state at next time. At each time t, every activated 
node i will accept one or more messages containing virus in accordance with a certain 
probability for each message of them and then change from S state to I state at the next 
moment if it has received messages containing virus sent from its neighbor nodes and the node 
i is S state before time t; If the activated node i is I state, it will choose a neighbor from some 
address book, such as E-mail address book, the telephone communication book, MSN friends 
list, to send a message containing virus. At each time t, an infected node recover to R state with 
some probability. 
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To facilitate the narrative of node state transition in the model, we will distinguish the S 
state nodes not received the messages containing virus from the S states nodes received the 
messages containing virus. When a S state node received messages containing viruse from 
other nodes, the node is at the risk of infected. Its state is denoted by D. When a D state node is 
activated, it has the potential to accept this suspicious message and then its state change from 
D into I. 

At each time t, for each activated node i, it is subject to the following rule:  
1) if the node i is I state, it send a message containing viruse to an its neighbor node j 

randomly choosed. If the node j is S state at present, it become D state at next moment t+1; If 
the node j is D state, I state or R state, it will maintain the current state.  

2) if the node i is D state, that is it received one or more messages containing viruse 
from neighbors at one point t ( tt  ), it turn into I state if it accepte the message with 

probability β, which the transmission time delay is tt  ; it recover to S state if it refuse to 
accept the message with probability 1-β.  

3) if the node i is in the S state or R state, it don't do any action. The sent message that 
does not contain virus does not affect the propogation process of virus and therefore not be 
considered in the model. 

At each time t, no matter whether a node i is activated, it is subject to the following rule: 
4) if it is I state node, it will back into R state with probability μ. 
In the second point, we assume if a user first saw the suspicious messages, suspicious 

information or suspicious links and refused to accept them, then he or she will never accpte 
them. So, the corresponding node state can be changed into S state from D state at next 
moment. 

In many types of empirical data, a wide range of patterns of human activity are known to 
exhibit long-tailed dynamics[14-16]. Here, we model the node inter-activation time heavy-tailed 
distribution with the power law distribution. Node inter-activation time τ obey power-law 
distribution with lower bound [17]: 
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Where min  is a lower bound of node inter-activation time τ and α is the exponent or 

scaling parameter of the power-law distribution. 
 
 

3. Epidemic Threshold 
Key quantities for epidemic dynamics are the so-called transmissibility T and the 

secondary reproductive number R [18]. T is the probability that an infected individual would 
transmit virus to a susceptible neighbor before it recovers, and R is the expected number of new 
nodes infected by an infected nodes.  

An infected node restore into recovered state within a time step with the probability of μ, 
which obey the binomial distribution of the mean for 1/μ. So the average time that a infected 
node of network changes into a recovered node is 1/μ. When an infected node is activated, it 
will randomly select an its neighborhood to send an information containing virus.The neighbour 
accept the information at some futural time with probability of β and will be infected as a 
consequence if it is previously S state. The inter-activation time τ for each node of network is 
subject to identically independent distribution. According to the theory of update [19], the 
transmissibility T for the dynamics can be obtained as: 
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Where 
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)( , g(∆) is to generate time distribution [20], <τ> is the 

mean of node inter-activation time, P(τ) is the density distribution function of node inter-
activation time τ. Where the node inter-activation time τ obey power-law distribution with 
exponent α, given by Equation (1), transmissibility T can be written as: 

 

       (3) 
 
The node that we arrive at by following a randomly chosen edge has the number of 

remaining outgoing edges excluding we along [21], denoted by k’. When a node i infected by its 
neighbor node j, node i selects randomly one of its neighbor nodes as the spread object and  
the probability the selected node is not node j is k’/( k’+1). Thus the reproductive number R 
equal T<k’>/( <k’>+1) in our model where <k’> is the average remaining degree of network 
nodes. It can be expressed by node average degree < k > and the second order of node 
degrees <k2> [18, 21], i.e., <k’>=(<k2>-<k>)/<k>. Hence the reproductive number R=T*(<k2>-
<k>)/<k2>. A basic condition that virus epidemic in network is that the reproductive number R 
must be greater than one, combined with Equation (3), we can obtain the epidemic threshold as: 

 

       (4) 
 
Where λ≡β/μ, which is the effictive transmission rate of virus, λc is epidemic thresthold, 

C=<k2>/(<k2>-<k>). Parameter C is only related to the structure of the static network G, and has 
nothing to do with the dynamic activation properties of nodes. 

