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 This study explores the application of deep learning (DL) techniques in 

diagnosing lung diseases using screening methods such as Chest X-Rays 

(CXRs) and computed-tomography (CT) scans. The motivation for this 

research stems from the need for advanced diagnostic tools in healthcare, 

with DL showing significant potential in medical image analysis. Despite 

advancements, challenges such as high costs of CT scans, processing time 

constraints, image noise, and variability persist. To address these issues, the 

study conducts a thorough literature survey to identify diverse preprocessing 

techniques, detection algorithms, and classification models designed for 

CXR analysis. In conclusion, this work contributes to the advancement of 

medical imaging technologies by offering innovative solutions, 

acknowledging existing limitations, and addressing the challenges in lung 

disease diagnosis. Future research should focus on further refining these 

techniques and exploring their application in broader clinical settings. 
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1. INTRODUCTION 

The global epidemic of COVID-19 has undoubtedly had an enormous effect on individuals 

worldwide, bringing about major changes to their way of life, employment, and social interactions. In the 

past few years, there have been a lot more deaths, which is one of the worst effects because of the global 

epidemic [1]. SARS-CoV-2, a coronavirus, is responsible for COVID-19 [2], has led to a surge in mortality 

rates [3], overwhelming healthcare systems and posing unprecedented challenges to public health worldwide 

[4]. Apart from its immediate effects, a number of chronic issues, primarily pertaining to the airway system, 

have been linked to COVID-19 [5]. Among the myriad complications, lung diseases have emerged as a 

prominent concern [6]. There are three primary categories of lung diseases: lung circulation, airway, and lung 

tissue. Each of these kinds of conditions has its own unique features and therapeutic options that need to be 

considered when managing patients [7]. Many different kinds of illnesses go under the umbrella term 

“respiratory diseases,” and they all have the potential to severely affect lung function and general health. 

Among the most common conditions affecting the airways are chronic-obstructive pulmonary-disease 

(COPD), asthma, atelectasis, bronchiolitis, bronchiectasis (including cystic-fibrosis), and cardiomegaly [8], 

[9]. These diseases frequently exhibit characteristics of airway inflammation or obstruction, resulting in the 

manifestation of symptoms such as wheezing, breathing difficulties and cough. Furthermore, lung tissue 

diseases like pulmonary fibrosis, lung cancer, and effusion primarily affect the structure and function of lung 

tissues, impairing their ability to exchange oxygen and carbon dioxide efficiently [8], [9]. Additionally,  

lung circulation diseases such as pneumonia, pneumothorax, lower-respiratory tract-infections (LRTI),  
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upper-respiratory tract-infections (URTI), and complications linked with COVID-19 can directly impact 

blood flow and oxygenation in the lungs, further exacerbating respiratory distress and increasing the risk of 

complications [8], [9]. These diverse respiratory diseases present unique challenges in diagnosis, 

management, and treatment, highlighting the critical importance of comprehensive healthcare approaches and 

ongoing research to improve outcomes for affected individuals. 

Moreover, traditional methods for detecting respiratory diseases have long relied on imaging 

approaches like Chest X-ray (CXR) [10] and computed-tomography (CT) scans [11]. The aforementioned 

modalities provide significant contributions in terms of understanding the anatomical and physiological 

aspects of the lungs, helping healthcare professionals identify abnormalities, assess disease progression, and 

guide treatment decisions. CXR provides a two-dimensional view of the chest, highlighting areas of opacity 

or consolidation that may indicate infections, tumours, or other pulmonary conditions [12]. CT scans, on the 

other hand, offer a more detailed and three-dimensional perspective, enabling the visualization of subtle 

abnormalities and providing a clearer assessment of lung tissue and surrounding structures [13]. During the 

COVID-19 pandemic, innovative approaches to respiratory disease detection have emerged, including the use 

of saliva-based tests [14]. Saliva testing has gained traction as a non-invasive and convenient method for 

diagnosing respiratory infections, including COVID-19. It offers several advantages such as ease of 

collection, reduced risk of exposure for healthcare workers, and potential for large-scale testing initiatives. 

