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 The intelligent computational technique used in this research handles the 

multi-objective voltage stability optimization (MOVSO) problem in radial 

distribution systems (RDS). The objectives of the proposed research are to 

minimize network loss, lower the average voltage deviation index (AVDI), 

and improve the voltage stability index (VSI) of RDS by taking into account 

the recently created distributed generators (DGs) and electric vehicle 

charging stations (EVCSs). To address the MOVSO problem, a novel and 

innovative honey badger algorithm (HBA) optimization technique is put 

forth. The two stages of HBA, known as the "digging" and "honey" phases, 

are responsible for effectively identifying the ideal position and appropriate 

quantity of EVCSs and DGs. The standard IEEE 33 node test system with 

different case studies is considered to validate the performance of HBA. The 

simulation results of improved voltage profile, minimized power loss, AVDI 

and improved VSI are tabulated. The proposed HBA fine-tunes the ideal 

position and size of the EVCSs to significantly enhance RDS performance 

under higher loading circumstances. To demonstrate the efficacy and 

originality of the suggested HBA, the numerical results are contrasted with 

those of earlier soft computing techniques. 
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1. INTRODUCTION 

More electricity is needed to run India's expanding fleet of electric vehicles (EVs). Other factors 

contributing to its rising appeal are its better performance, reduced maintenance needs, and low carbon 

footprint. The rise in EV usage has affected the distribution system's efficiency [1]. The radial distribution 

system's (RDS) dependability and performance are affected by the placement of the EV charging stations 

(EVCSs). The fundamental issue is that the RDS is less efficient due to the EVCS's incorrect placement [2]. 

In general, EVCSs are utilized as loads. Reactive and actual power losses, voltage deviation, voltage profile, 

and voltage stability index (VSI) minimization all rise proportionately in the distribution system with 

increasing load. 

The allocation problem for EVCSs in RDS has been studied recently, and a number of traditional 

and soft computing algorithms have been reported. An improved chicken swarm optimization [3] has been 

applied to optimize the location and size of solar powered EVCSs and lower the power loss and improve 

voltage at all busses and VSI. A hybrid gray wolf optimization and particle swarm optimization (PSO) [4] 

was used to allocate the EVCSs and capacitors for lower the power loss in RDS. The same EVCSs and 

https://creativecommons.org/licenses/by-sa/4.0/
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capacitors has been optimized using quantum-behaved and gaussian mutational dragonfly algorithm [5] and 

simulated results are compared with PSO and biogeography-based optimization (BBO) methods. The EVCSs 

and distributed generators (DGs) has been used to improve the voltage stability of RDS by combined Harries 

Hawk optimization and teaching-learning based optimization (TLBO) algorithms [6]. Design and modelling 

the EVCSs using Monte Carlo simulation method [7] and location and size of EVCSs has been identified by 

same approach. A traditional EVCSs' charging frequency location was analyzed with any logic technique [8]. 

The public EV's optimized charging stations enhance the level of sharing charging. 

The approach practically identifies the location and size of EVCSs, improves the state of charge 

(SOC) of EVs. A hybrid chicken swarm optimization and TLBO [9] has been applied to get the Pareto 

optimal solution of locations and values of EVCSs in RDS. The EVCSs and DGs are optimally allocated 

using (AI) approach [10] and analyze the reliability of RDS. The AI approach has been based on hybrid grey 

wolf optimization and PSO and outcomes of power loss, voltage and VSI was displayed. By employing DG 

and EVCSs based on the V2G mode, an improved harmony PSO [11] was put into place to improve the level 

of voltage and the net saving of RDS. Through the best possible EVCS allocation, the PSO [12] was used to 

improve voltage stability in the unbalanced radial distribution system. Utilizing a hybrid genetic algorithm 

(GA)-PSO [13], plug-in EVCSs and PV-constrained DGs have been allocated to maximize the voltage profile.  

