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 Workload application for deadline-intensive marine science, usually 

represented by directed acyclic graphs (DAGs), consists of interconnected 

operations that communicate huge quantities of information and operate on 

cutting-edge computational platforms. Massive communications of 

information among jobs running on separate computing servers, nonetheless, 

might come with substantial processing time, power consumption, and 

financial expenses. Therefore, there is room for further study of exchanging 

certain communications for computing to lower total interaction expenses. In 

addressing research this work introduces an effective resource provisioner 

for deadline-intensive scientific workload executer (ERP-DISWE) to reduce 

the makespan, consumption of energy, and cost of edge-computing 

platforms. The performance of ERP-DISWE is validated with the current 

resource provisioner using the sipht marine workload and shows superior 

performance concerning makespan, energy, and cost. 
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1. INTRODUCTION 

The use of virtualization technologically in conjunction with cloud-based internet-of-things 

computing [1] offers a broad opportunity for investigation into all key disciplines and services. As the 

amount of information in globally keeps growing, computerized information collection is becoming 

increasingly necessary. This holds not only for astrophysics but also for fields like genomics, geological 

sciences, geographic information systems, marine genomics, and phenotype study. During the purposes of 

study, such occupations gather an abundance of data. Occasionally information that is gathered from those 

locations is kept in a structure of marine scientific workflows [2] represented by directed acyclic graphs 

(DAGs), which are made up of interconnected jobs that exchange information via links; the result of one 

activity can be utilized as the starting point for another. These marine workflows, which can include 

hundreds of jobs, are often carried out on sizable, distributed systems, like edge-cloud [3]. This allows 

enabling the processing of distinct tasks concurrently, lowering both the processing time and cost. In an edge-

cloud platform, scheduling becomes a non-polynomial (NP)-hard issue [4]. To schedule the newly arrived 

processes via process flow, different systems like the cloudsim simulator [5], [6], and edge workflow 

simulator [7] have been utilized recently enabling the execution of these assignments. 

https://creativecommons.org/licenses/by-sa/4.0/
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Numerous techniques are being proposed for managing these newly arrived jobs [8]. Heterogenous 

earliest time first (HEFT) [9], enhancement-HEFT [10], ant colony optimization (ACO) [11], particle swarm 

optimization (PSO) [12], and energy and cost aware scheduler employing various optimization  

strategies [13]. More details of different scheduling methods have been discussed in section 2. The survey 

shows the current methods are able to attain effective processing efficiency, however, considering large 

marine complex applications the current methodologies failed to support execution of bigger workloads with 

lesser processing time and cost [14], [15]. 

In addressing the research issue the work introduces an effective resource provisioner for deadline-

intensive scientific workload executer (ERP-DISWE) using an edge-cloud platform. The proposed model 

mainly focuses on reducing energy dissipation, and cost and completing the job execution within its deadline 

in an edge-cloud platform. The proposed ERP-DISWE provides the following contribution. The research 

provides a resource provisioning scheduler model with a focus on reducing overall cost with energy and 

processing time minimization constraints of marine applications in an edge-cloud platform. Comparative 

analysis to evaluate the results with the various scientific workflow resource provisioning scheduler models 

has been provided. The result shows ERP-DISWE attains much-improved performance concerning cost 

reduction, energy usage, and makespan reduction in the edge-cloud platform. 

Manuscript organization is given. Section 2 studies different schedulers and resource provisioners 

designed specifically for the execution of scientific workflows. Highlight the current research gaps by 

analyzing the advantages and disadvantages of current methods. Section 3, the working of the proposed 

resource provisioner scheduler is designed as a mathematical model. Section 4 provides the outcome of ERP-

DISWE with existing resource provisioner schedulers. In the last section, the research significance along with 

future enhancement is provided. 

