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 The land scene classification by remote sensing images predicts semantic 

class of image blocks by removing visual primitives in remote sensing 

images. However, there is a problem of within-class diversity and between-

class similarity that degrades a performance of scene classification. In this 

research, the diversity promoting metric learning–convolutional neural 

network (DPML-CNN) method is proposed for classifying land scene 

images. The metric learning with convolutional neural network (CNN) maps 

the same scene image class closer and the different class scenes as far as 

possible which makes the method much discrimination. The diversity 

promoting in metric learning is used to reduce the overlapping of the same 

scene class by uncorrelation of every parameter and provides unique 

information for those parameters. The UC Merced, AID, and NWPU 

RESISC45 datasets are utilized in this research for evaluating the proposed 

DPML-CNN method with evaluation metrics like accuracy and kappa 

coefficient. The DPML-CNN method reached highest accuracy of 99.27% 

and 99.84% for 50% and 80% training ratios on the UC Merced dataset 

when compared to other existing methods like multi-level semantic feature 

clustering attention (MLFC-Net) and global context spatial attention 

(GCSA-Net). 
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1. INTRODUCTION 

The remote sensing image scene classification maps scene images to particular high-level semantic 

classes and enables the acquisition of high-level semantic data [1]. Recently, it has been a promising research 

field in high-resolution image classification of remote sensing [2]. It is majorly utilized in analyzing natural 

resources, land use and classification of land coverage, detection of disasters, and planning of urban [3]. The 

classification of scenes supports people in understanding image content, which is highly convenient to the 

lives of people in various applications like smart cities, detection of remote sensing [4]-[6]. However, intra-

class variations are difficult, and inter-class similarity of objects in original sensors maximizes the data 

combination and logical reason in every scene [7]. For the classification of scene images, the image is 

initially characterized through a feature encoder and next classified by a classifier [8]. Commonly, there are 

variations and inconsistencies among data extracted from visual information and comprehension of people in 

similar data that cause semantic gaps among feature representation and understanding of high-level features [9]. 

In recent times, convolutional neural networks (CNNs) have developed in area of image scene classification [10]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Variant CNN-dependent techniques have been ruling in the area of remote sensing scene classification [11]. 

The great achievement of different CNN-based image scene classification techniques is highly attributed to 

utilization of deep CNN techniques like VGGNet, GoogLeNet, and AlexNet. These techniques extract the 

meaningful image feature representations that are much discriminative than handcrafted low-level features 

like texture, spectral, and color features [12]. Though performance of scene image classification is enhanced 

through meaningful features learned through deep CNN techniques [13], [14], there are two main issues: 

within-class diversity and between-class similarity. These issues degrade the performance of remote sensing 

image scene classification which needs to be tackled.  

Wang et al. [15] suggested a multi-level semantic feature clustering attention (MLFC-Net) method 

depending on deep convolution neural networks (DCNNs) which extracted much more accurate feature data. 

The suggested method utilized high spatial data in remote sensing images combining common semantic 

feature data with clustered data. Then, Rearrange the respective data weight like feature maps and tensor 

blocks by attention mechanism. The suggested method improved the representation of various difficult 

aspects with minimum computational cost and better portability. However, the suggested method was not 

good at discrimination capability among variant scene categories. Thirumaladevi et al. [16] presented a 

method through integrates convolutional neural network (CNN) and transfer learning to land scene 

classification. The categorization of images was enhanced for scene classification accuracy through transfer 

learning with networks like AlexNet and visual geometry group (VGG) and compared to conventional 

feature extraction techniques. Initially, features were recovered from the network’s next fully connected layer 

and assigned support vector machine (SVM) classification. Next, the final layers of the networks were 

substituted during transfer learning to classify new datasets. The presented method captured the boundary of 

scene images and recognized it. However, the method was difficult in describing high semantic data in 

remote sensing images. Chen et al. [17] developed a method that depended on global context spatial attention 

(GCSA) and densely connected convolutional networks for extracting multiple scale scene features named 

GCSANet. The mixture process was utilized for improving spatial mixture information of remote sensing 

images and discrete sample space was reduced to enhance smoothness in data space neighborhood. The 