A similar problem has been solved using the cuckoo search algorithm with GA [14] and the Levy-

enhanced opposition-based gradient-based optimizer [15]. To successfully address the multi-objective 

optimization issue of finding the ideal position and necessary value of EVCSs, a unique and enhanced 

version of the honey badger algorithm (HBA) [16] is recommended. Three distinct EVCSs, such as level-1, 

level-2, and level-3, are allocated optimally using the PSO [17] method that was used. The model has been 

simulated using open DSS and MATLAB. The most effective way to allocate DSTATCOM and EVCS in the 

Indian RDS is through the use of the bald eagle search algorithm [18]. For solar-integrated EVCSs, a 

workable strategy [19] has been established to decrease RDS power loss in urban areas. The method 

enhances the SOC of EVs and practically locates and sizes EVCSs. The ideal locations of EV-CSs are 

identified by applying the TLBO algorithm [20], which takes into account the goals of maximizing the VSI 

and lowering actual power loss and AVDI. To evolve the voltage stability solution in RDS, a fresh and 

effective meta-heuristic method of group teaching optimization (GTO) algorithm [21] is recommended. Soft 

open points [22] play an important part in enhancing distribution networks' voltage stability for both normal 

and fault scenarios. The position and size of multiple distributed generation units can be optimally managed 

while minimizing the overall active power loss using the PSO with time-varying acceleration coefficients 

(PSO-TVAC) technique [23]. 

Finding a solution to the multi-objective optimization voltage stability problem while taking EVCSs 

and DG units into consideration is the main objective of the current inquiry. The newly created HBA finds 

the ideal placements and necessary values for DGs and EVCSs. Using a typical IEEE 33-node test system, 

the method's effectiveness is evaluated. The suggested algorithm examines the EVCSs and DG units using 

five distinct cases, and the outcomes are contrasted with those of existing soft computing techniques. 

 

 

2. PROBLEM FORMULATION 

The proposed problem solves a multi-objective optimization issue in RDS by taking into account 

both DGs and EVCSs. The proposed problem's key objectives are to decrease power loss, improve voltage at 

each bus, and reduce the AVDI and VSI of RDS. To overcome the challenge, an innovative HBA 

methodology is used: 
 

  

𝑓1(𝑘) = 𝑚𝑖𝑛∑ 𝑅𝑖 ∗ 𝐼𝑖
2𝑏𝑟

𝑖=1   (1) 
 

𝑓2(𝑘) =
1

𝑏
∑ |1 − 𝑉𝑘|

2𝑏
𝑘=1  (2) 

 

𝑓3(𝑘) = [|𝑉𝑘|
4 − 4(𝑃𝑘𝑥𝑗𝑘 + 𝑄𝑘𝑟𝑗𝑘)

2
− 4(𝑃𝑘𝑟𝑗𝑘 + 𝑥𝑗𝑘)|𝑉𝑘|

2] (3) 

 

𝐹(𝑘) = min {𝑤1𝑓1(𝑘) + 𝑤2𝑓2(𝑘) + 𝑤3 (
1

𝑓3(𝑘)
)} (4) 

 

Constraints: 
 

∑ 𝑃𝐺𝑘 − 𝑃𝐿 = 𝑃𝑑
𝑁𝐺
𝑘=1  (5) 
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∑ 𝑄𝐺𝑘 − 𝑄𝐿 = 𝑄𝑑
𝑁𝐺
𝑘=1  (6) 

 

𝑃𝐺𝑘
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑘 ≤ 𝑃𝐺𝑘

𝑚𝑎𝑥  (7) 

 

0.95 ≤ 𝑉𝑘 ≤ 1.05, 𝑘 = 1,2,3, . . . . . , 𝑛 (8) 

 

𝑛𝐶𝑃𝑚𝑖𝑛 ≤ 𝑛𝐶𝑃 ≤ 𝑛𝐶𝑃𝑚𝑎𝑥  (9) 

 

𝑛𝐶𝑆𝑚𝑖𝑛 ≤ 𝑛𝐶𝑆 ≤ 𝑛𝐶𝑆𝑚𝑎𝑥 (10) 

 

In order to reduce power losses, average voltage deviation, and maximize the VSI, the ultimate 

objective function is generated. Mathematically, this is represented in (4). The power balance constraints of 

actual and reactive power are represented in (5) and (6). The generator limits of DG units are represented in (7). 

The voltage limits of each bus are represented in (8). The charging point limit and EV charging station limit 

constraints are represented in (9) and (10). 

 

 

3. PROPOSED METHOD 

In order to help with the most efficient allocation of EVCSs and DGs in RDS, the current work 

presented the HBA, a novel and effective metaheuristic optimization approach. Hashim et al. [24] generated 

a proposed algorithm that takes inspiration from the clever foraging behaviour of honey badgers. Due to two 

distinct phases, known as the honey phase and the digging phase, which are often referred to as the 

exploration and exploitation phases, HBA has greater seeking ability. For the purpose of solving non-linear, 

mixed-integer, and complex optimization problems, it is an efficient optimization tool [25], [26]. 

