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 The presence of eyeglasses in facial images poses challenges for image 

processing, particularly in facial recognition. This paper introduces the 

remove glasses diffusion model (RGDM), a conditioned denoising diffusion 

probabilistic model (DDPM) designed for precise glasses removal. RGDM 

employs conditional modeling to focus on the glasses region while 

seamlessly restoring facial features. An eyes position accuracy mechanism, 

leveraging facial landmarks, ensures accurate eye restoration post-removal. 

Comprehensive evaluations on the CelebA dataset demonstrate RGDM’s 

superior performance, achieving the lowest Fréchet inception distance (FID) 

of 27.09 and learned perceptual image patch similarity (LPIPS) of 0.299, 

outperforming state-of-the-art methods such as 3D synthetic, cycle-

consistent generative adversarial network (CycleGAN), and eyeglasses 

removal generative adversarial network (ERGAN). These results highlight 

the model’s effectiveness in producing natural and high-fidelity facial 

reconstructions. This work advances glasses removal technology and 

underscores the significance of conditional models in image processing. The 

proposed approach has practical implications for facial recognition and 

image enhancement, paving the way for more accurate and robust real-world 

applications. 
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1. INTRODUCTION  

Facial images are critical visual data sources in various applications, including facial recognition, 

image analysis, and digital communication. However, the presence of eyeglasses in facial images introduces 

significant challenges, particularly in accurately representing facial features, which are crucial for 

applications such as security systems, where precise identification is paramount. Reflections on the glass 

surface, lens distortions, and diverse frame styles contribute to visual artifacts that obstruct accurate facial 

recognition [1], [2]. In applications such as security systems, where precise identification is paramount, the 

presence of glasses becomes a significant bottleneck [3]. Facial recognition technology [3], [4] also known as 

FRTs, are one of several biometric tools or modalities developed to detect and identify persons when their 

photos are taken by a camera lens [5], [6]. It is a cornerstone in contemporary security and identification 

systems, [7]-[9] which relies heavily on the accurate representation of facial features. The presence of glasses 

complicates this process, leading to potential misidentifications and reduced system efficacy [10].  

https://creativecommons.org/licenses/by-sa/4.0/
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Image inpainting has slowly grown in importance as a study area in digital image processing due to 

the advancement of science and technology, the rapid upgrading of hardware, and the desire for high-quality 

images [11]. It can restore the texture of an image, extract its high-level abstract properties, as well as 

semantic imagery like human faces [12], which is why image inpainting is often used in researches where 

image generation is necessary, such as the removal of glasses. Coccia [13] emphasized in 2017, problem-

driven innovations often lead to solutions that provide a competitive edge. The evolution of technology, as 

discussed by Coccia in 2019 [14], [15], involves the continuous substitution of older methods with more 

efficient ones. In this context, our research represents an incremental innovation, building upon existing 

generative adversarial network (GAN)-based approaches and evolving towards a more effective diffusion 

model framework. While previous studies, such as the one conducted in 2023 by Sadik-E-Tawheed et al. 

[16], have focused on removing specific artifacts like glare and reflections, our approach tackles the root 

cause by removing the glasses themselves. This comprehensive solution not only enhances the clarity of 

facial images but also improves facial recognition accuracy, as highlighted by Mao et al. [17] in 2021.  

This paper introduces the remove glasses diffusion model (RGDM), a novel approach that departs 

from traditional GAN-based frameworks by leveraging a denoising diffusion probabilistic model (DDPM), 

which represents a significant advancement in this area. The RGDM integrates a conditioning module that 

focuses specifically on the glasses area, enabling precise inpainting and preserving the integrity of other 

facial features. Additionally, an innovative eyes position accuracy mechanism is incorporated, utilizing 

landmark information to ensure the generated eyes align perfectly with their original positions. This approach 

not only addresses the limitations of previous methods but also offers a more scalable and adaptable solution 

for glasses removal in diverse real-world scenarios [18]. 

In this study, we utilize the aid of segment anything model (SAM) [19] that is solely trained on 

recognizing glasses in segmenting and masking the glasses. We then combine the use of diffusion model and 

a conditioning module in order to only conduct the inpainting in the masked glasses area to remove the 

glasses from the original images. At this stage, after the inpainting area has been confirmed by the 

conditioning module, the glasses are removed through image inpainting using the diffusion model. The 

ability to accurately and gracefully remove glasses from facial images addresses a common visual challenge. 

This technology has widespread applications in photography, personal image enhancement, and even facial 

recognition, where clear, glasses-free images are often preferred. Therefore, in order to preserve the 

individual style and facial features, we also corroborated an additional modification towards the proposed 

method, which is the eyes position accuracy [20]. Through the given dataset attributes, the attributes 

responsible for the eyes’ positions is also inserted into the model, which provides the necessary information 

for the model to generate the supposed eyes in the correct position. 