GCSA was implemented in a densely connected network for encoding contextual data of remote sensing 

scene images into local features. The developed method has high robustness and stability, by using mix-up 

operations that enhance the classification accuracy and smoothness of the method. However, the issue of 

interclass similarity lies in overlapping of similar surfaces between various scenes. Lv et al. [18] incorporated 

the benefits of multiple scale and multiple level features and developed a method that combined global 

features for identifying global attention features and learning the multi-deep dependencies among variations 

in spatial scale. Two various feature adaptive fusion methods were implemented for exploring 

complementary associations of local and global aggregate features that acquire various image scenes. The 

method explored the nature of global and local features for comprehensively describing the image scenes. 

However, due to limited data, the method tends to issue over-fitting and less feature generalization capability.  

Ma et al. [19] presented the homo-heterogenous transformer learning (HHTL) method to classify RS 

scenes. Initially, a patch generation method was developed for generating patches of homogeneous and 

heterogeneous data within RS scenes. Next, a double-phase feature learning module (FLM) was introduced 

for homogeneous and heterogeneous data within RS scenes. In the FLM-dependent vision transformer, both 

global data and local regions and their context data were captured. At last, developed a classification method 

that has a fusion submodule and metric learning. However, it has difficult intra-class variations and inter-

class similarities in original scenes that maximize the complexity of data integration in every scene. Xu et al. 

[20] introduced a Lie Group deep learning method to classify remote sensing scenes. Initially, extracted 

shallower and high-level features from images depended on lie group machine learning (LGML) and deep 

learning for maximizing the capacity of feature representation of the method. Then, the spatial attention 

mechanism enhanced local semantic features and compressed irrelevance feature data. Finally, feature-level 

fusion was employed to minimize redundant features and enhance execution performance. Additionally, 

cross-entropy loss function with label smoothing was utilized to improve classification accuracy. The 

introduced method minimized the influence of huge similarity classes on scene classification. However, the 

method can’t be concentrated on the spatial relationship of local features. From the overall analysis, the 

existing methods have limitations like difficulty in describing the high semantic data due to limited 

representation, issue of interclass similarity, difficulty in intra-class variations and inter-class similarities and 

can’t concentrate on the spatial relationship of local features. The problem of within-class diversity and 

between-class similarity degrades the performance of remote sensing image scene classification which needs 

to be tackled. In this research, the proposed DPML-CNN method maximizes interclass variation and 

minimizes the interclass variation. The metric learning in CNN makes the method much more discriminative 

and captures both global and local features. The diversity promotion in metric learning minimizes the 
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overlapping of interclass similarity by uncorrelation of every scene parameter. The significant contributions 

of the research are mentioned as follows: 

− The diversity promoting metric learning – CNN (DPML-CNN) method is proposed to classify land 

scene remote sensing images. The CNN with diversity-promoting metric learning minimized the cross-

entropy loss and made the method much more discriminative. 

− The metric learning regularization used the diversity promoting term which uncorrelated every 

parameter and gives unique information for those parameters. This minimizes the overlapping of similar 

scenes and enhances the method's performance. 

− The scale invariant feature transform (SIFT) and local binary patterns (LBP) techniques are used for 

extracting meaningful features from images which enhanced the classification performance of the 

DPML-CNN method. 

This manuscript is organized as follows: Section 2 explains the process of the proposed framework. 

Section 3 gives the results and comparison of the proposed method with existing methods. The conclusion of 

this research is given in Section 4. 

 

 

2. PROPOSED METHOD 

This research, proposed a DPML-CNN method to classify the land scene images from remote 

sensing scene images. The UC Merced, AID, and NWPU RESISC 45 datasets are utilized in this research 

and the significant features from the images are extracted by SIFT and LBP methods. Then, the extracted 

features are classified by using the DPML-CNN method. Figure 1 describes the process of the proposed 

method framework. 

