
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 39, No. 1, July 2025, pp. 101~109 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v39.i1.pp101-109      101 

 

Journal homepage: http://ijeecs.iaescore.com 

Random forest method for predicting discharge current 

waveform and mode of dielectric barrier discharges 
 

 

Laiadi Abdelhamid1, Chentouf Abdellah1, Ezziyyani Mostafa2 

1Laboratory of applied physics, Physics Department, FSTT, UAE University, Tangier, Morocco 
2Mathematics and Application Laboratory, FSTT, UAE University, Tangier, Morocco 

 

 

Article Info  ABSTRACT  

Article history: 

Received May 25, 2024 

Revised Jan 17, 2025 

Accepted Mar 25, 2025 

 

 This study addresses the classification of Homogeneous and Filamentary 

discharge modes in dielectric barrier discharge (DBD) systems and predicts 

the Homogeneous current waveform using machine learning (ML). The 

motivation stems from the need for accurate modelling in non-thermal 

plasma systems. The problem tackled is distinguishing between these two 

modes and predicting the current waveform for Homogeneous discharge.  

A random forest classification algorithm is applied, using experimental 

features such as applied voltage, frequency, gas gap, dielectric material, and 

gas type. An exponential model is proposed for the discharge current, with 

Gaussian regression transforming the model’s parameters. The classification 

results are evaluated through a confusion matrix, showcasing 80% accuracy 

in distinguishing discharge modes. The regression analysis reveals strong 

Pearson correlation coefficients between predicted and experimental 

waveforms. In conclusion, the results demonstrate the efficacy of ML 

techniques in enhancing DBD system modelling, though improvements can 

be made by expanding the dataset and refining feature selection for better 

classification and prediction performance. 
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1. INTRODUCTION 

Dielectric barrier discharge (DBDs), also known as silent discharges, are considered the simplest 

way to obtain non-thermal plasma (also known as cold-plasma) in the laboratory at atmospheric pressure. 

To prevent the formation of an electric arc, at least one dielectric barrier is used between cylindrical or two 

planar electrodes, which are connected to an alternative or pulsed power supply [1]. DBDs have numerous 

applications in the domains of industry [2], medicine [3], and environment [4]. 

DBDs have two modes, Homogeneous and Filamentary. The Homogenous discharge mode is 

typically produced when gases such as Helium, Neon, Argon are used [5]. Generally, the current waveform of 

Homogeneous discharge is characterized by a single pulse in each half cycle of the applied voltage, the 

homogenous discharge mode may manifest as Atmospheric pressure glow discharge (APGD) or Atmospheric 

pressure Townsend discharge (APTD) [6], several factors could influence the waveform of the Homogeneous 

discharge current in DBD configuration as shown in Figure 1, including the applied voltage [7], the frequency 

of the applied voltage [8], the gas type [9], the gas gap distance [10], and the dielectric material [11]. 
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Figure 1. Dielectric barrier discharge configuration 

 

 

In other hand the filamentary discharge mode is the most naturally occurred in DBD discharges, 

typically produced in Air, the waveform of the discharge current is characterized by random fluctuations 

describe the random distribution of micro-discharges in space and time [9]. In this work we aim to predict 

the discharge mode of DBD discharges using the selected experimental features, and to predict the 

discharge current waveform of the Homogeneous mode. 

Given the abundant experimental data generated by cold plasma and DBD discharge systems,  

a recent paradigm in the field of cold plasma research involves the adoption of data-driven modelling [12]. 

For example ML methods have been employed to predict electrical characteristics of DBD systems [13], 

and simulate the low-temperature plasma [14]. Exploiting the diversity of current waveforms documented in 

the literature on Homogeneous and Filamentary DBD discharges, our study is driven by two main 

objectives. For the first objective, we aim to build a model to classify the discharge mode using the random 

forest classification algorithm, the second objective involves predicting the discharge current from the 

experimental features utilizing a ML algorithm, this latter objective unfolds in two steps: firstly, we aim to 

associate the experimental features for each current waveform with a set of defining of the proposed 

Gaussian model parameters by mediating the proposed exponential law of discharge. Secondly, the intention 

is to employ a random forst regression model to predict the relationship between each parameter of the 

discharge current model and the associated experimental features. 

The outline of this paper is as follows: firstly, the data collection process and the selected features 

are described for both classification and regression tasks; secondly, the classifier model used to classify the 

discharge mode of the DBD discharge will be described, along with its results and evaluation. Subsequently, 

the proposed model for the discharge current will be suggested, and the extraction of parameters for 

regression will be introduced. Following this, the configuration and application of the random forest 

regression model are described, and the results derived from its application are evaluated. 