The proposed model, remove glasses diffusion model, stands at the forefront of eyeglasses removal 

techniques. Our primary goal is to significantly enhance face recognition accuracy by systematically 

removing eyeglasses from facial images. The main contributions of our model include: 

- Our proposed model leverages the DDPM as its foundational framework, ensuring effective denoising 

through a diffusion process tailored for intricate data distributions. 

- The incorporation of a conditional network employing binary masks to allow for a meticulous and 

accurate identification of eyeglasses-occluded regions during the diffusion process. 

- The model features a robust eye precision accuracy, leveraged from the CelebA dataset's intrinsic 

landmark attributes, in order to ensure the precise positioning of the generated eyes, maintaining them in 

the exact same position as in the original image. 

The subsequent sections of this paper will elaborate on the RGDM approach, beginning with a 

discussion of related work and the theoretical foundation of diffusion models in section 2 and 3. The 

methodology in section 4 will detail the RGDM framework, including the conditioning module, the eyes 

position accuracy mechanism, dataset details, implementation specifics, and evaluation metrics. Section 5 

will present the experimental results of our model. The discussion in section 6 will compare RGDM against 

state-of-the-art methods, demonstrating its superior performance in glasses removal. Finally, the paper will 

conclude on the implications of these findings for future research and practical applications in section 7. 

 

 

2. RELATED WORK 

2.1.  Diffusion model 

Since the publication of diffusion model, the utilization of said method in image processing, 

particularly image generation or image inpainting, has been steadily rising. Not few publications have also 

been published with the focus of comparing image generation based on diffusion model to image generation 

based on previous known models, such as GAN. Focusing on publications released in recent years, Dhariwal 

and Nichol [21] compared diffusion model to current state-of-the-art GAN models in image synthesis. They 
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conducted the experimentations on both unconditional and conditional image synthesis, where diffusion 

model proves that the image synthesis it generates achieve superior image sample quality compared to the 

GANs model. In 2022, Lugmayr et al. [22] proposed RePaint as an inpainting approach based on DDPM that 

can be used with masks. The authors only alter the iterations of the reverse diffusion and does not conduct 

any modifications or conditionings on the original DDPM model, which proves to generate diverse and high-

quality images as a result and outperforms state-of-the-art GAN and autoregressive models. In 2023,  

Xie et al. [23] proposed SmartBrush for object inpainting guided by text and shape based on diffusion model. 

The authors also proposed a novel object-mask prediction with the goal of better preserving the image’s 

background. 

 

2.2.  Image inpainting 

Image inpainting is the process of finishing or restoring a missing portion of an image, or 

eliminating certain elements of an image that were initially inserted into it [24]. The traditional methods of 

image inpainting are categorized into three groups: diffusion-based techniques, patch-based techniques, and 

convolution filter-based techniques, while the modern approach relies more upon deep learning-based 

methods [25]. Thanks to the advancement of image processing tools and the flexibility of digital image 

editing, automatic image inpainting has found significant applications in computer vision and has grown to 

be a significant and difficult area of research in image processing [26], [27]. 

Focusing on the usage of image inpainting for glasses removal, the first method was proposed by 

Park et al. [28] in 2005 using recursive error compensation. This method begins by identifying the areas that 

the glasses have obscured before creating a face image devoid of glasses with the help of recursive error 

compensation using principal component analysis (PCA) reconstruction. The resultant image is devoid of any 

traces of the glasses' frame, reflection, or shading, suggesting that the method successfully addresses the 

issue of glasses occlusion although there are still some limitations of removing glasses with dark frames and 

gradated lens colors. Five years later, Wang et al. [29] proposed a method to remove glasses from face 

images based on the active appearance model (AAM) [30]. The model is built by merging shape and 

appearance variants in a shape-normalized fashion. The results of the experiments reveal that the suggested 

method is an effective solution for recognizing faces obscured by thick-rimmed eyeglasses, which was a 

notable problem with [28] method. Another five years after, Liang et al. [31] proposed a glasses detection 

model that was based on Zhu and Ramanan [32] concept of tree-pictorial structure. A double-layered filter 

made of inpainting and deep learning is used to remove the glasses. After conducting a comprehensive 

investigation, the authors discovered a drawback of their approach. Given that the edge information on 

glasses without rims is too "weak" to identify them as glasses, this affects the detection rate for such 

individuals. 