 

 

 
 

Figure 1. Process of proposed method framework 
 

 

2.1.  Dataset 

The datasets used in the research for land scene image classification are UCM [21], AID [22], and 

NWPURESISC45 [23] datasets. These three datasets contain remote sensing scene images which are utilized 

in this research to classify land scenes. The detailed explanation of three datasets is described below: 

 

2.1.1. UCM dataset 

The UCM dataset is available through University of California Merced and it has 2100 remote 

sensing scene images. The remote sensing images are separated into 21 scenes and every class has 100 

images of size 256 x 256 pixels. The spatial resolution of image is 0.3 m per pixel in color space of red green 

blue (RGB). 

 

2.1.2. AID dataset 

The AID dataset is developed through Wuhan University and it has 10,000 remote sensing scene 

images. The remote sensing scene images are separated into 30 scene classes with the size of 600 × 600 

pixels and the number of images in every class are varied from 200 to 400. The spatial resolution varied from 

8 m to 0.5 m per pixel.  

 

2.1.3. NWPURESISC45 dataset 

The NWPU dataset is developed through Northwestern Polytechnical University and contains 

31,500 remote-sensing scene images in color space of RGB. The remote sensing scene images are separated 

into 45 scene classes and every class contains 700 scene images with the size of 256 x 256 pixels. The spatial 

resolution varied from 0.2 m to 30 m. Table 1 represents the description of all three datasets. The images 

from the three datasets are given as raw input images to the feature extraction stage to extract the local and 

pixel-based features for classification. The detailed explanation of feature extraction is described as follows. 
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Table 1. Dataset description 
Dataset Total images No. of scenes Size of image 

UCM [20] 2100 21 256 x 256 
AID [21] 10,000 30 600 x 600 

NWPURESISC45 [22] 31,500 45 256 x 256 

 

 

2.2.  Feature extraction 

Feature extraction is a process of converting raw image data to certain meaningful representations 

which minimizes the dimensionality reduction. In General, the high dimensional nature of images can lead to 

a reduction in classification performance. The feature extraction converts high-dimensional data to low-level 

data when extracting significant data from scene images. In this research, SIFT and LBP feature extraction 

techniques are used to extract local and pixel-based features. 

 

2.2.1. Local binary patterns (LBP) 

The LBP identified uniform LBP as a critical feature that represents image texture. The uniform 

LBP is employed for generating occurrences of histograms for the representation of texture features. The 

LBP characterized the image by spatial data of image texture structure [24], [25]. The LBP is measured by 

thresholding the neighbor {𝑝𝑖}𝑖=0
𝑛−1 pixels along the middle pixel 𝑝𝑐 for executing an n-bit binary number that 

is changed to decimal and numerical expression is given as (1). The 𝑑𝑝 = (𝑝𝑐 − 𝑝𝑖) represents variance 

between neighbor and center pixels representing the spatial architecture of center position with local variance 

vector [𝑑0, 𝑑1, … , 𝑑𝑝 − 1]. The LBP generated a histogram and which is given in (2). 

 

𝐿𝐵𝑃𝑛,𝑟(𝑝𝑐) = ∑ 𝑠(𝑝𝑖 − 𝑝𝑐)2𝑖 = ∑ 𝑠(𝑑𝑖)2𝑖 , 𝑠(𝑥) = {
1, 𝑥 > 0
0, 𝑥 < 0

𝑛−1
𝑖=0

𝑛−1
𝑖=0  (1) 

 

(𝐻(𝑚)) = ∑ ∑ 𝑓(𝐿𝐵𝑃𝑠𝑛,𝑟 , 𝑚 ∈ [0, 𝑚]), 𝑓(𝑥, 𝑦) = {
1,
0,

𝐽
𝑗=0

𝑝
𝑝=0  (2) 

 

The 𝑚 represents the highest pattern number of LBP. The LBP partitions the image to the fixed size 

of grid cells for accomplishing the pooling of local texture descriptors. The LBP characterized the image by 

spatial data of image texture structure. 

 

2.2.2. Scale invariant feature transform (SIFT) 

The SIFT method is a majorly utilized shape feature extraction technique. The technique is a key 

point detector and descriptor technique for extracting meaningful features from images. That is hugely robust 

to scaling and orientation of the image and is invariant for illumination changes. The SIFT extracted the 

highest features from low-level resolution images [26], [27]. The SIFT extracted the 128 features from 

remote sensing scene images by filtering method that processed in four phases. The initial phase detected 

significant positions from an image by difference of the Gaussian (DoG) method. Next, localization is 

processed to determine significant features. In final phase, executed key points are changed to feature 

vectors. The extracted features from the LBP and SIFT methods are fused for the classification process. 

