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 In the domain of smart health devices, the accurate detection of physical 

indicators levels plays a crucial role in enhancing safety and well-being.  

This paper introduces a cross device federated learning framework using 

hybrid deep learning model. Specifically, the paper presents a 

comprehensive comparison of different combination of long short-term 

memory (LSTM), gated recurrent unit (GRU), convolutional neural network 

(CNN), random forest (RF), and extreme gradient boosting (XGBoost), in 

order to forecast stress levels by utilizing time series information derived 

from wearable smart gadgets. The LSTM-RF model demonstrated the 

highest level of accuracy, achieving 93.53% for user 1, 99.40% for user 2, 

and 97.88% for user 3. Similarly, the LSTM-XGBoost model yielded 

favorable outcomes, with accuracy rates of 85.88%, 98.55%, and 92.02% for 

users 1, 2, and 3, respectively, out of 23 users studied. These findings 

highlight the efficacy of federated learning and the utilization of hybrid 

models in stress detection. Unlike traditional centralized learning paradigms, 

the presented federated approach ensures privacy preservation and reduces 

data transmission requirements by processing data locally on Edge devices. 
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1. INTRODUCTION 

In recent years, the proliferation of wearable internet of things (IoT) devices has significantly 

transformed the landscape of personal healthcare monitoring, as shown in [1]-[5]. Stress, a prevalent health 

issue associated with various physical and mental ailments, can currently be better monitored by 

incorporating wearable sensors and IoT technologies. Accurate detection of stress levels using wearable 

devices can result in timely interventions, thereby leading to notable enhancements in health outcomes. 

Despite advancements in wearable technology, several challenges persist in the accurate and 

efficient detection of stress. Traditional centralized models for stress detection raise significant privacy and 

security concerns as they require data to be transmitted to central servers for processing. Additionally, these 

models often fail to achieve high accuracy and robustness across diverse user datasets due to their inability to 

effectively capture temporal dependencies in physiological data. 

https://creativecommons.org/licenses/by-sa/4.0/
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Previous research has explored various methods for stress detection using IoT devices. Major 

contributors in this field have utilized single neural network architectures or traditional machine learning 

models. Can et al. [6] utilized convolutional neural networks (CNNs) for stress detection but faced 

limitations in capturing long-term dependencies in the data. Patel et al. [7] implemented random forest (RF) 

models, which provided robust classification but lacked the ability to handle sequential data effectively.  

Chen et al. [8] employed long short-term memory (LSTM) networks, achieving better performance with 

time-series data but encountering computational inefficiencies on resource-constrained devices. 

The existing literature highlights several unresolved problems, including data privacy and security 

issues, model accuracy and robustness, and the effective handling of sequential data. High computational 

requirements of deep learning models limit their practical application on wearable devices, and there is 

variability in model performance across different users due to individual physiological differences. 

Furthermore, delays in data processing hinder real-time detection capabilities, and limited evaluation metrics 

do not provide a full assessment of model performance. To address these gaps, our study introduces a 

federated learning [9] framework combined with a hybrid deep learning model for stress detection using data 

provided from wearable IoT devices. The federated learning approach enhances privacy and security, 

addressing significant privacy concerns in centralized data collection methods. Furthermore, the evaluated 

hybrid models, such as the combinations LSTM-RF and LSTM-XGBoost, are presenting the highest 

accuracy for almost all the involved users. These models are optimized for computational efficiency, making 

them suitable for implementation on resource-constrained devices using TinyML techniques. On the other 

hand, the federated learning approach ensures that the studied models generalize well across different users 

by training on diverse local datasets, mitigating variability in individual physiological responses. Moreover, 

our evaluated models support real-time stress detection, enabling timely interventions and improving overall 

health outcomes. 

The following sections of this manuscript will demonstrate the relevance and impact of our work, 

section 1 provides the introduction and background. Section 2 describes the methodology and experimental 

setup. Section 3 presents the results and their implications. Section 4 discusses the findings and compares 

them with existing works, and section 5 concludes with future work directions. 