Moreover, advancements in sensor technology have revolutionized the detection and monitoring of 

respiratory diseases [15]. Sensors, ranging from wearable devices to portable diagnostic tools, can capture 

real-time data on lung function, breathing patterns, oxygen saturation levels, and biomarkers indicative of 

respiratory health or disease [16]. These sensors utilize various principles such as spectroscopy, impedance 

measurement, and gas sensing to provide accurate and timely information, empowering healthcare providers 

with valuable insights for early intervention and personalized treatment strategies [17]. The integration of 

these innovative approaches alongside traditional methods like CXR and CT scans marks a significant 

milestone in respiratory disease management, offering a comprehensive and multidimensional approach to 

diagnosis, monitoring, and therapeutic interventions. 

The past few years have witnessed a noticeable inclination regarding the adoption of machine learning 

(ML) and deep learning (DL) methodologies for the purpose of lung prediction and classification within the 

domain of respiratory diseases [18]-[20]. This shift towards computational methods has enabled researchers and 

healthcare professionals to leverage large datasets and complex algorithms for enhancing accuracy and 

effectiveness of diagnosis and prognosis. Figure 1 illustrates the comprehensive process of lung prediction and 

classification, emphasizing the crucial steps involved. The workflow typically begins with preprocessing the 

data, whether it’s statistical data or images, to clean and prepare it for analysis. Following the initial data 

collection, a series of features are obtained from the dataset. These features play a crucial role in various 

classification and prediction tasks. These features may include physiological parameters, imaging characteristics, 

or biomarkers relevant to lung health and disease. ML and DL models then utilize these features to make 

predictions, classify lung conditions, and provide valuable insights for patient management and treatment planning. 
 
 

 
 

Figure 1. Overall process of lung prediction and classification 
 

 

This work delves into a comprehensive study of various preprocessing approaches, detection, and 

classification methods employed in the domain of respiratory disease detection. It critically examines the 

strategies utilized in existing studies, highlighting the diversity in preprocessing techniques, detection 

algorithms, and classification methodologies. Furthermore, this work meticulously identifies the datasets 

utilized across different studies, shedding light on the variability and availability of data sources in this domain. 

Importantly, this study goes beyond mere documentation and analysis by identifying the limitations, issues, and 

challenges prevalent in the existing literature. However, this work doesn’t merely stop at identifying problems 

but also proposes potential solutions to address these challenges. By offering insights into effective 

preprocessing techniques, advanced detection algorithms, and robust classification strategies, this work aims to 

contribute significantly to the ongoing efforts in enhancing respiratory disease detection and management. Its 

contributions lie in bridging the gap between research findings and practical implementation, paving the way for 

more accurate, efficient, and accessible solutions for respiratory disease diagnosis and prognosis. 
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In this manuscript, in section 2, the literature survey is discussed where the preprocessing 

approaches, detection and classification approaches for respiratory disease detection is discussed. Also, the 

datasets used in this work are discussed. Further, in section 3, the limitation of the existing work is discussed. 

In section 4, the issues and challenges faced by the existing works are discussed. Finally, in section 5, the 

possible solutions are discussed and in section 6, the conclusion of the work is presented. 

 

 

2. LITERATURE SURVEY 

In this section, this work delves into the intricate world of preprocessing, detection, and 

classification approaches utilized in the realm of respiratory disease detection. These processes are pivotal in 

extracting meaningful insights from medical data, particularly in the context of respiratory health.  

The objective is not only to identify respiratory diseases accurately but also to streamline the analysis of 

medical images, sound data, and other relevant information. Hence, in the next section the preprocessing 

approaches presented by existing works are discussed. 