 

2.3.  Classification by DPML-CNN method 

The classification of land scenes is performed by CNN with diversity-promoting metric learning. 

The performance of scene classification is enhanced because of meaningful features learned by CNN 

methods. The proposed CNN with diversity-promoting metric learning minimized the cross-entropy loss and 

learned the model to be discriminative. The proposed method maps the images from similar scene classes 

closest and images of various categories as far as possible [28], [29]. A detailed explanation of discriminative 

CNN and diversity-promoting metric learning is described below. Figure 2 describes the process of the 

proposed DPML-CNN method. 

 

2.3.1. Diversity promoting metric learning – CNN (DPML-CNN) 

The proposed DPML-CNN is used for land scene classification to tackle issues of within-class 

diversity and between-class diversity. Here extracted the meaningful CNN features for enhancing the 

performance of classification. The proposed method minimized cross-entropy loss which is an error of 

softmax classification from the last fully connected (FC) layer utilized in classical CNN methods. The 

diversity-promoting metric learning on CNN features makes the method much more discriminative and maps 

the similar scene classes closer together and distant scene classes as far as possible.  
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Figure 2. Process of proposed DPML-CNN method 

 

 

2.3.2. Learning discriminative CNNs 

Consider 𝑋 = {𝑥𝑖|𝑖 = 1,2, … , 𝑁} as a set of training samples and 𝑌 = {𝑦𝑖|𝑖 = 1,2, … , 𝑁} as a set of 

labels in X, where N represents whole count of training samples, 𝑦𝑖 ∈ 𝑅𝑐  represents label vector of ground 

truth in 𝑥𝑖 sample along one component and C represents the whole count of image scene classes. The 

DPML-CNN method contains 𝐿 + 1 layers. The network parameters are 𝑊 = {𝑊1, … , 𝑊𝐿 , 𝑊𝐿+1} and 𝐵 =
{𝐵1 , … , 𝐵𝐿 , 𝐵𝐿+1}, here 𝑊𝑙 represents filter weights of 𝑙𝑡ℎ layer and 𝐵𝑙  represents respective biases, 𝑙 =
1, … , 𝐿 + 1. The (𝐿 + 1) layer represents softmax classification and 𝐿𝑡ℎ layer represents result of DPML-

CNN method. The input 𝑥𝑖 and result of softmax layer 𝑂𝐿+1(𝑥𝑖), 𝑂𝐿(𝑥𝑖) represents DPML-CNN feature 

layer and whole intermediate layers 𝑂𝑙(𝑥𝑖) is given as (3) – (5). 

 

𝑂𝐿+1(𝑥𝑖) = 𝑆𝐿+1(𝑊𝐿+1𝑂𝐿(𝑥𝑖) + 𝐵𝐿+1) (3) 

 

𝑂𝐿(𝑥𝑖) =
𝑆𝐿(𝑊𝐿𝑂𝐿−1(𝑥𝑖)+𝐵𝐿)

‖𝑆𝐿(𝑊𝐿𝑂𝐿−1(𝑥𝑖)+𝐵𝐿)‖2
 (4) 

 

𝑂𝑙(𝑥𝑖) = 𝑆𝑙(𝑊𝑙𝑂𝑙(𝑥𝑖) + 𝐵𝑙) (5) 

 

The 𝑆𝑙 represents element-wise nonlinear activation functions like softmax. The 𝑆𝐿+1 represents a 

softmax function, next for executing the distance in DPML-CNN is L2 normalized for eliminating scale 

variance. This research proposed a term that consists of cross-entropy loss, diversity promoting metric 

learning, and weight decay term. Numerical expression is given as (6). The 𝜆1 and 𝜆2 represents parameters 

of tradeoff which controls the relative significance of three terms. The detailed explanation of three terms is 

described in the below subsections. 