 

 

2. MOTIVATION AND RELATED WORKS 

Recent advancements in stress detection using wearable IoT devices have highlighted the potential 

of federated learning and hybrid models to address key challenges in the field. Alahmadi et al. [10] provided 

a comprehensive overview of a privacy-preserved IoT-based mental stress detection framework using 

federated learning, emphasizing the importance of decentralized learning models in preserving data privacy 

while enabling effective model training across distributed devices. Similarly, Jiang et al. [11] explored 

privacy-preserving techniques in federated learning, focusing on their integration within IoT frameworks to 

ensure secure data handling and processing. These studies underscore the potential of federated learning to 

address privacy concerns, which is a critical aspect of our research. 

Several studies have investigated the use of hybrid models to improve diagnostic accuracy in IoT 

devices. Yaqoob et al. [12] examined the integration of various machine learning models, demonstrating how 

hybrid approaches can significantly enhance diagnostic accuracy in wearable devices. Almadhor et al. [13] 

presented a detailed analysis of wrist-based electrodermal activity monitoring for stress detection using 

federated learning, emphasizing the potential of hybrid models in this domain. Yaqoob et al. [14] leveraged 

hybrid models to achieve enhanced diagnostic accuracy, particularly in the context of skin lesion diagnosis. 

Khan et al. [15] proposed an asynchronous federated learning approach for improved cardiovascular disease 

prediction, highlighting the practical implications of timely health monitoring. Junior and Kamienski [16] 

expanded on this by developing hybrid models that combine multiple neural network architectures to 

improve the accuracy and responsiveness of performance behavior detection in fog-IoT systems. 

Despite these advancements, traditional centralized models still pose privacy and security risks, and 

existing models often fail to achieve high accuracy across diverse datasets due to limitations in capturing 

temporal dependencies in physiological data. High computational requirements also limit the practical 

application of deep learning models on resource-constrained wearable devices. Nandi and Xhafa [17] focused 

on optimizing hybrid models for real-time emotion state classification, offering insights into the performance 

enhancements achievable through model integration and optimization techniques. Tripathy et al. [18] 

addressed the scalability of federated learning in IoT environments, discussing how scalable solutions can be 

implemented to handle growing data volumes and device counts in IoT networks.  

Our study represents a significant advancement over existing work by taking into account enhancing 

not only the accuracy and robustness of stress detection but also ensures efficient and secure data handling 

through federated learning and edge computing. By addressing the heterogeneity of datasets and the 
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challenge of imbalanced data, our approach provides a scalable and practical solution for real-time stress 

monitoring in wearable IoT devices. The key to the success of a federated learning solution using a cross-

device architecture lies in proposing an efficient and effective solution. This solution, must take into account 

the limited computational resources of edge devices and the unique data of each user in measuring stress 

levels. This can be done by combining LSTM and RF or XGBoost as we will discover in the next section. 

 

 

3. METHOD 

Our paper addresses the challenge of accurately detecting stress levels using data from wearable IoT 

devices while preserving user privacy. Traditional centralized models for stress detection raise privacy 

concerns and often fail to achieve high accuracy across diverse user datasets. We introduce in this section, a 

cross-device federated learning framework using hybrid deep learning models. This approach aims to 

improve stress detection accuracy while maintaining data privacy by processing data locally on edge devices. 

In a federated learning context, datasets from users are not merged due to privacy concerns and to the 

distributed nature of the problem. Instead, some computations are done locally on each user’s data and then 

aggregate the result. Figure 1 describes the adopted workflow for our study. 

 

 

 
 

Figure 1. Federated learning workflow for our study 

 

 

In order to train and evaluate our proposed hybrid models, we used the PRIDE dataset introduced by [19]. 

It offers an extensive array of characteristics that encompass the physiological and behavioral dimensions of 

the individuals participating in the study. After the data preprocessing phase, where we did incorporate the 

“stressed” variable, which will be predicted by our model after training, feature encoding, data integration 

and normalization, a feature importance analysis was made using RF classifier to prepare the dataset for the 

federated learning model. The dataset contains time series data collected from wearable devices over one 

week, 24 hours per day, for 23 test subjects. They are aged between 21 and 52 years old. Data logs include 

data from 00:00 to 23:59 each day, and Gaps of at least 40 minutes three times a day for battery recharging. 

