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 The study discusses the revolutionizing impact of deep convolutional neural 

network (CNN) techniques on medical image classification, particularly in 

identifying skin lesions. It addresses the challenge of limited datasets for 
granular parakeratosis (GP) and paraneoplastic pemphigus (PNP) by 

employing traditional and advanced ensemble data augmentation techniques. 

These techniques include geometric transformations, generative adversarial 

networks (GANs), Cutout, and keep augment. GP affects keratinization in 
the groin and other regions, while PNP is associated with malignancies.  

The study’s relevance is enhanced by the shared imaging characteristics of 

the chosen conditions. By utilizing tools like U-net for segmentation, region 

props for feature extraction, and a support vector machine (SVM)  
10-fold cross-validation model for classification, the study achieved 

impressive performance metrics, including 95% accuracy, 100% sensitivity, 

and 100% specificity when evaluated on the DermnetNZ skin lesion dataset. 

These findings underscore the effectiveness of augmentation in enhancing 
the precision of medical image classifiers and signify a substantial 

improvement over traditional method. Thus, the research showcases the 

critical role of data augmentation in overcoming data scarcity challenges and 

advances medical image analysis. 
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1. INTRODUCTION 

In recent days, automated skin disease diagnosis using machine learning is a challenging task. 

Though several researchers have adopted convolutional neural networks (CNNs) for this, their performance 

is hindered by the limited availability of datasets, which are essential for training robust classifiers. 

Additionally, certain skin diseases, such as granular parakeratosis (GP) and paraneoplastic pemphigus (PNP), 

present unique challenges due to their complex clinical presentations. Skin diseases encompass a wide range 

of conditions that can cause pain, discomfort, and aesthetic concerns [1]. Accurate diagnosis is crucial for 

effective management and therapy. GP is a benign skin disorder that presents as erythematous 

hyperpigmented, hyperkeratotic papules and plaques in skin folds [2]. Excessive use of topical agents and 

exposure to chemical irritants are linked to its onset. In contrast, PNP is a severe mucosal inflammatory 

condition associated with lymphoproliferative disorders [3]. PNP can lead to life-threatening complications. 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

An ensemble image augmentation approach to enhance granular parakeratosis dataset (Sheetal Janthakal) 

313 

Figure 1 shows the samples of GP and PNP. Recent advancements in machine learning, particularly deep 

learning methods such as CNNs, are revolutionizing the field of automated skin disease diagnosis [4]. 

However, publicly accessible skin lesion datasets are often small or unevenly distributed, posing challenges 

for training robust classifiers. To address these limitations, ensemble deep learning models and data 

augmentation techniques are employed [5]. Ensemble models integrate predictions from multiple models 

trained using diverse techniques, enhancing prediction accuracy. Data augmentation plays a crucial role by 

artificially expanding the dataset through transformations such as rotation, translation, mirroring, scaling, and 

flipping. These augmentations preserve the semantic meaning of the original images and have proven 

effective in achieving state-of-the-art results in melanoma classification studies [6]. But the pitfall is most of 

the researchers focus only on the melanoma disease. 

 

 

  
 

Figure 1. Granular parakeratosis and paraneoplastic pemphigus samples 

 

 

The primary objective of this study is to enrich the GP and PNP datasets using ensemble 

augmentation techniques, aiming for significant improvements in evaluation metrics. By employing these 

methodologies, this research aims to enhance the accuracy and reliability of automated diagnostic systems in 

dermatology, thereby facilitating more effective clinical interventions and improved patient outcomes. 

The remaining text is organized as follows: section 2 reviews various augmentation approaches used 

by the researchers; section 3 provides a description of datasets and the augmentation approaches used by the 

proposed model; section 4 focuses on the proposed methodology; section 5 presents the results obtained for 

the proposed model and its comparison with state-of-the-art techniques. 