 

3.1.  Mathematical representation of HBA 

Usually, HBA is divided into two distinct stages: digging phase and honey phase. In HBA, the 

population of potential solutions can be expressed mathematically by, 
 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 =  [

𝑥11𝑥12𝑥13…𝑥1𝐷
𝑥21𝑥22𝑥23…𝑥2𝐷

……… . .
𝑥𝑛1𝑥𝑛2𝑥𝑛3…𝑥𝑛𝐷

] (11) 

 

ith position of honey badger, 
 

𝑥𝑖=[𝑥𝑖
1, 𝑥𝑖

2…… . . 𝑥𝑖
𝐷] (12) 

 

The following steps are considered when addressing non-linear optimization problems: 

Step 1: initial setup: begin by initializing the HBA with a population count (N) and their respective positions, 

calculated using the:  
 

𝑥𝑖 = 𝑙𝑏𝑖 + 𝑟1 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖)  
 

where the random integer 𝑟1 is in a range of 0 to 1. 

Step 2: intensity calculation: define the intensity, which relates the prey's concentration level to its distance 

from the honey badger. The strength of the prey’s smell is calculated using the inverse square law, as 

illustrated: 

 

𝐼𝑖 = 𝑟2 ×
𝑆

4𝜋𝑑𝑖
2  

 

where the random integer r2 is in a range of 0 to 1, 𝑆 = (𝑥𝑖 − 𝑥𝑖+1)
2 and 𝑑𝑖 = 𝑥𝑝𝑟𝑒𝑦 − 𝑥𝑖 . 

Step 3: density factor update: the density factor α ensures a balanced transition from exploration to 

exploitation by regulating time-varying randomness. The decreasing factor α\alphaα, which reduces 

randomness over time, is updated using the:  

 

𝛼 = 𝐶 × exp(
−𝑡

𝑡𝑚𝑎𝑥
)  

 

where 𝑡𝑚𝑎𝑥 is the maximum quantity of iterations and C is a constant (typically C≥1, with a default value of 2).  
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Step 4: local optima escape: to avoid getting trapped in local optima, this step, along with the following two, 

is crucial.  

Step 5: updating agent positions: in this stage, the positions of the agents are updated. There are two stages to 

updating an HBA position: the honey phase and the digging phase. 

Digging phase: in this phase, the movements of the honey badger mimic those of a cardioid. These 

movements can be simulated using the following formulas: 
 

𝑥𝑛𝑒𝑤 =𝑥𝑝𝑟𝑒𝑦+F× 𝛽 × 𝐼 × 𝑥𝑝𝑟𝑒𝑦+F× 𝑟3 ×∝× 𝑑𝑖 × | cos(2𝜋𝑟4) × [1 − cos(2𝜋𝑟5)]| (13) 

 

F = 𝑓(𝑥) = {
1,𝑖𝑓𝑟6 ≤ 0.5

−1,𝑒𝑙𝑠𝑒
 𝑟6 (14) 

 

is a random integer in the range of 0 and 1. 

Honey phase: the scenario that arises when a honey badger follows a honey guide to get to a beehive may be 

expressed mathematically as, 
 

𝑥𝑛𝑒𝑤  = 𝑥𝑝𝑟𝑒𝑦+ F× 𝑟1 ×α × 𝑑𝑖 
 

𝑟1 is a random integer in the range of 0 and 1. 
 

3.2.  Implementation of HBA methodology for allocation of DGs and EVCSs problem 

The following steps are applied for solution of MOVSO problem by optimal allocation of EVCSs 

and DGs using HBA approach: 

i) Read the line, bus, load data and features of EVs and CSs of proposed 33 and 69 node test systems.  

ii) Run the distribution power flow and calculate the loss using the exact loss formula for the base case. 

iii) Fix a number of EVCSs and DGs number of charging points (CPs) and rating charging points that are to 

be used in the RDS. 

iv) Set the population, dimension, top and lower bounds, and maximum quantity of iterations for the HBA.  

v) Set the iteration to 1. 

vi) Determine the fitness of each digging phase, which includes power loss in a network and the most 

suitable locations for EVCSs and DGs. 

vii) For each digging and honey phase, assess the multi-objective functions. 

viii) After updating the locations of the digging and honey phases, store the array's top fitness values. 

ix) Compute the present position of digging phase and honey phase. 

x) Verify that all constraints have been met; if not, proceed to step 6; otherwise, progress to the next step. 

xi) Verify if the quantity of iteration processes matches the maximum quantity of iterations; if so, move on 

to the next phase. If not, move on to step 5.  

xii) When the voltage profile, power loss, AVDI, and VSI global best solution are displayed, the program is 

stopped. 