The dataset contains timeseries data from 23 subjects, organized for each subject as described in Figure 2. 

Figures 3 and 4 present an example of the heart rate and the skin temperature over time for a random user. 

 

 

 
 

Figure 2. Dataset column description 
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Figure 3. Heart rate and skin temperature over time for user 1 

 

 

 
 

Figure 4. Distribution plots for heart rate and skin temperature 

 

 

The data belonging to individual users is uploaded onto the respective local device. In order to 

preserve privacy and respect the federated learning approach. The PRIDE dataset contains data from 23 users 

separated on two files for each user (all the files have the same columns). The first file presents data in 

normal conditions, the second contains data when the user is under stressful conditions. We first cleaned 

data, add headers and coded Stressed column values (binary variable 0=‘normal’ and 1=‘stressed’).  

At the end of this step, we prepared one merged file for every user which will be used in the next step to 

select important features that influence the target “stressed”. 

In order to reduce the number of features on the dataset, we used a RF classifier to detect the most 

important features for our study. We first calculate feature importance locally for every user, then aggregate 

the result to have the above classification as on the Figure 5. Then the top 10 features with the highest 

importance score are used since they are the features that contribute the most to the model’s prediction. 

 

 

 
 

Figure 5. Feature importance 
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After data analysis, we found that the two classes for target “stressed” are not balanced, which will 

cause certainly a model overfitting. That’s why, we used SMOTE technic to balance data for each user. 

When utilizing algorithms such as XGBoost or other models that offer functionality for incorporating class 

weights, it is possible to assign weights explicitly to use class weighting technic. The next step consists on 

training models locally using each user’s dataset, the result weights were loaded after that and then 

aggregated to update the global model. The model result will be discussed in the “result and discussion 

section”. The data that was gathered then analyzed utilizing Python and TensorFlow libraries, and the key 

measures utilized for the evaluation of the stress detection model included accuracy, precision, recall, and  

F1-score. 

In this study, multiple neural network architectures were applied to measure their efficiency in stress 

detection within the federated learning context. The utilization of the LSTM network in combination with 

gated recurrent units (GRU), RF, and XGBoost allowed for the exploitation of LSTM’s capacity to capture 

prolonged dependencies in sequential data. GRU, which is a simplified iteration of LSTM, offers 

computational efficiency while upholding performance standards [20]. RF, as an ensemble technique 

comprised of decision trees, bolsters predictive precision and mitigates overfitting, whereas XGBoost, an 

optimized gradient boosting algorithm, enhances speed and performance by means of sequential tree 

construction. Moreover, the integration of residual networks (ResNet) with LSTM and CNN [21] was carried 

out to leverage ResNet’s skip connections for the training of deep networks, LSTM’s capability in 

recognizing sequential patterns, and CNN’s proficiency in extracting spatial hierarchies. These specific 

architectures were chosen due to their complementary strengths in addressing diverse data characteristics, 

such as temporal dependencies and spatial hierarchies, with the aim of optimizing the predictive capabilities 

of the study. 

Aiming to evaluate the effectiveness of our federated learning model, a stratified approach was 

utilized to divide the dataset into training and testing sets. This stratification technique guarantees that the 

distribution of classes remains uniform across both sets, thereby enhancing the credibility of the model’s 

performance. Initially, data preprocessing was conducted individually for each user’s dataset. The 

preprocessing procedure involved standardizing the features to achieve a mean of zero and a variance of one, 

followed by reshaping the data to conform to the input specifications of the hybrid models. More specifically, 

the StandardScaler tool from the scikit-learn library was utilized to standardize each user’s data, while the 

target variable was reshaped to match the expected input format. Subsequently, the dataset underwent an  