 

 

2. RELATED WORK 

This section focused on analyzing different schedulers in the edge-cloud platform; and identifying 

the advantages, disadvantages, research significance, and limitations of the current scheduler in executing 

marine workload in the edge-cloud platform [14], [15]. A task replication scheduler (TRA) method has been 

presented by Yao et al. [16] to lower costs along with processing time in cloud environments. Researchers 

put forward both options in the technique to address cost-time optimization. They explore one conventional 

scientific workload and three randomized workloads. According to the study's outcomes, the suggested 

approach has a 31.6% cost reduction and a 17.4% processing time reduction. Sindhu et al. [17], an approach 

enabling job schedulers to lower power usage and costs while improving efficiency in an edge-based 

computational system has been suggested. The jobs had been regarded as DAG, where workload jobs will be 

carried out according to their due dates. The Markov decision process (MDP) was additionally utilized in the 

above framework to allocate the optimal resources to perform process execution. The outcomes demonstrate 

that it outperforms the current algorithms on the basis of performance. A method for organizing work 

schedules was presented by Abohamama et al. [18] for an edge-cloud environment. Resource planning may 

be seen by such a method as an algorithmic problem that utilizes permutations. Researchers utilized a new 

iteration of the genetic algorithm (GA) for calculating the assignments in order to present the aforementioned 

technique. Depending upon each combination, the jobs are assigned to a server with adequate assets and a 

short makespan to execute. The trials were carried out, and the outcomes were contrasted against the most 

effective current systems. In terms of failure rate, time, and cost. The findings are being evaluated with other 

algorithms; the suggested method performs well. 

A job scheduler methodology has been presented by Movahedi et al. [19] to decrease the makespan 

and power usage in an edge-cloud environment. Researchers had drawn out a plan to handle the process's 

arrival of new jobs in the edge-cloud environment. In order to enhance how well it performs, researchers also 

suggest a chaotic whale optimizer (CWO) approach and an integer linear program (ILP) method. The 

outcomes were contrasted using existing evolutionary optimizer methods. The findings demonstrate that, as 

opposed to the current processes, the suggested job scheduler method achieves higher efficiency. To lower 

costs, power consumption, and processing time, Swarup et al. [20] presented an Internet of Things job 

scheduler using an edge-cloud platform. An approach based on deep-reinforcement learning has been 

suggested enabling a job scheduler using an edge-cloud platform. The present research employed an 

integrated buffering strategy for addressing the problem of job execution planning on computer servers. A 

particle swarm optimizer (PSO) technique has been presented by Liu et al. [21] for an edge-based job 

scheduler. The approach lowers expenses when the jobs are computed. The calculation was carried out using 

the cloudsim simulator, while findings were contrasted to those of each of the existing schedulers. The 

outcomes demonstrate how effectively and economically this strategy maximized both computing cost and 

time. 
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A cost optimizer heuristic strategy (COHS) was suggested by Konjaang et al. [22] and offers an 

approach to decrease costs when planning job execution in a cloud platform. The process under this 

framework has to be broken into smaller jobs to ensure every subprocess can be completed within the allotted 

due date. Researchers took into account the application procedures for assessing their prototype. Research 

indicates splitting the assignments into smaller ones allows for significantly quicker server assignments 

throughout the processing of these assignments. As compared with their previous framework, researchers 

decreased expenses by 1.2% for the cybershake workload, 3.9% for the montage workload, and 32.5% for the 

sipht process. To decrease both time and expenses, Konjaang et al. [23] expanded their previously suggested 

COHS research by carrying out a multi-objective workflow optimization method (MOWOS). Both 

algorithms the highest computational server and lowest computational server have been suggested in this 

paradigm to compute the jobs derived by the process. According to MOWOS outcomes, processing time is 

shortened by 10%, and costs are cut by 8%. Masoudi et al. [24], focused on addressing the energy constraint 

issue through effective virtual machine allocation design. Further, both Rui et al. [25], and  

Bacanin et al. [26], showed the importance of edge computing in enhancing the quality of service and energy 

efficiency. Mangalampalli et al. [27], showed the importance of considering multi-objective parameters 

through optimization employing deep reinforcement learning (DRL) aid reducing makespan with minimal 

consumption; However, effective VM placement according to quality-of-service (QoS) requirement is not 

done; thereby additional delay and makespan is experienced. 

 

 

3. PROPOSED METHOD 

This section discusses the working of the proposed effective resource provisioner for deadline-

intensive marine scientific workload executer using an edge-cloud environment. The cloud-based resource 

provisioner is composed of physical machines (PMs) and virtual machines (VMs) as shown in Figure 1 [24]. 

The architecture also has cloud resource monitoring (CRM) to measure computational resources and plan 

execution according to arrival jobs from the cloud users. The CRM performs VM placement and migration 

plans according to arrival jobs. 