 

2.1.  Preprocessing approaches 

This section delves into a comprehensive discussion on the various existing preprocessing approaches 

employed in the domain of respiratory disease detection using imaging techniques. Preprocessing is an essential 

step within the data evaluation or classification method as it significantly contributes to improving the overall 

quality, accuracy, and trustworthiness of data. The main objective of preprocessing aims to transform the initial 

input data into a format which is well-suited and optimal for the following processing stages, like extraction of 

features, detection, and classification. One of the common preprocessing approaches discussed in this section 

involves image enhancement techniques. The objective of these approaches was to enhance the visual 

appearance of CXR images through the modification of contrast, brightness, and clarity parameters. This 

modification leads to a significant improvement in the overall visibility of anatomical structures and 

abnormalities present in the images. Image enhancement plays a vital role in ensuring that subtle details and 

important features relevant to respiratory diseases are clearly visible and distinguishable. Additionally, 

preprocessing methods may also include noise reduction techniques to mitigate the impact of noise and artifacts 

present in the images. Noise, such as random variations in pixel intensity, can distort image quality and interfere 

with the accuracy of disease detection algorithms. Filtering or smoothing techniques are commonly used in 

preprocessing processes to decrease noise and increase the signal-to-noise ratio (SNR) of images. The different 

works along with their focus, dataset used and dataset type is given in Table 1. 

 

 

Table 1. Existing preprocessing approaches 
Ref Year Focus Dataset used Dataset type 

[21] 2020 Preprocessing of CXR 
images utilizing 

enhancement techniques. 

79 baseline CXR images 
acquired from hospital, standard 

dataset [22] for evaluation 

Multiclassification dataset: viral, bacterial, 
fungal, lipoid, unknown classes. Image dataset. 

[23] 2021 Preprocessing on CXR 
using DL 

COVID-DB [24], COVID-19 
[25], COVID-19-AR [26], NIH 

CXR [27], Pneumonia CXR [28] 

Binary and multiclassification: COVID datasets 
(pneumonia, normal), NIH CXR (pneumonia, 

normal, others), pneumonia CXR (normal, viral 

pneumonia, bacterial pneumonia). Image dataset. 
[29] 2021 Preprocessing methods 

for COVID-19 CXRs 

18,479 CXRs (8,851 normal, 

6,012 non-COVID infected, 

3,616 COVID-infected) 

Multiclassification: normal, non-COVID, 

COVID individuals. Image dataset. 

[30] 2022 Preprocessing methods 

for CXRs 

Dataset from [31] with 6,939 

CXRs images (COVID, normal, 

pneumonia classes) 

Multiclassification: COVID patients, normal, 

pneumonia. Image dataset. 

[32] 2022 Preprocessing of lung  

X-ray images 

6,168 frontal-view chest 

radiographs from five sources 

[33] 

Binary classification: tuberculosis (TB) and non-

TB. Image dataset. 

[34] 2022 Preprocessing of CXR 

for identification of 

pneumonia 

Two datasets: [35] (bacterial 

pneumonia, healthy, viral 

pneumonia) and [29] (COVID-
19) 

Multiclassification: bacterial pneumonia, viral 

pneumonia, healthy; COVID-19, virus, bacteria, 

normal. Image dataset. 

[36] 2023 Provide better quality of 

CXR images 

Chest-14 dataset [37]-[40] with 

20,000 images 

Multiclassification: cardiomegaly, atelectasis, 

infiltration, effusion, infiltration, pneumonia, 
mass nodule, pneumothorax. Image dataset. 

[41] 2023 Providing better 

enhanced CXRs for 
classifier 

CXR14 [40] dataset with 

112,120 X-ray images 

Multiclassification: cardiomegaly, atelectasis, 

infiltration, effusion, infiltration, pneumonia, 
mass nodule, pneumothorax. Image dataset. 