 
 

4. Results and Analysis 
Under the condition of nodes dynamic activation, the characteristics of the epidemic 

threshold of virus are analyzed firstly. BA network [22] is in a typical heterogeneous structure 
network. Each new node connects m existing nodes of the network and the final total number of 
the network nodes is N. For a limited scale of BA network [23], the node degree distribution 
P(k)=2m2k-3/(1-N-1), the node average degree <k>= 2m, the node max degree kc=mN(1/2). We 
can get the parameter C of BA network as: 

 

        (5) 
 
In Figure 1, the epidemic threshold of virus is calculated by Equation (4) and Equation 

(5) according to the following conditions: the static network G is the BA network of node average 
degree for 10, the total number of nodes N = 5000, the node inter-activation time τ obey power-
law distribution given by Equation (1), the minimum value of node inter-activation time τmin=1, 
node average recovery time were shown in the illustration in Figure 1. 
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Figure 1. The Epidemic Threshold of Virus λc as a Function of Exponent α of Power-law 

Distribution which Node Inter-activation Time τ obey, for the Different Average Recovery Time 
 
 
As we can see from Figure 1 three points: First, the epidemic threshold become larger 

as the increase of the heterogeneous of node inter-activation time distribution (i.e., α decrease) 
for different average recovery time of infected node. The smaller the power-law exponent of 
node inter-activation time distribution is, the greater the average value of node inter-activation 
time derived by Equation (1) is, i.e., the fewer the average times of node activation is in same 
time. That means an infected node has less chance to spread virus to its adjacent nodes before 
it recover. Thus only high effective transmission rate of virus ensure its epidemic 
under the circumstances. Second, the greater the average recovery time of infected node 1/μ is, 
which means infected nodes have more chance to be activated and transmit virus to their 
adjacent nodes. Hence the smaller the epidemic threshold is. Thirdly, as the power-law 
exponent α of node inter-activation time τ increase, propagation threshold is tending to a same 
value no matter what value node average recovery time 1/μ is. The increase of the power-law 
exponent α of node inter-activation time τ make the heterogeneity and mean of τ diminished so 
that there are a large number of nodes of network activated at every moment. Until most of the 
nodes remain active, dynamic activation network gradually close to the static network G. In this 
case, epidemic threshold on temporal network is only related to the topology of cumulative static 
network G, which can be proved from Equation (4). 

 

 
Figure 2. The node density infected by virus as a function of virus transmission rate β, for the 

different exponent α of power-law distribution which node inter-activation time τ obey. Network 
node number N = 5000, new edge number from each node m = 5, the recovery rate of the virus 

spread μ= 0.1, τmin =1 
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Figure 3. The node density infected by virus as a function of time t, for the different 

exponent α of power-law distribution which node inter-activation time τ obey. Network node 
number N = 5000, new edge number from each node m = 5, virus transmission rate β=0.4, the 

recovery rate of the virus spread μ= 0.1, τmin=1 
 
 

Model simulation based on static BA network, network scale is 5000 nodes. Each new 
node connects existing 5 nodes of network. A randomly selected node is set initially to infected 
state, namely seed node. The average recovery probability μ of infected nodes is 0.1. The node 
inter-activation time τ obey the power law distribution forms of Equation (1) and the minimum 
value of node inter-activation time τmin=1. The exponent α is 2.1, 2.5 and 3.0, respectively. 
Figure 2 show the node density infected by virus change along with virus transmission rate β. It 
is observed that the stronger the heterogeneity of node inter-activation time τ is, the greater the 
epidemic threshold of virus is and the less the final spread scope of virus is. The node density 
infected by virus change along with time in Figure 3. As Figure 3 shown, the stronger the 
heterogeneity of node inter-activation time τ is, the slower the spread speed of the virus is. That 
the heterogeneity of node inter-activation time τ inhibits the propagation of virus is illustrated 
from two different aspects of the scale and the speed of virus propagation respectively in Figure 
2 and Figure 3. Which demonstrate that the data simulation results accords with the theoretical 
analysis results of Figure 1. 

 
 

5. Conclusion 
Different from previous studies that the heterogeneous of inter-event time distribution 

affect the spread of the virus, this work is based on the heterogeneous distribution of node inter-
activation time and establishes the asynchronous communication model, which is more 
obviously universality than the former. Asynchronous interaction style is suitable for the case 
that the two sides of interaction are not always active at the same time, which is prevailing in the 
applications from internet and mobile internet. Where node inter-activation time follows power-
law distribution, epidemic threshold of the model is deduced by means of the theory of updates. 
Simulating in BA network, it is concluded that the stronger the heterogeneity of node inter-
activation time is, the greater the epidemic threshold of virus is and the smaller the scale and 
speed of virus propagation is, which consistents with the results of threshold theoretical 
derivation. 

In this work, asynchronous communication is elaborated by means of the example of 
sending and receiving E-mails and messages, and epidemic threshold is derived by using the 
power-law distribution as the heterogeneous distribution of node inter-activation time. But time 
statistics of human behavior is far from so simple. Different data sets, such as the data sets 
from mobile phone text messages, blog, BBS, online services, etc., have different 
heterogeneous time distribution of individual behavior [13], so the time distribution of individual 
behavior itself is a complicated and worth studying issue.  
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