 

 

 
 

Figure 1. Virtual machine placement optimization inside the physical machine in a cloud computational 

environment [1] 

 

 

3.1.  Computational resource of edge-cloud 

The edge-cloud data center is composed of multiple heterogenous servers 𝑀 including servers 

placed in edge and cloud platforms as shown in Figure 2. The data center network (DCN) takes the arrival 

load from the user through the cloud gateway server. Then, put them in a data block sequence (DBS) 

according to their arrival and service deadline requirements. Finally, from DBS, the virtual machine 

controller (VMC) starts performing resource provisioner plans according to the arrival job requirement. As a 

large number of jobs are being submitted to the cloud platform and arrival is heterogenous in nature; job 

scheduling is challenging in the edge-cloud cloud platform. Thus, to perform tradeoff optimization the server 

is kept on during execution, and the rest of the time it is switched off; the focus of the proposed scheduler 

design is to fully utilize the active server and reduce unutilized idle server; this process will aid in improving 

overall resource utilization. 
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Figure 2. Proposed architecture for the effective resource provisioner for deadline-intensive marine workload 

execution in the edge-cloud environment 

 

 

3.2.  Workflow model  

The marine workload is composed of different heterogeneous subtasks. The task is represented as 

DAG with size defined in bits using parameter 𝐿𝑏. The DAG is further segmented into 𝑁 according to the 

idle and active VMs with (𝑁 = 𝑛). As every task comes with strict quality requirements with strict deadlines. 

Therefore, the task should be executed by the VMs within the predefined deadline 𝑜𝑓 𝑆𝑠  seconds. 

 

3.3.  PMs and VMs classification 

The energy-aware resource provisioner process of a number of PMs 𝑥 needed and how the VMs 

must be placed to assure the overall energy according to the arrival marine workload task is given in (1). 

 

{𝑓𝑟𝑒𝑞𝑥
𝐼 , 𝑓𝑟𝑒𝑞𝑥

ℎ𝑖𝑔ℎ𝑒𝑠𝑡
, 𝐸𝑥

𝐼 , 𝑃𝑎(𝑥), 𝐶𝑒(𝑥)}, 𝑥 = 1,2,3, ⋯ , 𝑁 (1) 

 

In (1), 𝑓𝑟𝑒𝑞𝑥
𝐼  defines the idle state processer frequency of the PMs, 𝑓𝑟𝑒𝑞𝑥

ℎ𝑖𝑔ℎ𝑒𝑠𝑡
 defines the peak operating 

frequency of active states processor in respective PMs, 𝐸𝑥
𝐼 ,  𝑃𝑎(𝑥) defines energy usage of the processor in 

idle state, 𝑃𝑎(𝑥) defines active PMs ratio and 𝐶𝑒(𝑥) defines capacitor traffic. The processing rate maximum 

capacity is represented by the parameter 𝑅𝑝
ℎ𝑖𝑔ℎ𝑒𝑠𝑡  as defined in (2). 

 

𝑅𝑝
ℎ𝑖𝑔ℎ𝑒𝑠𝑡 = 𝑓𝑟𝑒𝑞𝑥

ℎ𝑖𝑔ℎ𝑒𝑠𝑡
 (2) 

 

3.4.  Computation of a task 

The constraint 𝑓𝑟𝑒𝑞𝑑𝑖𝑠𝑐  defines different operating frequencies of VMs employing dynamic voltage-

frequency optimization. Therefore, the minimum operating frequency of idle VMs is given in (3).  

 

𝑓𝑟𝑒𝑞ℎ𝑖𝑔ℎ𝑒𝑠𝑡 ≜ 𝑓𝑟𝑒𝑞𝑍 > 𝑓𝑟𝑒𝑞𝑧−1 > 𝑓𝑟𝑒𝑞𝑍−2 > ⋯ > 𝑓𝑟𝑒𝑞1 > 𝑓𝑟𝑒𝑞𝐼 ≜ 𝑓𝑟𝑒𝑞0 (3) 

 

The current method provides static energy optimization; further, it provides a tenth of a second 

quicker optimization. However, in proposed model provides dynamic optimization; thus, faster with minimal 

energy consumption of PMs as given in (4). 