 

𝐽 = min (𝐽1(𝑋, 𝑊, 𝐵) +
𝜆1

2
𝐽2(𝑋, 𝑊, 𝐵) +

𝜆2

2
𝐽3(𝑊, 𝐵) (6) 

 

A. Cross-entropy loss 

The cross-entropy loss is determined as cross-entropy loss function which minimized classification 

error in training samples. The (𝑦𝑖 , log 𝑂𝐿+1(𝑥𝑖)) represents the inside product of 𝑦𝑖  and log 𝑂𝐿+1(𝑥𝑖) and N 

represents the count of training samples in X. and numerical expression is given as (7). 

 

𝐽1(𝑋, 𝑊, 𝐵) = −
1

𝑁
∑ (𝑦𝑖 , log 𝑂𝐿+1(𝑥𝑖))𝑁

𝑖=1  (7) 

 

B. Diversity promoting metric learning 

This learning enforced a CNN method to be much more discriminative, which enhances a feature 

representation that has little scatter of intraclass and huge separation of interclass. Given every paired training 

sample (𝑥𝑖 , 𝑥𝑗), its distance of pair-wise feature is calculated through executing Euclidean distance among 

CNN feature representations. The numerical expression for computing Euclidean distance is given as (8). 

 

𝐷(𝑥𝑖 , 𝑥𝑗) = ‖𝑂𝐿(𝑥𝑖) − 𝑂𝐿(𝑥𝑗)‖
2
 (8) 

 

To exploit discriminative feature representation in output layer of the DPML-CNN method, the 

distances among the same pairs are lesser than dissimilar pairs and there is a huge margin among similar and 

dissimilar pairs developed by image scene categories Particularly, whether two images shared similar scene 

label it is considering as similar pair or else consider as dissimilar pair. For protecting the issue of dissimilar 
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pairs being chosen with a similar number of the same pairs. The 𝑥𝑖 and 𝑥𝑗 represents similar scene class, its 

feature distance is represented as 𝐷(𝑥𝑖 , 𝑥𝑗) is smaller than up-margin 𝜏1 whether 𝑥𝑖 and 𝑥𝑗 represents various 

scene categories, its feature distance is higher than the down-margin 𝜏2. Numerical expression is given as (9). 

 

{
𝐷2(𝑥𝑖 , 𝑥𝑗) < 𝜏1,   𝑦𝑖 = 𝑦𝑗

𝐷2(𝑥𝑖 , 𝑥𝑗) > 𝜏2,   𝑦𝑖 ≠ 𝑦𝑗

 (9) 

 

The 𝜏1 is utilized for penalizing same-pair distances, 𝜏2 is utilized for constraining dissimilar 

distance pairs in training and 𝜏2 is higher than 𝜏1. For minimizing the count of parameters in the proposed 

method, implemented intermediate parameter 𝜏 for merging 𝜏1 and 𝜏2. Particularly, set 𝜏1 = 𝜏 − 0.05 and 

𝜏2 = 𝜏 + 0.05 and numerical expression is given as (10). The 𝑦𝑖𝑗  represents label indicator for paired data 

(𝑥𝑖 , 𝑥𝑗) and numerical expression is given as (11). 

 

0.05 − 𝑦𝑖𝑗 (𝜏 − 𝐷2(𝑥𝑖 , 𝑥𝑗)) < 0 (10) 

 

𝑦𝑖𝑗 = {
+1,   𝑦𝑖 = 𝑦𝑗

−1,   𝑦𝑖 ≠ 𝑦𝑗
 (11) 

 

There is a connection among every similar and dissimilar pair learned in CNN feature space. 

Through employing the constraint to every similar and dissimilar pair in training phase obtained hinge loss 

function of diversity promoting metric learning and numerical expression is given as (12).  