 

 

2. LITERATURE REVIEW 

Data augmentation techniques are commonly used by researchers to improve the reliability and 

adaptability of machine learning models, particularly in tasks like melanoma classification. These techniques 

include conventional methods such as resizing, rotating, inverting, and tilting images, as well as more 

advanced approaches like deep learning-based techniques and methods using generative adversarial networks 

(GANs). The literature outlines three main types of data augmentation: basic image manipulations [7], deep 

learning-based techniques, and advanced techniques such as cutout and hide-and-seek. These methods aim to 

address the shortage of labeled data by expanding the training dataset through geometric and intensity 

modifications of baseline images. Li and Wu [8] introduced dense fuse, which combines convolutional layers 

and uses dense blocks as encoders to extract deep features, and convolutional layers as a decoder to 

reconstruct the final fused image. Addition and L1-Norm strategies are utilized to combine features, showing 

the effectiveness of this architecture for infrared and visible image fusion tasks. The pitfall of this method is 

that only few evaluation metrics were considered. Zhang et al. [9] proposed an image fusion framework 

(IFCNN) based on CNNs, featuring convolutional layers for feature selection, fusion rules, and 

reconstruction. This model shows promising generalization potential but is limited to specific types of 

images. The deep learning-based fusion method of [10] optimizes fusion rule thresholds in shearlet 

transform. Though it demonstrates high efficiency across various input images, it achieves limited 

performance metrics. The work of [11] combined data augmentation with deep CNNs, achieving an 

impressive 89% classification rate using the Inception V4 architecture. However, they noted that the 

effectiveness of data augmentation varied, indicating room for improvement. Yu et al. [12] developed a fully 

convolutional residual network (FCRN) that incorporates residual learning to automate melanoma 

recognition and address overfitting. By using random and fixed rotation augmentation, they increased the 

number of skin images, achieving an 85.5% classification rate. This method highlighted the importance of 

robust augmentation techniques. Qin et al. [13] developed style-based GANs for data augmentation, 

achieving 95.2% accuracy on the ISIC 2018 dataset. Although this approach demonstrated potential,  

it highlighted the need for better feature extraction techniques. The work of [14] utilized a trained end-to-end 

https://www.sciencedirect.com/science/article/pii/S1361841523001238#sec2
https://www.sciencedirect.com/science/article/pii/S1361841523001238#sec2
https://www.sciencedirect.com/science/article/pii/S1361841523001238#sec2
https://www.sciencedirect.com/science/article/pii/S1361841523001238#sec2
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CNN to classify skin lesions into three categories: melanomas, seborrheic keratosis, and benign/nevus. Using 

the Inception V3 pre-trained architecture, they achieved a classification rate of 72.1%, indicating the 

challenges in achieving high accuracy in skin lesion classification. Table 1 provides a summary of the 

augmentation techniques used in the literature, highlighting their advantages and limitations. 

Despite these advancements, many models still struggle with effective performance metrics.  

Single augmentation techniques, such as GANs, often fall short in handling data imbalance efficiently.  

The proposed model aims to address these challenges by combining traditional (geometric transformations) 

and advanced augmentation approaches (GAN methods and cutout (random erasing)) to manage smaller 

datasets and data imbalances more effectively [7]. 

 

 

Table 1. Overview of the augmentation techniques used in the literature 
Ref Method Dataset Performance metrics Disadvantages 

[15] Rotation, flipping, shearing, and zooming HAM10000 and ISIC 2019 94% recall score Small data set 

[16] GAN based augmentation method ISIC 2017 Accuracy - 99.38% Unable to fine-tune its 

hyperparameters 

[17] Raman spectroscopy augmentation RS dataset Accuracy - 83% Small sample set 

[18] Progressive growing of GAN HAM10000 Accuracy - 70.1% Not robust, inaccurate 

[19] Flips, skew-left-right ISIC 2019 and PH2 Accuracy - 91% Variable size filters 

 

 

3. IMAGE AUGMENTATION 

3.1.  Augmentation techniques 

Limited annotated medical images present a challenge for developing effective machine learning 

models in medical image analysis. Small datasets like MED-NODE, dermatology information system, and 

DermQuest highlight the need for larger datasets to improve CNN performance. Data augmentation is a key 

solution to this problem, as it involves making alterations to the original training set to generate new 

examples without altering the class characteristics. This process enhances generalization and model 

performance by expanding the dataset. Various techniques, such as feature-space, GAN-based, geometric-

transformation-based, and advanced augmentation methods, can help address data imbalances and are crucial 

for the success of deep learning, especially with small datasets.  