 

𝐸𝑟𝑢𝑛−𝑡𝑖𝑚𝑒 = 𝑃𝑎 ∗ 𝐶𝑒 ∗ 𝑓𝑟𝑒𝑞 ∗ 𝑣𝑠2 (4) 

 

In (4), 𝐸𝑟𝑢𝑛−𝑡𝑖𝑚𝑒 represents runtime energy optimization of the processor inside the VMs and PMs, 

𝑓𝑟𝑒𝑞 defines the processor frequency of the PMs and 𝑣𝑠2 defines the corresponding voltage used which are 

measured in (5).  

 

𝑓𝑟𝑒𝑞 = ℂ ∗ [
𝑣𝑠−1

(𝑣𝑠−𝑣𝑠𝜏)−2] (5) 
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In (5), ℂ defines a static predefined parameter, 𝑣𝑠𝜏 expresses threshold voltage which is significantly less 

compared with real voltage input 𝑣𝑠. Using (4) and (5), by considering VMs in idle state with 𝐸𝐼 ≥ 0, 

processing cost is measure in (6).  
 

𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑝(𝑥) ≜ ∑ 𝑃𝑎
′ ∗𝑍

𝑦=0 𝐶𝑒 ∗ 𝑠𝑥𝑦 ∗
1

𝑓𝑟𝑒𝑞𝑦
−3 , 𝑥 = 1, 2, … , 𝑁 (6) 

 

In (6), 𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑝(𝑥) is the computation cost, 𝑃𝑎
′ = ℂ−1 ∗ 𝑃𝑎, 𝑠𝑥𝑦  defines the makespan of VMs and PMs 

operating at respective frequency 𝑓𝑟𝑒𝑞𝑦 . The bounds of 𝑥 within 𝑠𝑥𝑦 will vary between one 𝑁. Similarly, the 

bound of 𝑦 within 𝑠𝑥𝑦  varies between zero to 𝑍. The parameter 𝑍 defines varying frequency ranges of VMs 

with 𝑍 + 1 diverse bounds.  
 

3.5.  Task reconfiguration 

The VMC is used to perform task reconfiguration considering PM which hosts VMs with different 

frequency 𝑓𝑟𝑒𝑞𝑥. The work assumes frequency ranges from 𝑓𝑟𝑒𝑞1 to 𝑓𝑟𝑒𝑞2. The cost involved in 

reconfiguration from one frequency 𝑓𝑟𝑒𝑞1  to another 𝑓𝑟𝑒𝑞2 is defined by parameter 𝑆𝑈𝑀𝐶−𝑟𝑒𝑐𝑜𝑛𝑓  as in (7). 

 

𝑆𝑈𝑀𝐶−𝑟𝑒𝑐𝑜𝑛𝑓(𝑓𝑟𝑒𝑞1; 𝑓𝑟𝑒𝑞2) = ℇ𝑐 ∗
1

(𝑓𝑟𝑒𝑞1−𝑓𝑟𝑒𝑞2)−2       𝐽𝑜𝑢𝑙𝑒 (7) 

 

In (7), ℇ𝑐  𝐽𝑜𝑢𝑙𝑒𝑠/𝐻𝑧2 expresses the computational cost for reconfiguring frequency. The parameters 𝑓𝑟𝑒𝑞1 

and 𝑓𝑟𝑒𝑞2 are associated with the lower and upper bound of VMs 𝑉𝑀(𝑥). The proposed work is mainly 

focused on reducing overall frequency switching costs. 

 

3.6.  Communication of a task 

In measuring the communication cost of different marine workload task execution, the transfer rate 

parameter 𝑇𝑟𝑛𝑠𝑅𝑎𝑡𝑒𝑥 measured in bits/seconds is used. The value of 𝑥 varies between one to 𝑁. The cost for 

communication on 𝑥𝑡ℎ link is measured using parameter 𝐸𝑥
𝐶−𝑐𝑜𝑚𝑚 measured in watts is defined in (8). 