In recent years, a novel image-to-image GAN [33] framework for eyeglasses removal, called 

ByeGlassesGAN, is proposed by Lee and Lai in 2020 [34]. The components of ByeGlassesGAN are an 

encoder, a segmentation decoder, and a face decoder. The experiments demonstrate that even for semi-

transparent color eyeglasses or spectacles with glare, ByeGlassesGAN may produce aesthetically pleasing 

results in the facial images with the glasses removed. Then, Hu et al. [35] proposed the eyeglasses removal 

generative adversarial network (ERGAN), a unified eyeglass removal model, in 2021. This method suggested 

a GAN-based architecture to remove various kinds of glasses in the wild. The proposed model learns to swap 

the eye region in two faces when given two images of faces wearing and not wearing eyeglasses. That same 

year, Cheng and Cao [36] proposed another method using the same acronym, called ERGAN (high perform 

GAN for eyeglasses removal). This method is based on the successful implementation of the face attribute 

editing task in the GAN. It introduces the more sophisticated GAN inversion model IDInvert [37] and the 

InterfaceGAN [38] method. The findings of the experiment indicate that this method helps to increase the 

removal accuracy of glasses. However, it is also clear from the experimental findings that this method 

requires improvement in terms of how real-world images are processed, as it falls short in several aspects. 

Another approach proposed that same year is the multimodal asymmetric dual learning framework by 

Lin et al. [39], which utilizes unsupervised learning for eyeglasses removal. While innovative, this method falls 

short in terms of precision and quality compared to supervised learning approaches. In 2022, Lyu et al. [40] 

proposed a method using 3D synthetic data to remove eyeglasses and shadows, which provided a foundation for 

further research. However, this approach is limited by its reliance on synthetic data, which may not fully capture 

the variability of real-world images. Coccia [41] discussed in 2018 the classification of innovations based on 

their interaction with existing technologies. Our RGDM model exemplifies an incremental innovation that 

enhances the interaction between established methods, such as GANs and diffusion models, offering a more 

precise and adaptable solution for glasses removal in facial images. 

From the above passage, we can conclude that current existing glasses removal methods, mainly 

those that are proposed in recent years, rely on conventional GAN-based frameworks. Our proposed model, 

RGDM, departs from the conventional use of a GAN [33] by utilizing a DDPM [42], [43] instead. As 
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diffusion models have recently shown state-of-the-art results [43]-[45] while also outperforming GANs in 

terms of accuracy and variety [21], [46], our method can automatically remove glasses from facial images in 

a more precise manner. 

 

 

3. BACKGROUND: DENOISING DIFFUSION PROBABILISTIC MODEL 

In this paper, we use denoising diffusion probabilistic model as the base model for our proposed 

method. DDPM [42], [43], which is shown in Figure 1, is shortly known as diffusion model. It is a model 

inspired by nonequilibrium thermodynamics [47], which is a class of latent variable models with the form: 

 

𝑝𝜃(𝑥0) ∶= ∫ 𝑝𝜃(𝑥0:𝑇)𝑑𝑥1:𝑇) (1) 

 

Its basis is a parameterized Markov chain trained with variational inference to generate samples that match 

the data in a finite amount of time. 

 

 

 
 

Figure 1. Overview of the denoising diffusion probabilistic model 

 

 

It starts by sampling from a distribution with noise 𝑥𝑇, gradually producing less-noisy samples 𝑥𝑇−1, 

𝑥𝑇−2, …, until a final sample 𝑥0 is reached. The reverse process is called the joint distribution 𝑝𝜃(𝑥0:𝑇), which 

is a Markov chain with learned gaussian transitions. The forward process, also known as the diffusion 

process, is the approximate posterior 𝑞(𝑥1:𝑇|𝑥0) that a Markov chain is fixed to, adding gaussian noise to the 

data gradually based on a variance schedule 𝛽1, … , 𝛽𝑇. By optimizing the standard variational bound on 

negative log likelihood, training can then be carried out. 

For a noisy sample 𝑥𝑡, its noise component can be predicted using a function 𝜖𝜃(𝑥𝑡 , 𝑡). Given a data 

sample 𝑥0, we can add noise 𝜖 to the image by utilizing the forward diffusion Markov process over a 

scheduled variance of 𝛽𝑡 and timestep 𝑡. They are randomly drawn together to create a noised sample 𝑥𝑡, 

which generates every sample in a minibatch to train this function. The forward process may be applied as: 

 

𝑞(𝑥1:𝑇|𝑥0) ∶= ∏ 𝑞(𝑥𝑡|𝑥𝑡−1)𝑇
𝑡=1 ) (2) 

 

𝑞(𝑥𝑡|𝑥𝑡−1) ∶= 𝒩(√1 − 𝛽𝑡𝑥𝑡 , 𝛽𝑡𝛪)) (3) 

 

where 𝑇 is the total number of steps. The forward process has a notable property of admitting, in closed form, 

of sampling 𝑥𝑡 at timestep 𝑡. Hence, 𝑥𝑡 may be expressed in a closed form as: 

 

𝑥𝑡 = √�̅�𝑡𝑥0 + √1 − �̅�𝑡𝜖) (4) 

 

where 𝛼𝑡 ∶= 1 − 𝛽𝑡, �̅�𝑡 ∶=  ∏ 𝛼𝑗
𝑡
𝑗=1 , and ϵ ~ 𝒩(0, Ι ). 