[42] 2023 Processing of CXRs 11,652 CXRs from one hospital, 

3,358 from another hospital (CR, 

DR images) 

Multiclassification: cardiomegaly, atelectasis, 

infiltration, effusion, infiltration, pneumonia, 

mass nodule, pneumothorax. Image dataset. 
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2.2.  Detection and classification of respiratory diseases 

This section delves into a comprehensive discussion on the detection and classification approaches 

employed in the realm of respiratory diseases. Detecting and accurately classifying respiratory diseases is 

crucial for timely diagnosis, effective treatment planning, and improved patient outcomes. Various 

methodologies and techniques have been developed and utilized to address the complexities and challenges 

associated with respiratory disease detection and classification. One of the primary approaches discussed in 

this section involves the use of ML and DL algorithms for image-based detection and classification. These 

algorithms are trained on large datasets of CXR images, CT scans, or other imaging modalities to learn 

patterns and features indicative of specific respiratory conditions. For instance, CNNs have shown 

remarkable success in automatically detecting abnormalities, lesions, or characteristic patterns associated 

with diseases like pneumonia, lung cancer, or pneumothorax in medical images. Furthermore, statistical and 

data-driven approaches are also explored for detecting respiratory diseases using non-imaging data such as 

demographic information, clinical parameters, and biomarkers. These approaches often involve the use of 

statistical models, ML algorithms, and predictive analytics to analyse and interpret data patterns, identify risk 

factors, and predict disease outcomes. 

Moreover, hybrid approaches combining imaging and non-imaging data are gaining traction for 

more comprehensive and accurate disease detection and classification. By integrating multiple data sources 

and leveraging advanced analytics techniques, such as feature selection, ensemble learning, and hybrid 

models, researchers and healthcare professionals can enhance the sensitivity, specificity, and overall 

performance of respiratory disease detection systems. Additionally, the adoption of AI technologies, 

including natural-language-processing (NLP) for analysing clinical notes, electronic-health-records (EHRs), 

and medical reports, has further enriched the capabilities of respiratory disease detection and classification. 

Overall, this section provides a comprehensive exploration of the diverse methodologies, algorithms, and 

technologies utilized for detecting and classifying respiratory diseases. By leveraging advanced computational 

techniques, data-driven insights, and interdisciplinary approaches, the field continues to make significant strides 

in improving diagnostic accuracy, patient care, and public health outcomes related to respiratory conditions. The 

summary of existing detection and classification approaches is given in Table 2 [43], [44]. 
 

 

Table 2. Existing detection and classification approaches 
Ref Year Focus Dataset used Type 

[45] 2020 COPD detection using 

saliva dataset 

Saliva samples from 319 

individuals divided into healthy 

and COPD, demographic info 

Binary classification: healthy and COPD patients. 

Statistical dataset (age, gender, smoking, classes). 

[46] 2023 Classification of 

Pneumothorax using CXRs 

images 

Kaggle CXRs DICOM images 

(12,089 images) [47] 

Binary classification: normal and pneumothorax 

patients. Image dataset. 

[48] 2023 Detection of lung cancer 

from saliva samples 

Exasens dataset with COPD, 

healthy, asthma, and infected 

patients [49] 

Multiclass classification: COPD, healthy, asthma, 

infected. Statistical dataset (age, gender, smoking, 

classes). 
[50] 2023 Detection of lung tumor 

using CT scans 

LIDC-IDRI [51], Simba lung 

dataset [52] 

Binary classification: normal and lung lesion. 

DICOM CT scan image dataset. 

[53] 2023 Classification of lung 
disease using CXR images 

NIH CXR [44], IU-Xray [54], 
MIMIC CXR dataset [55] 

Binary classification: normal and diseased patient. 
Image and report dataset. 

[56] 2023 Classification of different 

chest diseases using CXR 
images 

Various sources dataset with 

CXR images 

Multiclass classification: lung cancer, atelectasis, 

consolidation lung, tuberculosis, pneumothorax, 
edema, pneumonia, pleural thickening, normal 

using CXR. Image dataset. 