 

𝐸𝑥
𝐶−𝑐𝑜𝑚𝑚 ≡ 𝐸𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒

𝐶−𝑐𝑜𝑚𝑚 (𝑥) + 𝐸𝑇𝑟𝑛𝑠𝑅𝑎𝑡𝑒
𝐶−𝑐𝑜𝑚𝑚 (𝑥)  (8) 

 

Where 𝐸𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒
𝐶−𝑐𝑜𝑚𝑚 (𝑥) defines switching energy cost and 𝐸𝑇𝑟𝑛𝑠𝑅𝑎𝑡𝑒

𝐶−𝑐𝑜𝑚𝑚 (𝑥) defines overall transfer energy 

cost at the destination. The overall communication cost considering 𝑥 = 1 𝑡𝑜 𝑁 is measured using (9). 

 

𝐸𝑥
𝐶−𝑐𝑜𝑚𝑚(𝑇𝑟𝑛𝑠𝑅𝑎𝑡𝑒𝑥) = 𝛿𝑥(𝑇𝑅𝑇𝑥

̅̅ ̅̅ ̅̅ ̅ ∗ 𝑇𝑟𝑛𝑠𝑅𝑎𝑡𝑒𝑥)2 + 𝐸𝑥
𝐼 , 𝑥 = 1 𝑡𝑜 𝑁 (9) 

 

In (9), 𝛿𝑥 ≜ (𝑅𝑔𝑎𝑖𝑛)
−1

∗ (𝐾−1 ∗ √
2∗𝜃

3
)

2

, 𝑥 = 1 𝑡𝑜 𝑁; where parameter 𝐾 defines the highest data block size 

measured in bits and 𝜃 ∈ {1,2} defining how many times it is being admitted, 𝑅𝑔𝑎𝑖𝑛 coding gain considering 

the presence of noise considering link 𝑥, 𝑇𝑅𝑇𝑥
̅̅ ̅̅ ̅̅ ̅ are utilized round-trip average makespan, and 𝐸𝑥

𝐼  defines 

energy cost under idle 𝑥𝑡ℎ link. Hence, using this the delay for transmission in a single direction can be 

defined in (10). 

 

𝑇𝑟𝑛𝑠𝐷𝑒𝑙𝑎𝑦(𝑥) = ∑ 𝑅𝑝𝑦
𝑠𝑥𝑦 ∕ 𝑇𝑟𝑛𝑠𝑅𝑎𝑡𝑒𝑥

𝑍
𝑦=1  (10) 

 

Using (10), the communication cost is measured considering the overall delay in (11). 

 

𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑚(𝑥) ≜ 𝐸𝑥
𝐶−𝑐𝑜𝑚𝑚(𝑇𝑟𝑛𝑠𝑅𝑎𝑡𝑒𝑥) ∗ (∑ 𝑅𝑝𝑦

𝑠𝑥𝑦 𝑇𝑟𝑛𝑠𝑅𝑎𝑡𝑒𝑥⁄𝑍
𝑦=1 ), (11) 

 

Then, using (6), (7), and (11) the final cost 𝒞 is measured considering the multi-objective minimization 

function of edge-cloud in (12). 

 

𝒞 = min[𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑝(𝑥) + 𝑆𝑈𝑀𝐶−𝑟𝑒𝑐𝑜𝑛𝑓(𝑓𝑟𝑒𝑞1; 𝑓𝑟𝑒𝑞2) + 𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑚(𝑥)] (12) 

 

Where, 𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑝(𝑥) defines computation cost, 𝑆𝑈𝑀𝐶−𝑟𝑒𝑐𝑜𝑛𝑓(𝑓𝑟𝑒𝑞1; 𝑓𝑟𝑒𝑞2) defines reconfiguration cost, 

𝑆𝑈𝑀𝐶−𝑐𝑜𝑚𝑚(𝑥) defines communication cost. The proposed model optimized employing the dragonfly 

algorithm [28], [29] provides efficient resource provisioning of workflow achieving better performance and 

reducing cost is proved in the next section. 
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4. RESULT AND ANALYSIS 

The proposed algorithm (ERP-DISWE) is executed under the sipht scenario to evaluate the 

makespan, energy consumption, and cost. The ERP-DISWE algorithm is compared with the MOWOS [23] 

energy minimized scheduler (EMS) [11], modified firefly algorithm-workflow scheduler (MFA-WS) [26], 

multi-objective deep reinforcement learning-priority-aware workflow scheduler (MODRL-PWS) [27] 

models. The four different tasks of sipht have been considered for the evaluation of the results. These four 

tasks include sipht 30 and sipht 100. All experiments are carried out on a computer with Intel(R) Core i5 2.2. 

gigahertz, 16 gigabytes of memory, Windows 10, 64-bit operating system. To simulate and evaluate the 

proposed and state-of-art workflow resource provisioning scheduler algorithm’s performance, we used 

cloudsim. 