80-20 split to create training and testing subsets. This allocation involved utilizing 80% of each user’s data 

for model training purposes, with the remaining 20% designated for performance evaluation. The division 

was executed through the implementation of the train_test_split function from scikit-learn, which ensured a 

random division by establishing a fixed random state. This partitioning was essential to maintain uniformity 

and avoid possible bias in the model’s performance metrics caused by data leakage between the training and 

testing phases. To enhance the generalization capability of our hybrid LSTM models and to avoid overfitting, 

dropout layers were incorporated into the proposed architectures. Dropout serves as a regularization method 

where, in each training iteration, a portion of neurons is randomly chosen to be disregarded. This action 

prevents an excessive dependency on specific neurons within the network and fosters the formation of more 

resilient features that exhibit reduced sensitivity to noise and variability present in the input data. A dropout 

rate of 0.5 was employed, indicating that 50% of neurons were randomly excluded during every training 

cycle. This particular rate was selected based on empirical findings and prior research [21]-[26], showcasing 

its efficacy in diminishing overfitting within analogous neural network structures. A comparison was 

conducted between multiple federated learning architectures using different hybrid models to evaluate the 

efficiency of the federated methodology. 

 

 

4. RESULTS AND DISCUSSION 

In this section, we are going to present the main finding of our study. Table 1 and Figure 6 

summarize the results of each evaluated hybrid model over a sample of 3 users from a list of 23 to simplify 

the results presentation. We noticed that the combinations LSTM-RF and LSTM-XGBoost are presenting the 

highest accuracy for almost all users. Those results were obtained by simulating the federated learning 

context using Google Colab with the configuration described on Table 2. 

However, the varying performance observed across users overall signifies that the model’s efficacy 

may vary depending on the unique data characteristics of individual users. While maintaining consistently 

high precision, endeavors to improve recall for specific users could potentially boost the overall performance 

and applicability of the model. This variability in model performance across different users, can be attributed 

to individual differences in physiological responses to stress. This highlights the need for more personalized 

models in future research. That’s why we intend to explore, in future work, Individual-based learning that 

involves tailoring stress detection models to specific individuals by leveraging personalized data from 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 1301-1308 

1306 

wearable devices. The combination of this approach in a federated learning context may allow for the fine-

tuning of algorithms to the unique physiological and behavioral patterns of each person, enhancing the 

accuracy of stress detection. 
 

 

Table 1. Comparison of the used model’s efficiency 
  Precision Recall F1-score Accuracy 

LSTM-CNN User1 91.10% 55.91% 69.29% 75.17% 
 User2 66.10% 68.15% 67.11% 66.50% 

User3 90.50% 74.23% 81.16% 83.14% 

LSTM-GRU User1 96.31% 48% 64.06% 73.01% 
 User2 95.85% 57.82% 72.13% 77.59% 

User3 96.33% 97.73% 97.02% 96.99% 

LSTM-RF User1 96.44% 90.41% 93.33% 93.52% 
 User2 99% 99.80% 99.39% 99.39% 

User3 97.32% 98.48% 97.90% 97.88% 

LSTM-XGBoost User1 87.64% 83.61% 85.58% 85.87% 
 User2 97.77% 99.37% 98.56% 98.55% 

User3 92.42% 91.62% 92.02% 92.02% 

 

 

 
 

Figure 6. Model performance metrics comparison for 3 users as an example 
 

 

Table 2. Computing experimental details 
Specification Details 

Connection Backend Google compute engine 
Language Python 3 (GPU) 

Total RAM 12.67 GB 

GPU NVIDIA T4 
Programming platform Python 3.8 with TensorFlow 2.4 

Number of client nodes 23 

Learning rate 0.001 (Adam) 
Batch size 32 

Epochs Average of 20 (using early stopping technic to ovoid overfitting) 

 

 

5. CONCLUSION 

In conclusion, our study demonstrates that integration of the LSTM with RF or XGBoost within a 

federated learning context improves stress detection accuracy while preserving user privacy. However,  

we noticed a significant difference in the improvement of accuracy from one user to another. For instance, 

the LSTM-XGBoost combination demonstrated notable efficacy, especially for user 2. This observation leads 

us to explore other technologies that could help enhance our model while preserving user data privacy and 

considering the limited computational resources of edge devices. Finally, future research should focus on 

individual-based learning within federated frameworks to personalize stress detection models, improving 

real-time monitoring and intervention capabilities. This research provides a robust foundation for privacy-

preserved, IoT-based health monitoring systems, with applications extending beyond stress detection to 

various health-related domains. 
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