[57] 2023 Classification of 
pneumonia and normal 

patients using CXR 

CXR dataset with COVID-19, 
normal, pneumonia samples 

Binary classification: pneumonia or normal. Image 
dataset. 

[58] 2024 Detection of lung 
abnormality using chest CT 

scan and CXR scan 

CXR and CT scan datasets [59], 
[60] 

Multiclass classification: lung opacity, normal, 
viral pneumonia and COVID-19, normal, viral 

pneumonia. Image dataset. 

[61] 2023 Classification and 
localization of lung disease 

from CXR 

COVID-19 radiography dataset 
[62] 

Multiclass classification: normal, lung opacity, 
pneumonia. Image dataset. 

[63] 2023 Detection of lung disease 
using electrocardiogram 

(ECG) dataset 

ECG dataset with COPD and 
healthy classes 

Binary classification: COPD and healthy. 
Statistical dataset. 

[64] 2023 Detection of lung chronic 
disease using different 

kinds of datasets 

ICBHI lung sound database [65], 
WBCD [66], Z-Alizadehsani 

[67], Exasens, Diabetes datasets 

[68] 

Multiclassification (ICBHI), binary classification 
(WBCD, Z-Alizadehsani, Exasens, Diabetes). 

Statistical datasets. 

[69] 2023 Detection of lung disease 

using cancer tissues images 

LC25000 dataset with cancer 

tissue images [70] 

Binary classification: cancerous or non-cancerous 

images. Image dataset. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Advancements and challenges in deep learning techniques for lung disease diagnosis (Laxmi Bagalkot) 

1057 

2.3.  Datasets 

In the preceding literature survey, a variety of datasets were utilized to investigate different aspects 

of respiratory diseases and their detection/classification methodologies. These datasets play a crucial role in 

training and evaluating ML models, DL algorithms, and statistical approaches. Each dataset has its unique 

characteristics, such as the type of data it contains, the number of samples, and the classes or categories 

represented. The datasets used in the survey encompass a range of modalities, including CXR images, CT 

scan images, sound data, and statistical data derived from saliva samples or patient records. The complete 

summary of the datasets is provided in Table 3. 

 

 

Table 3. Summary of datasets used in the previous work 
Dataset name Description Type Source 

Hospital CXR Collected from a hospital having 79 baseline CXRs from various 

individuals. 

Image dataset [22] 

COVID-DB This dataset consists of 123 frontal view CXRs. Image dataset [24] 

COVID-19 Collected from various sources. Image dataset [25] 

COVID-19-AR Consists data of 105 individuals having 31935 DICOM images (CT, 
DX, CR). Also, a clinical data is provided. 

Image dataset [26] 

NIH CXRs The dataset comprises of 108948 frontal view CXRs of 32717 

individuals. 

Image dataset [27] 

Pneumonia CXRs The dataset consists of 5,232 CXRs, including 3,883 characterized as 

depicting pneumonia (2,538 bacterial and 1,345 viral) and 1,349 
normal, from a total of 5,856 patients. 

Image dataset [28] 

COVQU This dataset consists of 18,479 CXR images with 8851 normal, 6012 

non-COVID lung infections, and 3616 COVID-19 CXR images. 

Image dataset [29] 

Kaggle dataset This data consists of 6939 CXR images collected from various 

sources. 

Image dataset [31] 

Chest radiographs The entire dataset contains 6,168 frontal-view chest radiographs 
obtained from five different sources. 

Image dataset [32] 

RSNA pneumonia 

dataset 

This dataset consists of 30000 frontal CXRs from 112000 NIH dataset 

and CXR8 dataset. 

Image dataset [34] 

Quality assurance dataset This dataset consists of 29120 CXR images taken from CXR-14 and 

from various clinical sources. 

Image dataset [36] 

CXR-14 dataset  CXR-14 is a medical imaging dataset which comprises 112,120 
frontal-view CXR images of 30,805 (collected from the year of 1992 

to 2015) unique patients. 

