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 As the threat landscape evolves with sophisticated malware and advanced 

persistent threats (APTs), the need for effective detection solutions 

increases. Traditional methods, such as signature-based and heuristic 

analysis, struggle to keep up with rapidly changing malicious activities. 

While machine learning offers a promising approach, it often falls short due 

to the manual extraction and selection of features, leading to time-

consuming and error-prone processes. This research introduces a novel 

malware detection solution leveraging deep learning and focusing on 

portable executable (PE) file analysis to address these weaknesses. By 

customizing the hyperparameters of artificial neural networks (ANN), 

convolutional neural networks (CNN), and recurrent neural networks 

(RNN), the proposed approach enhances detection capabilities. The primary 

objective is to overcome the limitations of traditional and machine learning 

methods by tailoring these deep learning algorithms. The methodology 

includes a comparative study to demonstrate the advantages of the 

customized approach over conventional methods. Key findings reveal the 

proposed solution’s superior performance, accuracy, and adaptability in 

combating evolving cyber threats. This research contributes to the 

development of robust and adaptive malware detection solutions. 
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1. INTRODUCTION 

The constantly changing threat landscape [1], characterized by advanced malware [2], requires 

innovative detection solutions. Traditional methods [3], such as signature-based [4] and heuristic analysis [5], 

are increasingly inadequate. Signature-based techniques [6], although initially effective, fail to address novel 

threats due to their reliance on known patterns [7]. Heuristic methods attempt to detect malicious behavior [8] 

but are prone to false positives and require constant updates. 

Researchers have turned to machine learning techniques [9], which analyzes patterns in large 

datasets for malware detection. While machine learning has improved detection capabilities [10], it typically 

relies on manual feature extraction [11], which is labor-intensive and error-prone [12]. Recent advances in 

deep learning [13] offer promising solutions by automating feature extraction and adapting to evolving 

threats, particularly when dealing with PE files [14], which are a common target for malware [15]. 

Significant contributions in this area include Abualhaj et al. [16] used k-nearest neighbors (KNN) algorithm, 

which focuses on data transformation and normalization to enhance performance. Their MW-KNN model 

addresses the limitations of traditional signature-based methods, particularly for polymorphic and 

metamorphic malware. Another notable work is MalNet by Yan et al. [17] which discusses a deep learning 

https://creativecommons.org/licenses/by-sa/4.0/
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method for malware detection that analyzes Windows executable files through grayscale image conversion 

for CNN and opcode sequence analysis using LSTM networks. This dual approach improves detection 

accuracy and automates feature learning. Yılmaz and Bakır [18] used a system based on machine learning for 

android devices to optimize performance through methods like SMOTE and ClusterCentroids for imbalanced 

datasets, achieving a detection accuracy of 98.98%. ALGorain and Clark [19] investigated hyperparameter 

optimization techniques for malware detection, particularly focusing on Windows PE files, and demonstrated 

the importance of tailored parameter tuning. Lad and Adamuthe [20] proposed a deep learning model for 

static PE files malware detection, achieving high accuracy of 97.53% and 94.09% for the 2017 and 2018 

datasets 

Despite these advancements, challenges remain, particularly in automating feature extraction and 

adapting to new threats. Hyperparameter tuning in deep learning is a critical yet often underexplored aspect 

that can significantly impact performance [21]. This study builds upon these existing works by focusing on 

hyperparameter tuning across multiple deep learning models ANN, CNN, and RNN specifically applied to 

PE files. By customizing these parameters, our approach aims to surpass current detection accuracy levels 

and improve the detection of evolving malware threats, offering a more robust and comprehensive solution 

than previously proposed methods. 

This research aims to advance malware detection by developing a highly optimized deep learning 

framework that enhances detection accuracy and improves precision to raise the adaptability of detection to 

new and sophisticated malware strains. Doing so, we seek to contribute a more resilient solution to the 

cybersecurity community and provide a foundation for future security research. Our approach is designed to 

readily apply to other security solutions, ultimately raising the maturity of the malware detection field. 

The present paper is structured as follows: section 2 offers a detailed explanation of the adopted 

methodology and the proposed framework design, demonstrating how our approach addresses the challenges 

in current methods. Section 3 covers the findings, examinations, discussion, and assessment methodology, 

showing the effectiveness of our optimized models. Finally, section 4 delineates and summarizes the study’s 

overall conclusion, along with the planned future work, highlighting our research’s contributions and 

potential impact. 

 

 

2. METHOD 

2.1.  Data collection 

This research may lead to a new approach to deep learning, we’ve developed an efficient and 

optimized architecture and a strong workflow to address a specific challenge. We aim to enhance data 

processing and workflow by tackling weaknesses through methods like data balancing and  

hyperparameter tuning. This helps avoid issues caused by complex models, preventing overfitting for more 

effective results. 