 

 

2. METHOD 

For the classification part the dataset was collected from 100 discharge experiments, and for the 

regression part, it was sourced from 33 Homogeneous DBD discharge experiments. Each discharge current 

waveform was sampled into 1,000 points with associated data including applied voltage amplitude, frequency 

of the applied voltage, gas gap, gas type, and dielectric material used. The gases employed in this work 

include: Air [8]-[11], [15], [16], Xenon [17], Helium [18], [19], Argon [6], Nitrogen [6], [20], and Neon  

[9], [21]. 

The geometric configurations of the dielectric barrier in the dataset are both planar and cylindrical. 

All experiments were conducted at atmospheric pressure. Table 1 illustrates a sampled example for the 

structure of the data collected, while Table 2 provides a statistical overview of the experimental feature 

values within the dataset. 

 

 

Table 1. Structure of the classification data 
Author Voltage (kV) Frequency (kHz) Gap(mm) Gas Dielectric Mode 

Mangolini [19] 2 10 5 Helium Alumina Homogeneous 

Garamoon [16] 5 0.05 1.1 Air Quartz Filamentary 
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Table 2. Statistic values of the features used in classification 
 Voltage (kV) Frequency (kHz) Gap (mm) Gas Breakdown(kV/mm) Dielectric constant 

Min 0.5 0.05 0.4 0.6 2.3 
Max 25 150 10 22.5 11.54 

Mean 6.76 14.94 2.61 9.83 6.4 

Standard deviation 6.52 20 1.97 8.31 2.34 

 

 

3. CLASSIFICATION MODEL 

As some features in Table 1 are categorical, encoding becomes necessary. Specifically, the 

dielectric material was encoded into its corresponding dielectric constant, while the gas type was encoded 

based on its average breakdown voltage at atmospheric pressure. Moreover, the target value, representing 

the discharge mode, was encoded into a binary class (0 for Homogeneous and 1 for Filamentary), 

facilitating streamlined classification processes. 

 

3.1. Random forest for classification 

A machine learning approach [22], specifically the random forest classification algorithm [23] is 

adopted to predict and model the inherently non-linear relationship between the discharge mode and 

associated features of the discharge experiment. Random forest algorithm combines several decision trees as 

shown in Figure 2 to create a more accurate model by selecting random subsets of data and features, then 

aggregating the results to make a final prediction through majority voting. 

 

 

 
 

Figure 2. Random forest classification algorithm  

 

 

The features chosen for classification can be encapsulated within a vector Xc = [Up, d, Vbd, εd], 

where Up denote the applied voltage amplitude, d the gas gap distance, Vbd the breakdown voltage of the 

gas, and εd denote the material dielectric constant. The target vector is denoted as yc = [‘Homogeneous’, 

‘Filamentary’]. For the random forest classifier (RFC) algorithm, the chosen hyperparameters include the 

number of trees (n_estimators =120), and the criterion used is ‘entropy’. The training data is used to train 

the classifier model by providing input features and corresponding target values. The test data, comprising 

20% of the total dataset, is reserved to evaluate how well the trained RFC performs on new, unseen data. 

 

3.2.  Classification results and evaluation 

3.2.1. Confusion matrix 

A confusion matrix provides an overview of the classifier’s performance by illustrating the 

predicted classes against the actual ones. In Figure 3, the confusion matrix for our classifier is presented, 

which offers a clear visualization of the random forest classification model’s performance by comparing 

predicted classes against actual discharge modes. In this matrix, the rows represent the actual discharge 

modes (Homogeneous or Filamentary), while the columns represent the predicted modes. 
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Figure 3. Confusion matrix of the classification model 
 

 

3.2.2. Model evaluation and discussion 

Accuracy in classification models is a metric that measures the proportion of correctly predicted 

instances among all instances in the dataset. It provides an overall assessment of the model’s ability to 

correctly classify different classes or categories. Accuracy is calculated as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 +  𝐹𝑝 + 𝐹𝑛

 

 

where Tp, Tn, Fp, Fn denotes true positive, true negative, false positive, and false negative respectively, by 

analysing this confusion matrix, for example, the model has made 3 false positive predictions, i.e., it has 

predicted the presence of 3 discharges with Homogeneous modes, whereas in reality they are Filamentary, 

the accuracy of our classification model is 0.8. 

Achieving 80% accuracy in our classification model is a positive result, but it is essential to explore 

the implications of the false positive predictions. The misclassification of Filamentary discharges as 

Homogeneous reveals limitations in the model’s ability to clearly distinguish between the two modes.  

This suggests that the model’s sensitivity to subtle differences between these discharge types needs 

improvement. Further refinement of the model, particularly in its handling of nuanced features, could 

significantly enhance its classification performance. 
 