 

𝐽2(𝑋, 𝑊, 𝐵) = ∑ ℎ (0.05 − 𝑦𝑖𝑗 (𝜏 − ‖𝑂𝐿(𝑥𝑖) − 𝑂𝐿(𝑥𝑗)‖
2

2
))𝑖,𝑗  (12) 

 

C. Diversity promoting and weight deacy 

The general remote sensing scenes can’t give enough samples for training, this research encourages 

the metric parameter factors to be diversified for enhancing capability of representation and captures much 

discriminative data from the restricted count of samples for acquiring good performance. To meet specific 

requirements, the diversity-promoting priors are implemented as regularization factors in parameters for 

better representation. It focused on diversification among learned parameters. By implementing diversity-

promoting priors in ML, every parameter factor represents unique information from scenes and all factors are 

combined into a large proportion of training data. Hence, much data is captured through diversified methods, 

and performance is enhanced. It is developed for minimizing weight magnitudes of W and B and it is used to 

prevent over-fitting, the numerical expression is given as (13). 

 

𝐽3(𝑊, 𝐵) = ∑ (‖𝑊𝑙‖𝐹
2 + ‖𝐵𝑙‖2

2)𝐿+1
𝑙=1  (13) 

 

By utilizing diversity-promoting metric learning in CNN, it tackles the issue of within-class diversity 

and between-class similarity. The overlapping of similarity scenes is tackled by using diversity promoting in 

metric learning which uncorrelated every factor and represents unique information for every scene. This 

minimizes the probability of overlapping and increases the performance of the method. By using the DPML-

CNN method, it classified the land scenes from remote sensing images with high classification performance. 

 

 

3. EXPERIMENTAL ANALYSIS 

The proposed DPML-CNN method is simulated with the environment of MATLAB 2020a and with 

system requirements are a Windows 10 operating system, 16 GB of RAM, and an i5 processor. The 

evaluation metrics used for analyzing the proposed method are Accuracy (%) and Kappa Coefficient (%) 

with three datasets such as UC Merced, AID, and NWPU RESISC 45. The accuracy is represented as a count 

of accurately classified images separated through a whole number of testing images; this reflected the overall 

classification performance of the method. The Kappa coefficient defines the ratio of error minimization 

among classification and fully random classification. 

 

3.1.  Quantitative and qualitative analysis 

The proposed DPML-CNN method is evaluated with evaluation metrics of accuracy, kappa 

coefficient, precision, and f1-score with three datasets. The evaluation is performed based on different 
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training ratios for three different datasets. The separated training ratios for UCM dataset are 50% and 80%, 

for AID dataset are 20% and 50%, for NWPU RESISC 45 dataset are 10% and 20%. The existing neural 

networks used for evaluating the proposed DPML-CNN method are deep neural network (DNN), CNN, and 

region-based CNN (RCNN). Three different tables are described below for three datasets. In Table 2, the 

classification performance on the UCM dataset is described with evaluation metrics of accuracy, kappa 

coefficient, precision and f1-score. The proposed DPML-CNN method reached the highest accuracy of 

99.27% and 99.84% for 50% and 80% training ratios. The proposed method attained a kappa coefficient of 

98.63%, 99.94% for 50% and 80% training ratios on UCM dataset. The proposed method shows effective 

classification performance on land scenes when compared to other neural networks. 

In Table 3, the classification performance on AID dataset is described with evaluation metrics of 

accuracy, kappa coefficient, precision and f1-score. The proposed DPML-CNN method reached the highest 

accuracy of 96.23% and 97.91% for training ratios of 20% and 50%. The proposed method attained a kappa 

coefficient of 94.93%, 98.03% for training ratios of 20% and 50% on AID dataset. The proposed method 

shows effective classification performance on land scenes when compared to other neural networks. 

In Table 4, the classification performance on NWPU RESISC45 dataset is described with evaluation 

metrics of accuracy, kappa coefficient, precision, and f1-score. The proposed DPML-CNN method reached 

the highest accuracy of 93.52% and 95.21% for training ratios of 10% and 20%. The proposed method 

attained a kappa coefficient of 92.78%, and 93.92% for training ratios of 20% and 50% on NWPU 

RESISC45 dataset. The proposed method shows effective classification performance on land scenes when 

compared to other neural networks. 