 

In order to create images from random noise, the diffusion process above needs to be inverted. 

When 𝛽𝑡 is small enough, this can be done by learning the gaussian 𝑞(𝑥𝑡−1|𝑥𝑡). Nevertheless, due to the true 

distribution of 𝑥0 being unable to access the gaussian, 𝑞(𝑥𝑡−1|𝑥𝑡) is not known. Therefore, a neural network 

𝑝𝜃  is then trained to estimate the conditional distribution: 

 

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) ∶= 𝒩(𝜇𝜃(𝑥𝑡 , 𝑡), Σ𝜃(𝑥𝑡 , 𝑡))) (5) 

 

where, taken from (4), 𝑥𝑡−1 = 
1

√𝛼𝑡
(𝑥𝑡 −

1−𝛼𝑡

√1−�̅�𝑡𝜖𝑡
) is obtained through training 𝜇𝜃 to predict it. 

The objective of training, considering a simple mean-squared error loss between the actual noise and 

the anticipated noise as an example, will be ‖𝜖𝜃(𝑥𝑡 , 𝑡) − 𝜖‖2. By using stochastic gradient descent to 
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optimize random terms of 𝐿, training is possible to be completed in an efficient manner. In 𝑝𝜃(𝑥𝑡−1|𝑥𝑡), 

given a gaussian transition 𝒩(𝑥𝑡−1; 𝜇𝜃(𝑥𝑡 , 𝑡), ∑ (𝑥𝑡 , 𝑡))𝜃 , the denoising distribution can be modelled with the 

mean 𝜇𝜃(𝑥𝑡 , 𝑡) computed as a part of 𝜖𝜃(𝑥𝑡 , 𝑡). This leads to the following parametrization: 

 

𝜇𝜃(𝑥𝑡 , 𝑡) ∶=
1

√𝛼𝑡
(𝑥𝑡 −

𝛽𝑡

√1−�̅�𝑡
𝜖𝜃(𝑥𝑡 , 𝑡)) (6) 

 

A simplified training objective is discovered by Ho et al. [42] to be more beneficial: 

 

ℒ = 𝐸𝑡,𝑥0,𝜖[‖𝜖 − 𝜖𝜃(𝑥𝑡 , 𝑡)‖2]) (7) 

 

This training objective is obtained by predicting the cumulative noise 𝜖𝜃 that is added to the intermediate 

image 𝑥𝑡. In short, it removes the need for the weighting in the Langevin dynamics, transforming it into a 

weighted variational bound which leads to down-weighting the loss terms of the simplified objective 

corresponding to small 𝑡. 

 

 

4. METHOD 

RGDM combines the principles of DDPM with innovative modifications to achieve automatic 

glasses removal. We first present our approach for conditioning the DDPM on glasses removal. This will be 

followed by an introduction on an approach to improve the accuracy of the in-painted eyes’ position after the 

removal of glasses. 

The model operates through a series of carefully orchestrated steps that integrate conditioning 

modules, diffusion processes, and landmark-based positioning to achieve high-quality, realistic results. The 

process begins with an input facial image that contains glasses. This image serves as the starting point for the 

glasses removal procedure. A modification of the segmentation model, the SAM [19], is applied to the input 

image. This segmentation model is specifically trained to detect and isolate the glasses from the rest of the 

facial features, resulting in a binary mask that highlights the glasses region. 

Figure 2 illustrates the flow of model explained. The binary mask generated in the previous step is 

crucial for the conditioning process. It identifies the exact regions of the image where the glasses are located, 

ensuring that these areas receive focused attention during the subsequent denoising process. In parallel, the 

model extracts and incorporates landmark data from the input image. This data includes precise coordinates 

for the eyes and other key facial features, which are essential for maintaining the correct positioning of the 

eyes during the inpainting process. 

 

 

 
 

Figure 2. The flow of the RGDM model 

 

 

To initiate the diffusion process, gaussian noise is strategically injected into the glasses region of the 

image, guided by the binary mask. The noise levels are controlled by a variance schedule, ensuring that the 

noise is gradually added to the identified region while preserving the structure of the surrounding unmasked 

areas. The model then performs the forward diffusion process, where the noisy image undergoes a series of 

transformations. Each step of the Markov chain in the diffusion process incrementally adds more noise to the 

identified region, leading to a progressively noisier version of the original image. 
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Once the forward diffusion process reaches its peak noise level, the reverse diffusion process begins. 

The model, conditioned by both the binary mask and the landmark data, systematically removes the noise 

from the image, effectively reconstructing the pixels in the glasses region. During this reverse process, the 

model focuses on inpainting the glasses region. The binary mask ensures that the diffusion process is 

concentrated on the areas that originally contained the glasses, while the landmark data guides the accurate 

placement of the eyes and other facial features. 