 

4. REGRESSION MODEL 

4.1. Proposed discharge current model 

The discharge current is considered as an internal electrical parameter of DBD, it lacks an explicit 

expression, and it is difficult to measure it directly, the models addressing this current fall into two main 

categories: physical models, which employ numerical simulations to deduce the current waveform [24] and 

electrical models [15]. The hypothesis of this work is grounded on the simple electrical model for DBD, as 

illustrated in Figure 4. In this model, Cd and Cg denote the dielectric barrier capacitance and gas gap 

capacitance, respectively, while Rp represents the plasma discharge impedance (Figure 4(a))[25].  

The proposed model operates under certain assumptions: Firstly, the plasma discharge current 

Iplasma(t) is conceptualized as the exponential law as in equation (1) (Figure 4(b)). Secondly, we suppose that 

the discharge current and the gap voltage waveforms exhibits symmetry with respect to the half cycle of the 

alternative applied voltage. The model I(t) adopted in this study is a modified form of the power law [25] 

which assimilate the plasma discharge reactance as a semi conductor dipole. 
 

𝐼(𝑡) = 𝐼𝑠  (𝑒𝑥𝑝 (
𝑉𝑔

𝑛
) − 1) (1) 

 

𝑉𝑔 = 𝑉𝑚 𝑠𝑖𝑛(2𝜋𝑓𝑡 + 𝑚α)  (2) 

 

Where, Is the current amplitude of saturation current, Vg is the voltage across the plasma reactance -as in 

(2)- also known as gap voltage, n is a scale factor, Vm the amplitude of the gap voltage, f the frequency of 

the gap voltage (which is equal to the applied voltage frequency), α represents the phase of the gap voltage, 

and m it is a correction value that accounts for the memory effect in the second cycle of the applied voltage. 

This memory effect arises from residual charges left from the preceding half period [15], (m=1 for the first 

cycle, and  2<m<2.55 for the second cycle). 
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(a) (b) 

 

Figure 4. Electrical model for DBD (a) pre-discharge state and (b) discharge phase 

 

 

To extract the parameters of the proposed model, an initial regression was conducted using the 

experimental discharge data fitted to the exponential proposed model I(t) as outlined in equation (1).  

For this regression, only half of the period of the Homogeneous current waveform was utilized. This 

decision stems from the assumption that the discharge current waveform exhibits symmetry relative to the 

half-period of the alternative applied voltage. Figure 5 illustrates the overall regression process, an example 

of the regression fitting is illustrated in Figure 5(a) [19], and the resulting parameters extracted from this 

model are presented in Table 3. 

 

4.1.1. Gaussian model and parameters extraction 

The exponential model exhibits resemblance to a Gaussian wave, as depicted in (3). However, its 

parameters do not inherently reflect the defining traits of a Gaussian wave, such as center or width. 

Therefore, a secondary regression to the exponential model was conducted. This regression mapped the 

parameters of the exponential model, namely Is, Vm, n, and α, to the Gaussian parameters A, µ, and σ, as 

illustrated in Figure 5(b). Table 3 presents their corresponding Gaussian parameters, wherein φ serves as the 

correction parameter to account for the memory effect. 

 

G(µ, σ) = A exp (− (
𝒙−µ

𝛔
)

𝟐

)  (3) 

 

 

  
(a) (b) 

 

Figure 5. Exponential and Gaussian regressions (a) regression of the proposed exponential model to the 

experimental current discharge and (b) characteristics of the Gaussian current wave 

 

 

Table 3. Example of corresponding exponential and Gaussian model parameters 
Author Up (KV) F (kHz) d (mm) Vbd εd Is Vm n α m A µ σ φ 

Garamoon [16] 3 0.05 1.1 3 9 0.38 263.84 126 0.09 2.5 5.63 17.97 11.10 0.86 

 

 

4.1.2. Gaussian model evaluation 

The evaluation of Gaussian regression involved two key metrics. Firstly, the average mean  

absolute error (AMAE) was computed as the mean absolute difference between the experimental signal 

currents and their corresponding Gaussian regressed waves. Secondly, the average mean squared error 
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(AMSE) was calculated as the mean of squared differences between the experimental signal currents and 

their corresponding Gaussian regressed waves. Figure 6 shows the calculated values of these metrics.  

Notably, maei and msei denote the mean absolute error and mean squared error, respectively, between the i-th 

experimental current wave and its corresponding Gaussian model wave. Specifically, the AMAE was found 

to be 0.38, while the AMSE was determined to be 0.44. 