 Geometric augmentation enhances dataset diversity by altering the geometry of images without changing 

their labels or class information. This helps models learn general patterns rather than relying on specific 

poses or orientations. Common geometric augmentation techniques in deep learning include: 

 Rotation (rotates image clockwise or counter clockwise), translation (shift image horizontally or 

vertically), scaling (resize images to larger or smaller versions), flipping (flips image horizontally or 

vertically), and cropping (removes parts of the image to create variations). These techniques enrich 

training data with diverse geometric variations, enhancing model performance in tasks like object 

classification, detection, and image segmentation. Two approaches can be used for geometric 

augmentation: dataset generation and in-place augmentation 

o Dataset generation: the process begins by obtaining the initial input image from the drive. Random 

transformations, such as translations, rotations, and other modifications, are then applied to the 

source image. After each transformation, the modified image is saved back to disk. This sequence of 

transforming and saving the image is repeated N times, resulting in the generation of numerous new 

images derived from the original, which are suitable for training purposes. 

o In-place augmentation: the image data generator receives a batch of input images. It then applies a 

random set of translations, rotations, and other transformations to every image in the batch. After 

that, the calling function receives the batch that was randomly modified. 

 GANs are used in medical image analysis to augment data, create new images, and adapt the domain to 

enhance CNN performance [20]. GANs generate synthetic samples, increasing the available dataset when 

obtaining large amounts of true data is impractical or impossible. 

 Feature-space augmentation 

 This approach involves two methods: under sampling and oversampling. 

 Under sampling: reducing samples from the majority class balances class distribution and improves the 

recognition of the minority class, but it may result in loss of valuable information. 

o Oversampling: generating additional samples from the minority class to match its representation 

with the majority class, creating a more balanced dataset. 

 Cutout and keep augment 

 In the training samples set, cutout removes random patches and substitutes zero values for the pixels in 

the deleted areas. This is achieved by masking off random sample locations using a square matrix of 
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constant weights. But, the drawback of region deletion techniques (cutout) is that more suitable regions 

cannot be chosen for deletion due to the random nature of the deletion process. It can sometimes result in 

the most useful features being removed, resulting in poor performance. The approach can be effectively 

used when combined with keep augment to ensure that images are augmented in a way that preserves the 

useful features. 

Incorporating data augmentation techniques is essential for overcoming the challenges posed by 

limited annotated medical images. By employing ensemble traditional and advanced augmentation 

techniques, researchers can enhance dataset diversity, build network invariances, and improve generalization 

performance. This approach ensures that machine learning models are more resilient to real-world image 

variations, ultimately leading to better outcomes in medical image analysis. 

 

3.2.  Performance metrics 

In medical image analysis, three critical metrics are used to evaluate the performance of 

segmentation and classification methods: accuracy, sensitivity, and specificity. These metrics provide a 

comprehensive understanding of how well a model is performing after data augmentation. The following 

equations specify the computation of these metrics [21]:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  

 

Where TP indicates true positive, TN indicates true negative, FP indicates false positive, and FN indicates 

false negative 

 

3.3.  Datasets 

Datasets are the cornerstone of machine learning. A dataset must be extensive enough to provide 

comprehensive training data and should be of high-quality and relevant to the task at hand. Three types of 

datasets are available: text (utilized in natural language processing tasks), image (computer vision tasks, such 

as the proposed model), and sensor (IoT and time-series applications). For the proposed model, image data is 

essential. The images are sourced from publicly available resources, such as DermnetNZ [22] and the 

DermIS database. These databases provide a rich collection of medical images that are critical for training 

robust machine learning models in dermatology. 