 

4.1.  Makespan performance 

In Figures 3 and 4, the makespan for sipht 30 and sipht 100 has been evaluated. It has been 

compared with the other existing models. The results show that the MFA-WS and EMS models take more 

makespan for the computation of the tasks. The MODRL-PWS model has reduced the makespan when 

compared with the MOWOS models. The proposed ERP-DISWE model has reduced the makespan by 42.12 

% and 61.44 % when compared with the MODRL-PWS model considering the sipht workflow size of 30 and 

100, respectively. The significant makespan reduction is due adoption of optimization done using (10) by 

leveraging resource provisioning scheduling optimization in an edge-cloud platform. 

 

 

 
 

 
 

Figure 3. Makespan for sipht 30 Figure 4. Makespan for sipht 100 

 

 

4.2.  Energy consumption performance 

In Figures 5 and 6 the energy consumption for sipht 30 and sipht 100 has been evaluated. It has been 

compared with the other existing models. The results show that the MFA-WS and EMS models consume 

more energy for the computation of the tasks. Further, the MOWOS consumers slightly more than MODRL-

PWS; however, the proposed model namely the ERP-DISWE model has reduced the energy consumption by 

3.8 % and 3.15 % when compared with MODRL-PWS model considering the sipht workflow size of 30 and 

100, respectively. The significant energy reduction is due adoption of optimization done using (10) meeting 

constraints in reconfiguration cost defined in (5) by leveraging resource provisioning scheduling optimizing 

in the edge-cloud platform. 

 

 

  
  

Figure 5. Energy consumption for sipht 30 Figure 6. Energy consumption for sipht 100 
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4.3.  Computation cost  

In Figures 7 and 8, the computation cost for Sipht 30 and Sipht 1000 has been evaluated. The results 

show that the existing model's cost is higher when compared with the proposed ERP-DISWE model. EMS 

exhibits significantly lesser cost than MFA-WS and MOWOS and MODRL-PWS exhibit much lesser cost 

than EMS; however, the computational cost for the computation of each task has been reduced by the 

proposed model with a cost reduction 64.95 % 70.66 % over MODRL-PWS model considering Sipht 

workflow size of 30 and 100, respectively. The significant cost reduction is due to the reduction of 

computation cost, reconfiguration, and communication cost as defined in (5), (6), and (7), respectively. 

 

 

 
 

 
 

Figure 7. Computation cost for sipht 30 Figure 8. Computation cost for sipht 100 

 

 

5. CONCLUSION 

To execute marine processes via an edge-cloud system, it is suggested in the above investigation an 

effective resource provisioner for delay-intensive workload execution. They provided an approach within the 

above scenario that minimizes energy consumption, costs, and makespan yet calculating the process's 

inbound jobs. The existing methods were examined. As contrasted to the present designs, the findings 

demonstrate the use of the suggested ERP-DISWE system will minimize the makespan, energy, and cost 

especially when performing the Sipht workload. Because the MFA-WS and EMS models were unable to 

shorten the job's execution time and use less energy, their costs were significantly increased. The EMS 

concept did not shorten the makespan; instead, it concentrated primarily on cutting costs and energy. When 

taking into account varying workloads, the MODRL-PWS model produced superior outcomes with regard to 

makespan, cost, and energy consumption, but it was unable to lower overall costs. Each of the above issues 

have been resolved in the suggested model ERP-DISWE, which has improved efficiency in regard to cost, 

makespan, and energy usage. As a result, the suggested model outperforms the current one. Improved 

efficiency is demonstrated by outcomes in terms of costs, energy usage, and makespan. Throughout the 

future, this work may be utilized for the implementation of additional scientific workflows, such as 

epigenomics, montage, and inspiration. Future work considers validating the model using workloads like 

montage, inspiral, and epigenomics. Alongside this, consider validating the proposed model by considering 

other parameters like deadline and reliability outcomes. 
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