Image dataset [40] 

CR, DR images dataset This dataset consists of more than 2000+ CXRs taken from various 
sources. 

Image dataset [42] 

Saliva dataset Saliva samples collected from 319 individuals, divided into healthy 

and COPD patients, includes demographic info. 

Statistical dataset [45] 

Kaggle CXR images Digital Imaging and Communications in Medicine (DICOM) images 

from Kaggle, used for pneumothorax classification. 

Image dataset [46] 

Exasens dataset Dataset containing saliva samples from 399 individuals, including 
COPD, healthy, asthma, and infected patients. 

Statistical dataset [48] 

Lung image database 

consortium (LIDC-IDRI) 

CT scan images from 1,018 low-dose lung CTs, used for lung lesion 

classification. 

DICOM CT scan image 

dataset 

[50] 

NIH CXR dataset Large collection of 112,120 X-ray images with disease labels from 

30,805 patients, used for lung disease classification. 

Image and report 

dataset 

[53] 

Various sources CXR 
images 

Dataset from multiple sources containing CXR images, used for 
classifying different chest diseases. 

Image dataset [56] 

COVID-19 radiography 

dataset 

Dataset with 21,165 CXR images, including normal, lung opacity, 

pneumonia cases, used for lung disease classification. 

Image dataset [61] 

ECG dataset Dataset with electrocardiogram data from 12 patients, used for COPD 

detection. 

Statistical dataset [63] 

ICBHI lung sound 
database 

Sound dataset with classes like COPD, asthma, bronchiolitis, used for 
lung sound classification. 

Sound dataset [64] 

LC25000 dataset Dataset with 25,000 images of cancer tissue in the lungs and colon, 

used for lung cancer classification. 

Image dataset [69] 

OpenI CXR dataset Dataset with diverse CXR images, used for classifying different lung 

diseases. 

Image dataset [71] 

 

 

3. FINDINGS 

In this section, we aim to highlight the limitations observed in the previous works discussed in the 

literature. These limitations encompass various aspects of medical image processing and analysis, which are 

crucial to address for the advancement and applicability of ML and DL models in healthcare settings.  

The complete summary is given in Table 4. 
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Table 4. Limitations of previous approaches 
Ref Limitations with respect to cost, speed and processing 

[21] High cost of implementation due to complex preprocessing techniques like FABEMD and CLAHE. Processing speed 
may be slower due to the intensive preprocessing. Performance may vary depending on the dataset used, especially if it 

lacks diversity. 

[23] Implementation cost may be moderate due to image resizing methods. Speed could be affected slightly during image 
preprocessing. Performance highly reliant on the quality and diversity of the dataset used for training. 

[29] Implementation cost can be moderate, but using multiple image enhancement techniques might increase computational 

expenses. Speed might be affected by the processing complexity of enhancement techniques. Performance depends on 
the efficacy of the chosen enhancement methods and the diversity of the dataset. 

[30] Moderate implementation cost for ML-based classification methods. Speed can be fast depending on the algorithm 

used for pre-processing. Performance highly dependent on the quality and size of the training dataset. 
[32] Implementation cost can be moderate for lung BCET and augmentation methods. Speed might be slightly slower due to 

the preprocessing steps. Performance may vary based on the quality and variety of the data used for evaluation. 

[34] High cost for multi-channel-based image processing and deep neural network implementation. Speed may vary 
depending on the complexity of image processing algorithms. Performance highly reliant on the quality and quantity of 

annotated CXR images. 

[36] Implementation cost could be high for DL-based quality assurance systems. Speed might be impacted by the 
computational requirements of DL models. Performance can be excellent for image correction tasks but may vary for 

regression-based corrections. 

[41] High cost for implementing DL models and pre-processing techniques like CLAHE. Speed may be slower due to the 
complexity of DL architectures. Performance highly reliant on the quality and diversity of the training data. 