 

 

4. METHOD 

In the realm of medical image analysis, data augmentation is crucial for addressing limited 

annotated datasets. The Keras image data generator is widely used for this purpose, applying random 

transformations to create diverse versions of images. This process enhances the model’s ability to generalize 

and accurately predict unseen data. The ensemble augmentation technique also prevents overfitting and 

improves accuracy. After feeding the original dataset into the model, the samples undergo the following 

transformations: flipping, rotation, shifting, zooming, and keep augment in accordance with the parameters 

shown below. 

Key Parameters of image data generator in the proposed model: 

 Horizontal flipping: OpenCV offers tools for flipping an image along its x- or y-axis, or even both.  

The cv2.flip method needs two inputs: the image to flip and a code/flag to decide the flip direction.  

To rotate the image vertically, around the x-axis, specify a flip code of 0. To rotate the image 

horizontally, around the y-axis, specify a flip code of 1. 
 

cv2.flip(image, 1) 

 

o This transformation flips the image horizontally along the y-axis, creating a mirror image. This is crucial 

for models to recognize features irrespective of their orientation. 

 Random rotation: to create the transformation matrix M that is necessary to rotate an image, use the 

cv2.getRotationMatrix2D() function. The warpAffine() function takes transformation matrices as 

parameters and returns the rotated image. 
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M1 = cv2.getRotationMatrix2D ((cols, rows), rand_num, 1) 

image = cv2.warpAffine(image, M1, (cols,rows)) 

 

o Randomly rotating images ensures that the model learns to recognize objects from different angles. The 

cv2.getRotationMatrix2D() function creates the transformation matrix, while 

cv2.warpAffine() applies it. 

 Shift: the parameters height_shift_range and width_shift_range allow the ImageDataGenerator class to 

shift an image vertically or horizontally, respectively. The proposed model takes 20% of width of the 

image and 20% of height of the image to shift 

 Rotate: the rotation_range option of the image data generator class accepts an integer number that a user 

can employ to rotate images via any degree between 0 and 360 at random. In the proposed model,  

this option is set to 40 degrees, allowing the model to see the images from various rotated perspectives. 

 Random zoom: zoom augmentation randomly zooms in or out of the image. A value smaller than 1 zoom 

in on an image. In contrast, any value greater than 1 zooms out the image. The zoom range is set to 0.2, 

meaning images are randomly zoomed in, providing a diverse set of training examples. 

Advanced augmentation techniques 

 Cutout: cutout takes 2 parameters. First specifies the number of patches to take out from an image and the 

second specifies the length of each patch. 

 Keep augment: is an approach that identifies the most informative regions of an image using saliency 

map-based importance rankings of different areas. These regions are prioritized during subsequent 

augmentation processes to preserve their usefulness. In skin lesion dataset, the lesion region is given more 

importance than the non-lesion region. The saliency map of an image indicates what pixels in the image 

are important for network prediction. The proposed methodology first uses Keep Augment to extract 

lesion regions and then applies the cutout method to filter out the non-lesion areas. 

Once the augmented image arrays are obtained, they are concatenated to the original training arrays 

which is then split into train and validation set. Following each epoch, the performance is validated using a 

validation dataset. Figure 2 illustrates how the proposed ensemble augmentation technique maximizes the 

performance of skin lesion classification. Thus, selection of this ensemble augmentation approach not only 

increases the dataset size but also maximizes the model’s performance and ensures it can generalize well to 

new, unseen data, making it a powerful tool. This is illustrated in the following section. 