The output from each step of the reverse diffusion is gradually refined, with the model filling in the 

glasses region with plausible facial details. The reverse diffusion process continues until the model generates 

a final, noise-free image. This output image has the glasses completely removed, with the eyes and other 

facial features accurately reconstructed and aligned with their original positions. 

 

4.1.  Conditioning module 

The conditioning module in RGDM is a crucial novel addition, for incorporating information about 

glasses conditions into the denoising process. It aims to integrate information about the presence or absence 

of glasses 𝑔 into the denoising process, allowing the model to adapt its denoising strategy based on this 

condition. The model’s glasses removal method relies on predicting the missing pixel values of the facial 

image. This is done by the help of the conditioning module by masking the glasses region. Figure 3 shows 

the overview of the RGDM approach. 

 

 

 
 

Figure 3. RGDM: glasses removal process overview 

 

 

In the context of the proposed model, considering an input image denoted as '𝑐', a glasses mask as '𝑔' 

representing the areas of '𝑐' to be in-painted, and eyes' landmark attribute represented by '𝑟', the primary 

objective is to effectively in-paint the glasses mask and generate an output image denoted as '�̂� '. The 

generated regions are represented as '𝑔 ⨀ �̂�', while the known facial regions are expressed as '(1 − 𝑔) ⨀  𝑐'. 

Given that noise is exclusively introduced to the masked glasses region, where '𝑐 = 𝑐0 ', the forward process 

at timestep '𝑡' can be mathematically expressed as (8). 

 

�̂�𝑡 = √1 − �̅�𝑡𝜖 + √�̅�𝑡𝑥0) 

𝑐𝑡 = (1 − 𝑔)⨀𝑐0 + 𝑔⨀�̂�𝑡 (8) 

 

The input variables, 𝑐𝑡, 𝑔, and 𝑟, are fed into the conditioning module, where the module discerns 

the process to restore the masked glasses region, 𝑐0⨀𝑔, while utilizing the clear and unmasked facial 

information. This ensures that the in-painted eyes within the masked glasses, 𝑔, harmonize with the overall 

facial image. In (9) encapsulates the training objective derived from this process. 

 

ℒ𝐶𝐺𝑅−𝐷𝐷𝑃𝑀 = 𝐸𝜖~𝒩(0,𝐼)[‖𝜖 − 𝜖𝜃(𝑐𝑡 , 𝑡, 𝑔, 𝑟)‖2]) (9) 

 

Random gaussian noise is generated across the masked area 𝑐𝑇 = (1 − 𝑔)⨀𝑐0 + 𝑔 ⨀𝑐0. Therefore, 

to obtain the generated output 𝑐0, the diffusion process is reversed during the inference stage. With the 

reverse diffusion process successfully conditioned to focus on the glasses area, we successfully in-paint the 

glasses area with the necessary facial features and eyes, which in return removes the glasses from the facial 

images. This can be seen in Figure 3, where 𝑐𝑡, which is the source image 𝑐0 combined with binary mask 𝑔, 
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undergoes the diffusion model to produce 𝑐𝑡−1 and so on, which will be iterated until output image �̂� is 

finally produced where the eyeglass is successfully removed. 

 

4.2.  Eyes precision accuracy 

To ensure the generation of accurate and fair glasses masks, our methodology incorporates a 

meticulously crafted approach leveraging a modified SAM [19]. This adaptation of SAM is purposefully trained 

to adeptly detect and segment eyeglasses within facial images, thus enhancing the precision of the generated 

glasses' masks. The process initiates with inputting the source images into the modified SAM, strategically 

tailored to focus solely on the segmentation of eyeglasses. The outcome of this segmentation step yields the 

glasses' masks denoted as ‘𝑔’ as visually represented in Figure 3. These masks become a pivotal component in 

the subsequent stages of our methodology, seamlessly integrating into the processes outlined in Section A for 

further analysis and glasses removal. This nuanced approach ensures the reliability and accuracy of the masks, 

laying a robust foundation for subsequent phases of the remove glasses diffusion model. 