 

 

4. RESULTS AND DISCUSSION 

Utilizing the standard IEEE test system 33 node, the applicability and results of the proposed CHBA 

are evaluated. The test system's line and bus data are obtained from reference [11]. A PC with an i5 Intel 

Core 4210U processor running at up to 2.5 GHz and 8 GB of RAM memory is used to do the simulations 

utilizing the MATLAB 14.0 platform. The current research considers battery electric cars (BEVs) and plug-in 

hybrid EVs (PHEVs) when installing suitable charging places (CPs). Table 1 presents the EV-CSs' design 

features. The varieties of EVs, their power ratings in kW, the minimum and maximum quantity of charging 

places, and the charging station ratings in kW are all provided. The charging stations have a minimum power 

rating of 975 kW and a maximum power rating of 1,674.5 kW, as indicated in Table 1. 

 

 

Table 1. Simulation-specific attributes of EV and CSs 
Type of EV Power rating of EV 

(kW) 
Quantity of CPs CS’s rating in kW 

Minimum Maximum Minimum Maximum 

Chevrolet volt 2.200 25.00 35.00 55.00 77.00 

CHANG AN YIDONG 3.750 20.00 30.00 75.00 112.50 
Tesla model X 13.00 15.00 25.00 195.00 325.00 

BMW i3 44.00 10.00 20.00 440.00 880.00 

SAE J1772 standard 7.00 30.00 40.00 210.00 280.00 

The CS’s overall power rating (kW) 975 1,674.5 
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4.1.  Test system 1: 33-node with EVCSs only 

First, CHBA's effectiveness and performance are assessed using a typical IEEE-33 node test system. 

The 33-node network's system and load data are taken from [9]. This test system considers a voltage rating of 

12.66 KV and an absolute actual and reactive power load of 3,715 kW and 2,300 KVAr. The population size 

is 40, the maximum quantity of iterations is 100, and there are seven total variables in the HBA method. The 

five distinct test cases listed below have been used to examine the proposed system: 

− Base case distribution load flow analysis. 

− Increasing load demand with minimum number of CPs at minimum power rating all CSs. 

− Increasing load demand with maximum number of CPs at maximum power rating all CSs. 

− Optimal allocation of EV-CSs using CHBA with minimum number of CPs at minimum power rating all 

CSs. 

− Optimal allocation of EVCSs using CHBA maximum quantity of CPs at maximum power rating all CSs. 

Initially, distribution load flow analysis approach is applied and determines the base case voltage of 

each bus, VSI, minimum VSI, voltage deviation index, minimum voltage and power loss of the network, 

which is considered as case 1. In case 2, optimally integrate three charging stations connected to sub feeders 

with a distance of 1 meter each. In this case, consider the minimum number of CPs with the minimum power 

rating of all CSs. For CSs, at least a power rating of 975 kW is required. Therefore, the load demand is 

increased to 6,640 kW (3,715+975×3=6,640) by installing the 3 CSs to the sub feeder (load demand is 1.7873 

times the base case demand). Now distribution load flow is applied, and the outcomes of the study are 

displayed in Table 2. It includes a power loss of 576.1705 kW, AVDI of 0.0108, a VSI of 0.4984 (p.u) and a 

Vmin of 0.8408 (p.u) respectively. 

 

 

Table 2. Comparing HBA, TLBO, and HHO results for IEEE-33 node test system with EVCSs only 
Case Methods Locations of EV 

charging stations 
power 

losses (kW) 
AVDI 
(p.u) 

VSI 
(p.u) 

Vmin 

Case 1 

(base case) 
load 3,715 kW 

- - 210.9897 0.0040541 0.667174 0.9038 

Case 2 

load 6,640 kW 

- - 576.1705 0.0108 0.4984 0.8408 

Case 3 

load 8738 

- - 1024.3908 0.0187 0.3854 0.7888 

Case 4 HBA 
(proposed) 