[42] Moderate implementation cost for AI model development. Speed can be fast, especially with efficient image 

processing pipelines. Performance may vary based on the dataset used and the model’s generalization capabilities. 
[43] High cost for developing custom DL frameworks for multi-class diagnosis. Speed may vary depending on the 

complexity of DL architectures. Performance highly dependent on the quality and diversity of the dataset used for 

training. 
[45] Moderate cost for ML implementation on saliva data but high cost if integrated into neuromorphic chips. Speed can be 

fast for ML algorithms. Performance depends on the quality and representativeness of the saliva dataset. 

[46] High cost for developing and training scratch CNN architectures. Speed may vary based on the complexity of CNN 
models. Performance highly reliant on the quality and diversity of the dataset used for classification. 

[48] High cost for IoT-enabled healthcare monitoring and DL model optimization. Speed can be slower due to data 

processing and optimization. Performance depends on the accuracy of feature selection and model training. 
[50] High cost for developing and optimizing lung tumor detection algorithms. Speed may vary depending on the 

complexity of feature fusion modules. Performance highly reliant on the accuracy of lung tumor localization and 

classification. 

[53] High cost for developing graph neural network-based disease co-occurrence matrices. Speed can be slower due to 

graph-based computations. Performance depends on the accuracy of disease co-occurrence predictions. 

[56] Moderate cost for fusion model development and DL training. Speed can be fast for trained DL models. Performance 
highly reliant on the diversity and quality of the dataset used for classification. 

[57] Moderate cost for transfer learning and DL model development. Speed can be fast for trained DL models. Performance 

depends on the accuracy of feature extraction and DL model training. 
[58] Moderate cost for data augmentation and DL model development. Speed can be fast for trained DL models. 

Performance highly reliant on the quality and diversity of augmented datasets. 

[61] High cost for developing and training DL models for multi-class abnormality detection. Speed may vary depending on 
the complexity of object detection models. Performance depends on the accuracy of multi-class abnormality 

localization and classification. 

[63] High cost for developing and training deep TL frameworks. Speed can be fast for trained DL models. Performance 
highly reliant on the quality and diversity of the electrocardiogram signal dataset. 

[64] High cost for developing and training PSORF-based classifiers. Speed can be fast for trained PSORF models. 
Performance depends on the accuracy of feature selection and classifier optimization. 

[69] High cost for developing secure IoMT-based transfer learning techniques. Speed may vary depending on the 

complexity of transfer learning models. Performance highly reliant on the accuracy of disease prediction and 
classification. 

 

 

The issues and challenges identified from the above limitations are as follows: 

− Cost: CT scans are generally more expensive than CXRs, which can pose a financial burden on patients, 

healthcare facilities, and insurance providers. This cost factor can limit access to advanced imaging 

techniques for certain patient populations or in resource-constrained settings. 

− Processing time: CT scans typically require more processing time compared to CXRs. The intricate nature 

of CT imaging, which captures cross-sectional images of the body, necessitates complex reconstruction 

algorithms and computational resources. This longer processing time can lead to delays in diagnosis and 

treatment, especially in emergency situations where rapid assessment is crucial. 

− Radiation exposure: CT scans expose patients to higher levels of ionizing radiation compared to CXRs. 

While the radiation doses from modern CT scanners are generally considered safe, repeated or 

unnecessary CT scans can cumulatively increase the risk of radiation-related health issues, such as cancer. 

Minimizing radiation exposure is a key consideration in medical imaging, particularly for vulnerable 

populations such as children and pregnant women. 
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− Accessibility and portability: CXRs are more accessible and portable than CT scanners. X-ray machines are 

commonly available in medical facilities, clinics, and even mobile healthcare units, making them convenient 

for routine screenings, follow-up exams, and point-of-care diagnostics. In contrast, CT scanners are larger, 

stationary equipment that may require specialized facilities and trained personnel for operation. 