Despite its proficiency in generating an accurate mask for different types of glasses, we found that 

the segmentation model tends to mask the entire glasses, including their lenses, irrespective of whether they 

resemble sunglasses with colored lenses or conventional eyeglasses with clear lenses. This is evident in the 

binary mask '𝑔' and the masked image '𝑐𝑡 ' portrayed in Figure 3. This comprehensive masking leads to the 

possibility of the generated eyes being positioned differently than in the original image, in particular 

concerning the types of glasses that are designed for vision correction (those with clear lenses). To address 

this potential misalignment and ensure the accurate positioning of the generated eyes, the model is also 

equipped with information concerning the eyes' landmarks denoted as '𝑟', which is leveraged from the 

dataset's intrinsic landmark attributes: 

 

𝑟 = (𝑙𝑒𝑓𝑡𝑒𝑦𝑒𝑥 , 𝑙𝑒𝑓𝑡𝑒𝑦𝑒𝑦|𝑟𝑖𝑔ℎ𝑡𝑒𝑦𝑒𝑥 , 𝑟𝑖𝑔ℎ𝑡𝑒𝑦𝑒𝑦)) (10) 

 

Through the incorporation of eyes' landmarks denoted as '𝑟', the model ensures the precise 

positioning of the generated eyes, maintaining them in the exact same position as in the original image. This 

strategic use of landmark information acts as a safeguard against potential distortions that could arise during 

the glasses removal process. Figure 4 provides a visual representation of the impact of including eyes' 

landmarks, showcasing samples of generated eyes both with and without the utilization of landmark 

information. This not only exemplifies the effectiveness of the proposed approach in preserving the original 

eye position but also serves as a testament to the model's ability to produce realistic and accurate results in 

the absence of glasses. The pseudocode for the glasses removal process can be seen in Algorithm 1. 

 

Algorithm 1. Glasses removal 
1:  𝑐𝑇  ~ 𝒩(𝟎, 𝚰 ) 

2:  for 𝑡 = 𝑇, … , 1 do 
3:        for 𝑢 = 1, … , 𝑈 do 
4:              𝜖 ~ 𝒩(𝟎, 𝚰 ) if 𝑡 > 1, else 𝜖 = 0 

5:              �̂�𝑡 = √1 − �̅�𝑡𝜖 + √�̅�𝑡𝑥0 

6:              𝑧 ~ 𝒩(𝟎, 𝚰 ) if 𝑡 > 1, else 𝑧 = 0 

7:              𝑟 = (𝑙𝑒𝑓𝑡𝑒𝑦𝑒𝑥 , 𝑙𝑒𝑓𝑡𝑒𝑦𝑒𝑦|𝑟𝑖𝑔ℎ𝑡𝑒𝑦𝑒𝑥 , 𝑟𝑖𝑔ℎ𝑡𝑒𝑦𝑒𝑦) 

8:              𝑐𝑡 = (1 − 𝑔)⨀𝑐0 + 𝑔⨀�̂�𝑡 

9:        end for 

10: end for 

11: return 𝑐0 

 

4.3.  Experimental setup 

4.3.1. Dataset 

We conducted our experiments using the CelebA dataset [48], which is a face attribute dataset 

derived from labelling images selected from the challenging face datasets, CelebFaces. It features 10,177 

identities, each with around 20 images, for a total of 202,599 celebrity images. It has each image annotated 

with forty facial features and five key characteristics, including the presence or absence of glasses and the 

landmarks of both the left and right eyes. From the annotations, we separated the CelebA dataset into two 

subsets, one where the images consist of glasses and the other where the images have no glasses. In total, 

there are 189,406 non-glasses images and 13,193 images wearing glasses. All of the facial images are 

cropped to 178×178, before being resized to 256×256 each. 

 

4.3.2. Implementation details 

The architecture of the remove glasses diffusion model is rooted in the DDPM framework. It is 

composed of a generator responsible for the denoising process and a conditioning module that employs a binary 
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mask to identify the glasses in the input images. We have implemented the RGDM method using PyTorch 

2.0.0, Python 3.8 (Ubuntu20.04), and Cuda 11.8, running on an RTX 3090 (24 GB) GPU. The model undergoes 

training on the dataset for 300,000 iterations, with T set to 250. 

RGDM is based on the DDPM, which is a type of probabilistic generative model that reverses a 

diffusion process to generate high-quality images. The network is conditioned on a binary mask and 

landmark data, which guide the diffusion process to identify the glasses region in the input images. We have 

implemented the RGDM method using PyTorch 2.0.0, Python 3.8 (Ubuntu20.04), and Cuda 11.8, running on 

an RTX 3090 (24 GB) GPU. 

The CelebA dataset was utilized for training and testing the RGDM model. This dataset contains over 

200,000 celebrity images with a variety of attributes, including whether the person is wearing glasses. Since the 

CelebA dataset does not come with detailed segmentation masks, a modified version of the SAM [19] was 

employed to generate binary masks. These masks isolate the glasses region, helping the model focus on the 

correct area during the diffusion process. 70% of the dataset (around 140,000 images) is allocated for training 

the RGDM model. The training set includes images with and without glasses, ensuring the model learns to 

accurately remove glasses while preserving the underlying facial features. The remaining 30% of the dataset 

(around 60,000 images) is reserved for testing. This set is used to evaluate the model’s performance, particularly 

its ability to reconstruct the face without glasses while maintaining naturalism and realism. 