2, 20, 23 281.29 0.0046898 0.651445 0.9010 

TLBO [20] 2, 19, 25 295.6474 0.0047 0.6499 0.8982 

ALO [27] 2, 19, 25 295.6474 0.0047 0.6499 0.8982 
FPA [28] 2, 19, 25 295.6474 0.0047 0.6499 0.8982 

CSA [29] 2, 19, 25 295.6474 0.0047 0.6499 0.8982 

PSO [30] 2, 19, 25 295.6474 0.0047 0.6499 0.8982 
Case 5 HBA 

(proposed) 

2, 20, 23 384.5842 0.005121 0.6411 0.9003 

TLBO [20] 2, 19, 25 390.6266 0.0053 0.6381 0.8941 
ALO [27] 2, 19, 25 390.6266 0.0053 0.6381 0.8941 

FPA [28] 2, 19, 25 390.6266 0.0053 0.6381 0.8941 

CSA [29] 2, 19, 25 390.6266 0.0053 0.6381 0.8941 
PSO [30] 2, 19, 25 390.6266 0.0053 0.6381 0.8941 

Objective function using HBA (proposed) 0.82198 

 

 

Similarly, in case 3, consider the maximum number of CPs with the maximum power rating of all 

CSs. The maximum load of charging stations is 1,674.5 kW, and the total load is 1,674.5×3+3,715=8,738.5 

kW (2.3522 times the base case value). The performed load flow analysis and simulation results are projected 

in the same table. The obtained power loss is 1,024.3908 kW, AVDI is 0.0187, VSI is 0.3854 (p.u) and Vmin 

is 0.7888 (p.u) respectively. In this case, power loss and AVDI are increased due to maximum load demand. 

The proposed HBA is applied in cases 2 and 3 and optimally allocates the best location of the charging 

stations, which are considered in cases 4 and 5. In case 4, considering the total load demand of 6,640 kW and 

the proposed HBA, optimize the best location of CS with the minimum quantity of CPs. The obtained 

optimal places are 2, 20 and 23, respectively.  

Outcomes of the proposed approach, such as power loss, AVDI, VSI and Vmin are 281.29 kW, 

0.0046898 (p.u), 0.651445 (p.u) and 0.9010 (p.u) respectively. Here, power loss is 48.82% reduced compared 

with case 2 (without optimization). Table 2 presents the simulation results that demonstrate the effectiveness 

of the suggested HBA approach when compared to TLBO, ALO, PSO, FPA, and CSA techniques. Similarly, 

in case 5, maximum charging points with a maximum load of 8,738.5 kW are considered to run the 
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distribution load flow with HBA. The HBA effectively tuned the best places of CSs and the best places are 2, 

20, 23 respectively. Experimental results of the proposed algorithm, such as power loss, AVDI, VSI and 

Vmin are 384.5842, 0.005121 (p.u), 0.6411 (p.u) and 0.9003 (p.u) respectively. Here, power loss is 62.44% 

reduced compared with case 2 (without optimization). The convergence curve for the 33-node system is 

shown in Figure 1. The lowest, average and highest values of every objective function for the 33-node test 

system are shown in Table 3. Comparative studies with other optimization algorithms (TLBO, ALO, PSO, 

FPA and CSA) are considered to verify the superiority of the proposed HBA. 

 

 

 
 

Figure 1. Convergence curve for 33 node test system 

 

 

Table 3. Comparison of each objective functions for 33 node test system 
Values of objective 

function 

power losses 

(kW) 

AVDI 

(p.u) 

VSI 

(p.u) 

Vmin 

Case 4: optimal allocation of EVCSs using HBA with minimum number of CPs at minimum power 
rating all CSs (100 CPs with 975 kW) 

Minimum value 281.29 0.0046898 0.651445 0.9010 

Average value 285.3256 0.004712 0.7256 0.9082 
Maximum value 290.5786 0.004975 0.9499 0.9982 

Case 5: optimal allocation of EVCSs using HBA with maximum number of CPs at maximum power 

rating all CSs (150 CPs with 1,675 kW) 
Minimum value 384.5842 0.005121 0.6411 0.9003 

Average value 387.2314 0.0052347 0.7819 0.9139 

Maximum value 389.9546 0.005300 0.9881 0.9954 

 

 

4.2.  Test system 2: 33-node with EVCSs and DG units 

This case considers EVCSs and DGs for solution of multi-objective optimization problem. The data 

of the EVCSs are taken form reference [9] and given in Table 1. The HBA algorithmic specification includes 

population size=50, maximum iterations=200, total variables=9. The proposed system has been analyzed on 

the following different test cases: 

− Base case distribution load flow analysis. 