− Diagnostic accuracy: while CT scans offer superior spatial resolution and detailed anatomical information 

compared to CXRs, the diagnostic accuracy of both modalities depends on the specific clinical scenario. 

In many cases, CXRs can provide sufficient information for initial assessment, triage, and monitoring of 

pulmonary conditions. CT scans are typically reserved for cases requiring more precise characterization 

of lesions, evaluation of complex pathologies, or staging of diseases. 

− Resource allocation: given the varying capabilities and costs associated with CXRs and CT scans, 

healthcare providers must allocate resources based on clinical need, cost-effectiveness, patient safety, and 

diagnostic efficacy. Integrating decision support tools, artificial intelligence algorithms, and evidence-

based guidelines can help optimize imaging utilization and improve patient outcomes. 

Technological advancements: ongoing advancements in imaging technology, such as dual-energy 

X-ray imaging, low-dose CT protocols, and artificial intelligence-driven image analysis, continue to enhance 

the capabilities and efficiency of both CXRs and CT scans. Balancing these technological innovations with 

considerations of cost, processing time, radiation safety, and clinical utility remains a key challenge in 

medical imaging practices. 

 

 

4. POSSIBLE APPROACH 

To address the cost disparity between CT scans and CXRs in medical imaging, a viable solution 

involves the development of a DL framework specifically designed for CXRs. This framework encompasses 

preprocessing, detection, and classification stages to optimize the use of CXRs for lung disease diagnosis. In 

the preprocessing phase, DL algorithms can be employed to effectively denoise CXRs, enhancing image 

quality by improving contrast and brightness. Various enhancement techniques can be integrated to ensure 

that the resulting images provide clear and informative representations of lung structures. Moving to the 

detection phase, DL models can be trained to recognize deviations in CXRs indicative of lung abnormalities, 

distinguishing between images from healthy individuals and those with lung pathologies. Leveraging DL’s 

capacity for pattern recognition and feature extraction, this phase aims to identify various variations that may 

signify disease presence. Finally, the classification approach within the DL framework can facilitate the 

accurate categorization of different types of lung diseases based on features extracted from CXRs. By 

leveraging DL’s capabilities in image analysis and classification, this proposed framework not only addresses 

the cost constraints associated with CT scans but also harnesses the diagnostic potential of CXRs for 

comprehensive lung disease assessment. 

 

 

5. CONCLUSION 

In this comprehensive study, we have delved into the realm of medical imaging, specifically 

focusing on the use of DL frameworks for the diagnosis of lung diseases using CXRs as a cost-effective 

alternative to CT scans. The literature survey conducted in this work revealed a wealth of research and 

advancements in the field, showcasing various preprocessing techniques, detection algorithms, and 

classification models tailored for CXR analysis. Despite the progress made in this domain, several limitations 

and challenges persist. The high cost associated with CT scans remains a significant barrier for many 

healthcare facilities and patients, underscoring the need for cost-effective alternatives such as CXRs. 

Additionally, issues related to processing time, image noise, and variability in CXR quality pose considerable 

challenges in developing robust and reliable DL frameworks for lung disease diagnosis. However, our study 

proposes viable solutions to address these challenges. By developing a DL framework that integrates 

preprocessing techniques to enhance CXR quality, detection algorithms to identify abnormalities, and 

classification models for accurate disease categorization, this work aims to optimize the use of CXRs as an 

accessible and efficient imaging modality. These solutions not only mitigate the financial burden associated 

with CT scans but also harness the capabilities of DL in image analysis and pattern recognition, leading to 

more reliable and cost-effective diagnostic tools for lung diseases. In conclusion, this work contributes to the 

ongoing efforts in advancing medical imaging technologies, particularly in the realm of lung disease 

diagnosis, by proposing innovative solutions, acknowledging limitations, and addressing challenges through 

the utilization of DL frameworks designed for CXR analysis. 
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