The learning rate was set to 0.0001, which is typical for training diffusion models. This rate ensures 

that the model learns at a pace that balances convergence speed and stability. The model was trained for 

300,000 iterations, which is a commonly used measure in diffusion models due to the high number of 

timesteps involved, with T set to 250. This extensive training allowed the model to learn the complex task of 

glasses removal and ensured that it generalized well to new images. The Adam optimizer was used for 

training, with beta1 set to 0.9 and beta2 set to 0.999. Adam was chosen for its robustness and ability to 

handle the sparse gradients that are often encountered in deep generative models. 

The input to the RGDM model is a facial image with glasses, along with a corresponding binary 

mask that isolates the glasses region. The image is preprocessed to match the input requirements of the 

model, typically resized to 256×256 pixels and normalized. The final image, with the glasses removed, is 

generated through the reverse diffusion process. Starting from the noisy image created during the forward 

process, the model gradually reduces the noise, guided by the conditioning module, until a high-quality, 

glasses-removed image is produced. The output is a 256×256 pixel image with the glasses removed. The 

model’s goal is to generate a realistic image where the glasses have been in painted with the underlying facial 

features, particularly focusing on maintaining the correct placement of the eyes and ensuring that the output 

is free of artifacts. 

 

4.3.3.  Evaluation metrics 

We conducted the evaluation of image quality through the utilization of the Fréchet inception 

distance (FID) [49], [50]. FID serves as a metric for quantifying the dissimilarity between real images and 

generated images. This calculation is performed using the inception network to extract features and assess the 

distance between the distributions of real and generated images. FID has established itself as a widely 

adopted evaluation metric in various image generation tasks [22], [31], [51]. 

An additional metric employed for assessing the model is the learned perceptual image patch 

similarity (LPIPS) [52]. LPIPS measures the learned distance within AlexNet [53] deep feature space to 

evaluate the distance between image patches. A higher LPIPS value indicates greater dissimilarity, 

suggesting a more substantial difference between image patches. Conversely, a lower LPIPS value signifies 

increased similarity, indicating a closer match between image patches. This metric operates on the premise 

that a larger LPIPS distance implies more pronounced distinctions, while a smaller distance signifies 

heightened visual resemblance between image patches. 

 

 

5. EXPERIMENTS AND RESULTS 

We introduced the extensive experiments conducted on our proposed RGDM model in this chapter. 

The dataset undergoes a preliminary phase where it is subjected to a modified segmentation model, SAM 

[19], resulting in the generation of precise glasses binary masks for each image. Subsequently, both the 

binary masks and the original images are fed into the conditioning module, as expounded in the preceding 

section. This module orchestrates the combination and preparation of images into masked versions, with the 

judicious addition of gaussian noise targeted at the masked areas. This preparatory step sets the stage for the 

subsequent denoising procedure. The combined data, now enriched with gaussian noise, is then processed 

through the diffusion model, kickstarting the in-painting process to generate versions of the facial images 

with removed glasses. Crucially, the proposed method showcases its versatility by not only effectively 
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removing clear-lensed glasses but also demonstrating proficiency in handling dark-lensed varieties, including 

sunglasses. This adaptability underscores the robustness of the RGDM method across a spectrum of eyeglass 

types, enhancing its applicability in real-world scenarios. 

Figure 4 shows the overview process of how the experiment is conducted in order to obtain the 

necessary results. As can be seen in the figure, the segmentation process provides the necessary glasses 

binary mask, which is then passed through the conditioning module along with the original image, in order to 

produce the necessary condition for the DDPM to remove the glasses. The output of the conditioning module 

is a combination of the original image and the binary mask which has been added with gaussian noise in the 

conditioning area. Eyes position accuracy, in this case 𝑟 = (68, 112|109, 112), along with the output from 

the conditioning module is then passed through the denoising process which finally generates the targeted 

output image. The result shows that the proposed RGDM method successfully removed the glasses from the 

original image.  

 

 

 
 

Figure 4. RGDM: glasses removal pipeline 

 

 

In this detailed analysis, we meticulously assess the performance impact of the introduced eyes 

position accuracy in the proposed eyeglass removal framework. As elucidated in Figure 5, the 

implementation of eyes position accuracy plays a pivotal role in ensuring the generated eyes align seamlessly 

with their intended positions. Particularly, for clear-lensed glasses, the accuracy mechanism guarantees that 

the generated eyes precisely occupy their original locations. This meticulous alignment becomes equally 

crucial for dark-lensed glasses or sunglasses, where the generated eyes maintain normal distances and 

proportions consistent with the average face. In stark contrast, when the model operates without the eyes 

position accuracy feature, the generated eyes exhibit irregular placements, appearing higher than the original 

position and uncomfortably close to the person's eyebrows. This divergence results in unnatural and 

occasionally unsettling images. Conversely, when the model incorporates the eyes position accuracy, the 

generated eyes retain their authenticity in the original position, culminating in facial images that exude a 

heightened sense of naturalism and realism. This nuanced evaluation underscores the indispensable role of 

eyes position accuracy in enhancing the visual fidelity and believability of the generated images, marking it 

as a critical component in the overall success of the proposed eyeglass removal model. 
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Figure 5. Ablation study. Comparison on glasses removal results with and without eyes position accuracy, on 

the CelebA dataset 
 

 