 

 

 
 

Figure 6. Values of mean absolute and squared errors between the experimental currents and their Gaussian 

regression 

 

 

4.2.  Random forest regression  

In random forest regression, predictions are derived through the averaging of outputs from multiple 

decision trees, which helps mitigate individual tree biases and enhance overall predictive accuracy. The 

feature vector is Xr = [Up, F, d, Vbd, εd], and the target value is yr = [A, µ, σ, φ]. Hyperparameters selected for 

the RandomForestRegressor algorithm consist of the number of trees (n_estimators = 45), with the mean 

squared error (‘mse’) criterion employed for optimization. Figure 7 provides an overview of the process for 

extracting parameters from the discharge data. Initially, we derive the parameters of the exponential model, 

followed by the extraction of Gaussian parameters. These extracted parameters serve as target values for the 

random forest regression. 

 

 

 
 

Figure 7. Overview of parameter extraction and schematic structure of the random forest model 

 

 

4.3.  Regression results and evaluation 

Figure 8 depicts an example of the random forest regression results by presenting the predicted 

discharge current waveform with its corresponding experimental discharge current waveform from the test 

data [16]. The close alignment between the predicted and experimental curves demonstrates the effectiveness 

of the trained model in capturing the underlying current characteristics. This comparison serves to validate 

the robustness and predictive capability of the random forest approach for modeling discharge phenomena. 
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Figure 8. Experimental discharge current waveform and the predicted model current waveform 
 

 

In evaluating the results of the predicted currents waveforms against the experimental counterparts, the 

Pearson correlation coefficient was employed to measure the linear relationship between the experimental 

discharge currents and their associated predicted currents for the test data. Table 4 presents the pearson 

correlation coefficient (PCC) for the test data.  
 

 

Table 4. Correlation coefficient between the predicted and experimental discharge currents 
Reference PCC 

Garamoon_1 [16] 0.966 

Garamoon_2  [16] 0.969 

Osawa [8] 0.965 

Ran [11] 0.912 

Brandenburg [9] 0.746 

Tyata [7] 0.786 

Bedoui [18] 0.896 

 

 

The random forest regression results demonstrate promising correlations between predicted and 

experimental discharge current waveforms across various reference studies, albeit with some variations. 

While high Pearson correlation coefficients (PCC) exceeding 0.9 in several cases indicate substantial 

predictive capability, inconsistencies suggest areas for further improvement. Future enhancements may 

involve expanding the dataset to include additional discharge experiments and exploring a wider range of 

features. 
 

 

5. DISCUSSION 

This study demonstrates that machine learning techniques, specifically random forest classification 

and regression, effectively classify Homogeneous and Filamentary discharge modes in DBD systems and 

predict Homogeneous discharge currents. Achieving 80% classification accuracy, the model performed 

strongly using features like applied voltage, gas gap, and dielectric material. The high correlation between 

predicted and experimental waveforms in regression further supports its ability to predict Homogeneous 

current waveforms. These results highlight the potential of ML-driven approaches in modelling DBD 

systems, which traditionally rely on complex physical models. The confusion matrix offers valuable insights 

into the model’s performance and areas for improvement. 

Compared to previous studies, this work underscores the advantages of machine learning in plasma 

system modelling. Unlike research relying heavily on numerical simulations, this study uses data-driven 

methods, offering greater flexibility and efficiency in addressing nonlinear relationships between features and 

discharge behaviours. However, misclassifications, particularly false positives where Filamentary discharges 

were predicted as Homogeneous, remain a limitation. This could stem from feature overlap or insufficient 

data to fully capture the differences between modes. 

The study’s primary aim was to explore machine learning applications in classifying discharge 

modes and predicting discharge currents in DBD systems. It bridges the gap between physical modelling and 

data-driven approaches, providing insights into non-thermal plasma systems. However, questions remain, 

such as whether a more diverse dataset could improve performance. Future research should focus on refining 

feature selection, expanding datasets, and enhancing model sensitivity to reduce misclassifications and 

improve predictive accuracy. 
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6. CONCLUSION 

In this study, we presented a comprehensive approach to modelling discharge currents in DBD 

systems using machine learning techniques, specifically random forest classification and regression 

algorithms. We successfully classified Homogeneous and Filamentary discharge modes and predicted 

Homogeneous discharge currents with high accuracy in classification and strong correlations between 

predicted and experimental waveforms in regression. These findings contribute valuable insights to cold 

plasma research, showing that ML methods can enhance our ability to model and predict DBD behaviours, 

which have traditionally relied on physical models. The classification model also serves as a valuable tool for 

understanding the impact of experimental features on discharge modes. However, discrepancies in 

classification and regression performance suggest the need for further investigation into feature selection, 

model refinement, and dataset expansion to improve accuracy and robustness. This can lead to better control 

of plasma processes in industrial, medical, and environmental applications. Overall, our findings highlight 

the potential of data-driven modelling to advance our understanding of DBD systems and enhance predictive 

capabilities, with future research focusing on refining models and methodologies for even greater precision. 
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