 

 

Table 2. Classification performance on UCM dataset 
Methods Accuracy (%) Kappa Coefficient (%) Precision (%) F1-score (%) 

50% 80% 50% 80% 50% 80% 50% 80% 

DNN 96.45 97.02 96.17 96.93 93.89 94.56 94.57 95.26 
CNN 97.03 97.84 96.89 97.26 94.67 95.78 95.53 96.39 

RCNN 97.78 98.63 97.26 98.77 95.71 96.25 96.62 97.74 

DPML-CNN 99.27 99.84 98.63 99.94 97.43 98.27 97.71 98.56 

 

 

Table 3. Classification performance on AID dataset 
Methods Accuracy (%) Kappa Coefficient (%) Precision (%) F1-score (%) 

20% 50% 20% 50% 20% 50% 20% 50% 

DNN 93.82 94.47 92.84 94.73 93.73 95.49 92.71 94.52 
CNN 94.78 95.58 93.45 96.04 94.68 96.82 93.59 95.72 

RCNN 95.37 96.88 94.02 97.16 95.56 97.61 94.83 96.69 

DPML-CNN 96.23 97.91 94.93 98.03 96.62 98.45 95.82 97.28 

 

 

Table 4. Classification performance on NWPU RESISC45 dataset 
Methods Accuracy (%) Kappa Coefficient (%) Precision (%) F1-score (%) 

10% 20% 10% 20% 10% 20% 10% 20% 

DNN 91.42 92.79 89.28 90.58 88.35 89.92 90.56 91.27 
CNN 92.03 93.37 90.46 91.65 89.56 91.49 91.66 92.78 

RCNN 92.77 94.68 91.86 92.76 91.45 92.71 92.78 93.63 

DPML-CNN 93.52 95.21 92.78 93.92 92.17 93.47 93.12 94.07 

 

 

3.2.  Comparative analysis 

The classification performance of the DPML-CNN method is compared with existing land scene 

methods like MLFC-Net [14], TL [15], GCSA-Net [16], GLFAF-Net [17], HHTL [18], and LGML [19]. 

Three different comparison tables are described in this section for three datasets with different training ratios. 

By utilizing diversity-promoting metric learning in CNN, it tackles the issue of within-class diversity and 

between-class similarity. The overlapping of similarity scenes is tackled by using diversity promoting in 

metric learning which uncorrelated every factor and represents unique information for every scene. This 

minimizes the probability of overlapping and increases the performance of the method. By using the DPML-

CNN method, it classified the land scenes from remote sensing images with high classification performance. 

Table 5 describes comparison of DPML-CNN method with other classification methods like MLFC-Net [14], 

TL [15], GCSA-Net [16], GLFAF-Net [17], HHTL [18] and LGML [19] on the UCM dataset. The proposed 

method is compared with evaluation metrics of accuracy and kappa coefficient on 50% and 80% training ratios. 

From Table 5, it is clear that the proposed method performed more effectively than existing algorithms. 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 1, January 2025: 269-278 

276 

Table 5. Comparison of the proposed method on UCM dataset 
Methods Performance Metrics Training ratio 

50% 80% 

MLFC-Net [14] Accuracy (%) 98.53 99.66 
TL [15] Accuracy (%) N/A 95 

GCSA-Net [16] Accuracy (%) 98.32 99.31 

GLFAF-Net [17] Accuracy (%) 97.52 N/A 
HHTL [18] Accuracy (%) 98.87 99.48 

LGML [19] Accuracy (%) 98.67 99.78 

Kappa coefficient (%) 98.31 99.76 
Proposed DPML-CNN Accuracy (%) 99.27 99.84 

Kappa Coefficient (%) 98.63 99.94 

 

 

Table 6 describes comparison of the DPML-CNN method with other classification methods like 

GCSA-Net [16], HHTL [18] and LGML [19] on the AID dataset. The proposed method is compared with 

evaluation metrics of accuracy and kappa coefficient on 20% and 50% training ratios. From Table 6, it is 

clear that the proposed method performed more effectively than existing algorithms. 