6. DISCUSSION 

We also compared our model to other current state-of-the-art models. The proposed RGDM method 

undergoes a rigorous comparative analysis against contemporary state-of-the-art glasses removal techniques, 

including CycleGAN [54], ERGAN [35], and 3D Synthetic [40]. To ensure a fair and objective comparison, 

each method is meticulously trained under identical experimental conditions, mirroring the circumstances 

employed in training the RGDM model. This meticulous approach to experimentation serves to elucidate the 

relative strengths and weaknesses of each method, allowing for a comprehensive assessment of the RGDM 

model's performance in comparison to its counterparts. 

 

6.1.  Qualitative evaluations 

In a meticulous qualitative assessment, we conducted a comparative assessment of our model against 

prominent generative methods mentioned above. Figure 6 illustrates the evaluation of the quality of generated 

glasses-removed images on the CelebA dataset. Through leveraging the open-source codes, the state-of-the-art 

methods—CycleGAN [54], ERGAN [35], and 3D Synthetic [40]—are reimplemented for benchmarking. As 

depicted in Figure 6, compared to our approach, CycleGAN, ERGAN, and 3D Synthetic all have their own 

limitations in removing the glasses from the facial images. Both CycleGAN and 3D Synthetic exhibit 

limitations, failing to completely eliminate glasses frames and leaving discernible evidence of their presence in 

the images. Conversely, ERGAN falls short in delivering realistic and clear images while attempting removal, 

occasionally leaving subtle traces of glasses existence, albeit less prominent than the former two methods. In 

stark contrast, our approach yields results that are markedly true to life and authentic. The glasses frames are 

impeccably removed without leaving any traces or anomalous inpainting artifacts. Furthermore, the generated 

eyes faithfully replicate the original eyes for glasses with clear lenses. For glasses with coloured or dark lenses, 

the generated eyes harmonize seamlessly with the overall facial context, ensuring a natural and realistic 

appearance in the generated images. This pronounced superiority in realism and precision underscores the 

efficacy of the proposed RGDM model in achieving high-fidelity glasses removal. 
 

 

 
 

Figure 6. Qualitative results. Comparison against other state-of-the-art methods for glasses removal on the 

CelebA dataset 
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6.2.  Quantitative evaluations 

In the realm of quantitative assessments, we present a comprehensive evaluation of the RGDM 

method, leveraging the FID and LPIPS metrics to gauge the naturalism and realism of the generated images. 

The findings, as elucidated in Table 1, underscore the prowess of RGDM by securing the lowest FID and LPIPS 

values on the CelebA dataset. With an FID value of 27.09 and a LPIPS value of 0.299, RGDM outperforms its 

counterparts, namely 3D synthetic (with an FID value of 32.96 and a LPIPS value of 0.467), CycleGAN (with 

an FID value of 40.83), and ERGAN (with an FID value of 41.02 and a LPIPS value of 0.302), positioning itself 

as the premier method for glasses removal. Notably, the close distribution of generated images to the original 

images, as indicated by the low FID value, underscores the superior performance of the RGDM method. This 

not only substantiates its eminence in the domain of glasses removal but also establishes a compelling case for 

the adoption of diffusion models in image processing, particularly in the nuanced realm of image inpainting. 

The demonstrated superiority in glasses removal capabilities further bolsters the broader applicability of 

diffusion models in advancing image manipulation techniques. 

 

 

Table 1. Quantitative results on different methods 
Methods FID↓ LPIPS↓ 

CycleGAN [54] 40.83 - 
ERGAN [35] 41.02 0.302 

3D synthetic [40] 32.96 0.467 
RGDM 27.09 0.299 

 

 

7. CONCLUSION 

This study represents a significant advancement in the field of facial image processing, particularly 

in the challenging task of glasses removal. The introduction of the RGDM offers a novel solution that departs 

from traditional GAN-based methods by leveraging the capabilities of a DDPM. This approach, enhanced by 

a binary mask conditioning mechanism, allows for precise inpainting and ensures that facial features, 

particularly the eyes, are meticulously preserved and accurately repositioned. In conclusion, RGDM not only 

advances the state of glasses removal technology but also sets a foundation for future innovations in image 

processing. By addressing the limitations and exploring new frontiers, this model has the potential to 

significantly impact both academic research and practical applications in the broader field of artificial 

intelligence and image enhancement. 
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