 

 

 
 

Figure 2. Flow of skin lesion classification with the proposed ensemble augmentation technique 
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5. RESULTS AND DISCUSSION 

A model needs to be trained in advance in model-based image augmentation for creating augmented 

images. As a part of the implementation, prior to inputting the images into the networks, few of the 

augmentation strategies have been incorporated to boost the quantity of training images. The model applies 

various input strategies for training that transform the images from their original size after pre-processing to a 

suitable input size. Augmentation is solely aimed at boosting the dataset’s image count, without any medical 

rationale. This offers a great advantage over the techniques that focus only on melanoma. 
 

5.1.  CNN input strategy 

The proposed model starts by loading 224×224×3 sized .bmp color images from the data source. 

These images are then subjected to ensemble augmentation techniques such as flipping, rotating, shifting, 

cutout, and keepAugment resulting in a significantly larger dataset. The augmented dataset undergoes 

segmentation using U-net with binary cross-entropy (BCE) loss, size and depth are extracted using the 

regionprops module from skimage and classifies the lesions using support vector machine (SVM) with 10-

fold cross-validation. Table 2 shows the count of updated dataset which shows a significant increase over the 

original set of images. Figure 3 depicts some examples of data augmentation phase allowing the model to be 

trained on more varied dataset leading to better performance see in Figures 3(a)-3(e). 

The proposed research combines three types of augmentation, geometric (dataset generation, in-place 

augmentation), GAN-based augmentation, and advanced augmentation (cutout and keep augment) thereby 

generating ensemble model. Initially, the model normalizes input image to generate normalized data and then 

performs scaling, zooming, rotating horizontal flips, and cutout to augment the normalized data. In this step, the 

suitable parameters of each function are applied to generate new samples from the original dataset. 

For geometric augmentation, this study makes use of rotation, shear, shift, zoom, and flip; Table 3 

provides the description of geometric augmentation values. A total of 2 epochs with a batch size of 18 are run 

during GAN-based augmentation. The parameter values for the GAN-based augmentation are structured as 

shown in Table 4. Keep augment’s saliency map makes use of normalization and windowing function to 

extract the lesion areas. Table 5 shows the parameters used in cutout implementation. Binary cross-entropy is 

used as the loss function for segmentation and hinge loss (serves as a better loss function for SVM 10-fold 

model) for the classification. The model uses Adam optimizer with a learning rate of 1e-4 since it speeds up 

the training process. ReLU serves as the activation function for all layers with the exception of the last layer, 

which employs a linear activation function. Since it mimics the implementation of an SVM classifier if added 

to the final layer of a CNN model, the final layer utilizes a linear activation function. Table 6 displays the 

appropriate values of the training model’s parameters, including epoch, batch size, learning rate, loss 

functions, and optimizer. It might affect the model’s performance if such parameters are not chosen properly. 
 
 

Table 2. Comparison of original and augmented dataset count 
 Original datasets Augmented datasets 

Granular parakeratosis 1505 75250 

Paraneoplastic pemphigus 99 4950 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 3. Augmented dataset samples: (a) original, (b) zoom, (c) shift, (d) rotate, and (e) cutout 

 
 

Table 3. Geometric augmentation values description 
Augmentation techniques Values 

rotation_range 40 

width_shift_range 0.2 

height_shift_range 0.2 

shear_range 0.2 

zoom_range 0.2 

horizontal_flip True 
 

Table 4. GAN-based values description 
Parameters Values 

Conv2D ReLU 

Conv2D ReLU 

Flatten  

Dense-full 

connection 
ReLU 

Dense-output layer Linear 
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Table 5. Cutout implementation parameters 
Parameters Values 

Probability of performing cutout 0.5 

Minimum value of erased region against input image 0.02 

Maximum value of erased region against input image 0.4 

Minimum aspect ratio of erased region 0.3 

Maximum aspect ratio of erased region 3.33 

Minimum value for erased area 0 

Maximum value for erased area 255 
 

Table 6. Training model parameters 
Parameters Values 
Optimizer Adam 

Learning rate 1e-4 

Batch size 18 

Epochs 2 

Loss 

Binary cross entropy 

(segmentation) 

Hinge (classification) 
 

 

 

Two kinds of experiments have been carried out with the given datasets. The first one is to evaluate 

the proposed method using original datasets without image augmentation. The second one is to evaluate the 

proposed method with augmented datasets. Table 7 shows classification accuracy, sensitivity, and specificity 

results from the original dataset and the proposed augmentation. The corresponding graphical representation 

of the classification result is shown in Figure 4. The numerical values of the table clearly indicate that the 

input dataset without augmentation or using a single augmentation technique provides very less performance 

but the proposed model’s performance is drastically increased with the usage of ensemble augmentation. 