 

 

Table 6. Comparison of the proposed method on the AID dataset 
Methods Performance Metrics Training ratio 

20% 50% 

GCSA-Net [16] Accuracy (%) 95.96 97.53 

HHTL [18] Accuracy (%) 95.62 96.88 
LGML [19] Accuracy (%) 94.79 97.72 

Kappa coefficient (%) 94.57 97.61 

Proposed DPML-CNN Accuracy (%) 96.23 97.91 
Kappa coefficient (%) 94.93 98.05 

 

 

Table 7 describes comparison of the DPML-CNN method with other classification methods like 

GCSA-Net [16], HHTL [18] and LGML [19] on the NWPU RESISC45 dataset. The proposed method is 

compared by evaluation metrics of accuracy and kappa coefficient on training ratios of 10% and 20%. From 

Table 7, it is clear that the proposed method performed more effectively than existing algorithms. 

 

 

Table 7. Comparison of the proposed method on NWPU RESISC45 dataset 
Methods Performance Metrics Training ratio 

10% 20% 

GCSA-Net [16] Accuracy (%) 93.39 94.95 

HHTL [18] Accuracy (%) 92.07 94.21 

LGML [19] Accuracy (%) 92.62 94.49 
Kappa Coefficient (%) 92.25 94.31 

Proposed DPML-CNN Accuracy (%) 93.52 95.21 

Kappa Coefficient (%) 92.78 93.92 

 

 

3.3.  Discussion 

The results of DPML-CNN method are evaluated with existing methods like DNN, CNN and 

RCNN. The proposed DPML-CNN method achieved the highest accuracies on these datasets, with 99.27% 

and 99.84% for 50% and 80% training ratios on the UC Merced dataset, 96.23% and 97.91% for 20% and 

50% training ratios on the AID dataset, and 93.52% and 95.21% for 10% and 20% training ratios on the 

NWPU RESISC45 dataset. Additionally, the performance of DPML-CNN method is compared with MLFC-

Net [14], TL [15], GCSA-Net [16], GLFAF-Net [17], HHTL [18], and LGML [19]. The DPML-CNN 

method is proposed for the classification of land scenes from remote sensing scene images. The existing 

methods have drawbacks of not being good at discrimination capability among variant scene categories [14]. 

Difficult in describing high semantic data in remote sensing images [15]. The issue of interclass similarity 

lies in the overlapping of similar surfaces among various scenes [16]. Due to limited data, the method has 

issues of over-fitting and less feature generalization capability [17]. Difficulty in intra-class variations and 

inter-class similarities in original scenes maximizes the complexity of data integration in every scene [18], can’t 

be concentrated on the spatial relationship of local features [19]. The problem of within-class diversity and 

between-class similarity degrades the performance of image scene classification which needs to be tackled.  
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This research proposed a DPML-CNN method that maximizes interclass variation and minimizes 

the interclass variation. The metric learning in CNN makes the method much more discriminative and 

captures both global and local features. The diversity promotion in metric learning minimizes the overlapping 

of interclass similarity by uncorrelation of every scene parameter. By utilizing diversity-promoting metric 

learning in CNN, it tackles the issue of within-class diversity and between-class similarity. The overlapping 

of similarity scenes is tackled by using diversity promoting in metric learning which uncorrelated every 

factor and represents unique information for every scene. This minimizes the probability of overlapping and 

increases the performance of the method. By using the DPML-CNN method, it classified the land scenes 

from remote sensing images with high classification performance. 

 

 

4. CONCLUSION 

The DPML-CNN method is proposed for the classification of land scenes from remote sensing 

scene images. The metric learning with the CNN method enhanced the discrimination capability of the 

model, effectively capturing both global and local features for improved classification. The diversity 

promoted in metric learning reduced the overlapping of interclass similarity through the uncorrelation of 

every scene parameter. The proposed method addresses the issue of class diversity and between-class 

similarity by mapping the same scene class closer together and different classes as far apart as possible. The 

proposed DPML-CNN method achieved the highest accuracies on these datasets, with 99.27% and 99.84% 

for 50% and 80% training ratios on UC Merced dataset, 96.23% and 97.91% for 20% and 50% training ratios 

on AID dataset, and 93.52% and 95.21% for 10% and 20% training ratios on NWPU RESISC45 dataset. In 

the future, various deep learning methods can be used to classify the land scene images for further improving 

the classification performance. 
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