− Optimal allocation of DGs and EV-CSs using CHBA with minimum number of CPs at minimum power 

rating all CSs. 

Initially, the distribution load flow analysis approach is applied and determines the base case voltage 

of each bus, VSI, minimum VSI, VDI, minimum voltage and power loss of the proposed network. It 

considered Case 1 and obtained simulation results, which are given in Table 4. In case 2, considering EVCSs 

and DGs with a total load demand of 6,640 kW and the suggested HBA optimizes the best placement of CSs 

and DGs with the minimum quantity of CPs. The obtained optimal locations of DGs and EVCSs are 28, 29, 

14 and 2, 19, 25 respectively. The obtained optimal sizes of DGs and EVCSs are 1,500 kW, 793 kW, 1,316 

kW and 975 kW, 975 kW, 975 kW respectively. The voltage and VSI at each bus for the base case are only 

EVCSs and both DGs and EVCSs are compared and numerically reported in Table 4. Additionally, a 

pictorial comparison is given, as seen in Figures 2 and 3. 
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Table 4. Comparing HBA, TLBO, and HHO results for IEEE-33 node test system with EVCSs and DG units 

Case Methods DGs and EV charging 

station locations 

Size of EVCSs and DGs in 

kW 

Power 

losses 

(kW) 

AVDI 

(p.u) 

VSI 

(p.u) 

Vmin 

Case1 

(base 

case) 

- - - 210.9897 0.0040541 0.667174 0.9038 

Case 2 HBA 

(proposed) 

28, 29,14 and 2, 19, 25 1500, 793, 1316 and 975, 

975, 975 

83.361 0.000436 0.88277 0.9010 

TLBO [6] 13,24,30 and 2, 19, 25 834.61, 1500, 1139.39 and 

975, 975, 975 

94.3847 0.0047 0.8799 0.9685 

HHO [6] 13,24,30 and 2, 19, 25 837.01, 1500, 1137 and 

975, 975, 975 

94.3844 0.0047 0.8799 0.9685 

Objective function using HBA (proposed) 0.31099 

 

 

 
 

Figure 2. Comparing the voltage profile of the 33-node test setup in the base scenario with only EVCSs and 

DGs in addition to EVCSs 

 

 

 
 

Figure 3. Comparison of the 33-node test system's VSI for the base scenario, with only EVCSs and DGs in 

along with EVCSs 

 

 

The outcomes of the proposed approach, such as power loss, AVDI, VSI, and Vmin, are numerically 

tabulated in Table 4. According to the comparison, the power loss reduction of the suggested test system 

shows a 60.49% improvement compared to the base case method and a 5.22% improvement over other 

existing methods like HHO and TLBO. Figure 4 illustrates the convergence characteristics of DGs and 

EVCSs placement for the IEEE-33 node system. Simulation results, compared with TLBO and HHO 
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techniques, are presented in Table 4 and graphically depicted in Figures 5 and 6. From the comparison, it is 

evident that the proposed HBA is a powerful and promising technique for solving complex nonlinear 

optimization problems. 

 

 

 
 

Figure 4. Convergence properties of EVCS placement and DG placement for the IEEE-33 node test system 

 

 

 
 

Figure 5. Power loss comparison between the suggested approach and current approaches 
 

 

 
 

Figure 6. Comparing the suggested method's AVDI with that of the existing techniques 
 

 

5. CONCLUSION 

A novel stochastic search technique based on HBA has been put out to assess the best way to 

allocate EVCSs and DGs within RDS. The intended HBA effectively determines the ideal placement and 

necessary values for DGs and EVCSs. In order to compensate for the planned network, the DGs and EVCSs 

inject and absorb real and reactive power. As a result, VSI and voltage profiles are significantly enhanced. As 

a result, AVDI and actual and reactive power losses are reduced. The suggested method's simulation results 

are contrasted with previously published techniques like TLBO and HHO that may be found in the literature. 
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Based on the comparison, the suggested test system's power loss minimization is 5.22% better than the other 

HHO and TLBO methods currently in use and 60.49% better than the base case method. The suggested 

method is new in that it uses a considerably quicker and more reliable convergence of HBA than any other 

known approach. From the comparison, the applied HBA methodology is the best and most promising 

optimization technique for solving complex engineering optimization problems. The future scope of the 

proposed work uses the proposed HBA algorithm to increase the distribution company's profit and the DG 

owner's advantage in a competitive electricity market. 
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