Figure 4 demonstrates that sensitivity and specificity are improved with the augmented dataset, 

suggesting better true positive and true negative detection. The green bars (augmented dataset) show 

consistent improvement across all three metrics compared to the brown bars (original dataset) signifying that 

data augmentation has positively impacted the model’s overall performance. There aren’t many 

measurements that receive a perfect score for both sensitivity and specificity. However, the suggested model 

meets this requirement, demonstrating its superiority. 

 

 

Table 7. Comparison of classification accuracy, sensitivity, and specificity results from the original dataset 

and the proposed augmentation 
 SVM 10-fold performance without augmentation SVM 10-fold performance with augmentation 

Accuracy 85 95 

Sensitivity 91 100 

Specificity 89 100 

 

 

 
 

Figure 4. Graphical representation of the classification result for original and augmented dataset 

 

 

5.2.  Segmentation, feature extraction, and classification 

The BCE-based U-net method is trained on the augmented parakeratosis and pemphigus lesions 

dataset and obtained better performance metrics on training set, test set, and validation set as described in our 

previous work [23]. The authors also have published their work related to feature extraction [24] which 

specifies that size and depth features can be extracted efficiently using partition clustering and regionprops 

technique. The work of classification [25] demonstrates that changing the last layer of CNN to linear 

activation function and incorporation of hinge loss function effectively implements the SVM classifier.  

The output of SVM classifier is fed into 10-fold cross validation model thereby increasing the performance 

metrics and this is considered to be superior compared to traditional techniques. The effectiveness of the 

proposed model was rigorously tested using datasets from DermIS and DermnetNZ. The results were 

compelling with accuracy: 95%, sensitivity: 100%, and specificity: 100%. These performance measures 

highlight the remarkable improvement in classification metrics when using the ensemble augmentation model 

compared to the original dataset. Table 8 illustrates the comparison of proposed methodology with the state-
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of-the art techniques including synthetic minority oversampling technique (SMOTE) augmentation [26], 

acral lentiginous melanoma (ALM) detection using CNN [27], and skin lesion detection via data 

augmentation and explainable AI [28]. Comparing the performance of the classifier after ensemble 

augmentation with all the techniques mentioned suggests it has a better performance. 

 

 

Table 8. Comparison of proposed methodology and state-of-the art techniques 
Ref Accuracy Sensitivity Specificity 

[26] 92.18 80.77 95.1 

[27] 86.9 - - 

[28] 91.5 - - 

Proposed methodology 95 100 100 

 

 

6. CONCLUSION 

In the study focused on developing an effective deep neural network for skin lesion classification, 

the use of ensemble augmentation techniques proved to be crucial in expanding the volume of labeled 

images. The proposed model, which combined traditional and advanced augmentation methods, 

demonstrated a significant improvement in classification accuracy and robustness. The augmented dataset, 

combined with the original one, was processed through a comprehensive machine learning pipeline, resulting 

in a remarkable performance boost. Testing the model using datasets from DermIS and DermnetNZ showed 

that the ensemble augmentation model outperformed state-of-the-art techniques, achieving 95% accuracy, 

100% sensitivity, and 100% specificity. The study concludes that implementing ensemble data augmentation 

significantly enhances skin lesion classification performance, setting a new benchmark and improving the 

reliability of medical image analysis but has a limited accuracy. The study recommends further research to 

enhance accuracy and explore the generalizability of these augmentation strategies in other domains. 
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