This research project focuses on analyzing a substantial number of malicious and legitimate files, 

leveraging datasets sourced from the Kaggle [22]. The testing phase incorporates diverse samples from 

Virustotal [23] and Virusshare [24]. This study aims to develop an effective deep learning algorithm for 

malware detection by utilizing a robust dataset comprising 137,000 files with 57 features, including 96,000 

malicious and 41,000 legitimate samples. This approach ensures the effectiveness of data distribution in both 

the learning and testing phases, mitigating bias that could compromise the accuracy of results. A meticulous 

hyperparameter tuning process is conducted for the ANN, CNN, and RNN to optimize the performance of 

deep learning algorithms. This configuration aims to improve the confusion matrix values and enhance each 

model’s accuracy and precision. Each deep learning algorithm undergoes training and evaluation using the 

prepared dataset. Evaluation metrics are computed to assess each model’s accuracy, precision, and optimized 

confusion matrix. The best-performing model is selected based on it is effective and robust confusion matrix 

and high accuracy and precision. This model is saved for future use in classifying unseen files. 

When an unseen file requires analysis for classification, the header of its PE is extracted [25], 

feature selection is automatically performed based on importance, and the previously saved best model is 

utilized for classifying the file. The result of the classification (malicious or legitimate) is determined by the 

saved model, enhancing the detection capability and improving the quality and speed of file classification.  

The examples below in Figure 1 detail the model optimization workflow, outlining each step in 

refining data processing and model training to maximize detection accuracy. Figure 2, in turn, illustrates the 

architecture designed for the accurate classification of previously unseen files, highlighting the notable 

impact of this approach on improving malware detection capabilities. 
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Figure 1. Model optimization workflow and data 

processing 

Figure 2. Advanced architecture for accurate 

classification of unseen files 

 

 

2.2.  Data fairness through data balancing 

This step of data balancing ensures that the training data is evenly spread across all classes, preventing 

any bias in the model. Balancing the data is crucial, as an uneven distribution can lead to a distorted model. The 

Figures 3 and 4 show how the class distribution changes before and after balancing the data. 

 

 

  
  

Figure 3. Before balancing Figure 4. After balancing 

 

 

Identifying key characteristics is essential for accurately categorizing files as either malicious or 

benign. After preprocessing the dataset by removing columns such as Name of the file, MD5, and label, a 

total of 54 features were retained from the original 57 columns, the meticulous selection of the most 

informative features becomes imperative to circumvent overfitting [26], preserve model interpretability, and 
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reduce computational expenses. The abundance of features can detrimentally affect model performance, 

introducing complexity and impeding pattern recognition. Furthermore, excess features extend the 

computational time required for training and prediction [27]. Thus, a comprehensive feature selection process 

becomes essential to streamline the model, enhance efficiency [28], and focus on the most pertinent features. 

In this study, feature selection performed by deep learning algorithms played a crucial role in aiding file 

classification, pinpointing 13 features essential for accurate categorization. The utilization of these key 

features significantly bolstered classification accuracy, underscoring the effectiveness of the deep learning 

algorithms in identifying pivotal features for file classification. Figure 5 presents the relevant features 

selected by deep learning and their importance. 

 

 

 
 

Figure 5. Important relevant feature 

 

 

2.3.  Experimental setup and execution environment 

This research project carried out trials on a computing system equipped with an Intel Core i5 central 

processing unit (CPU) boasting 8 Gigabytes (GB) of random-access memory (RAM) and an Intel® UHD 

graphics processing unit (GPU) featuring 4.1 Gigabytes of dedicated video memory. The utilized operating 

system was Windows 10. The trials were executed using the Python programming language, specifically 

version 3.8.5, and an array of libraries, including NumPy, Pandas, Scikit-learn, PeFile, and TensorFlow. The 

data employed in the trials were locally stored as files. 

 

 

3. PROPOSED DEEP LEARNING FOR MALWARE DETECTION FRAMEWORK 

Once the fundamental attributes have been identified, the subsequent stage involves training and 

testing various classification algorithms using these attributes. This can be achieved by partitioning the data 

into a training set and a test set and utilizing the training set for the model’s training, while the test set is 

employed to appraise the model’s performance. The data division was conducted to guarantee the assessment 

of the accuracy of the deep learning algorithms. The training set comprised “X train” and “y train.” “X train” 

encapsulates all the feature values for each row, excluding the label column, while “y train” exclusively 

contains the label values for each row. In the experiment, three deep learning algorithms were incorporated 

following the data division, including ANN, CNN, and RNN, the trained models were subsequently utilized 

to categorize the data in the test set “X test” and “y test” and assess their accuracy. The outcomes of this 

evaluation yield insights into the efficacy and performance of each deep learning algorithm. 

Following common research practices, it is recommended to follow a specific series of steps. First, 

train and assess the computational methods. After completing this process, it’s crucial to identify the most 

effective framework by calculating various metrics such as precision, false positives, and false negatives. 
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Finally, save the framework with the highest effectiveness as a file for future use. The efficiency of 

each computational method is evaluated using metrics like precision, false positive ratio, and false negative 

ratio. Framework accuracy is assessed using the scoring function from the Python Scikit library. Calculating 

false positive and false negative ratios is done using the confusion matrix, and the error matrix. This matrix 

summarizes the performance of a binary categorization technique by comparing predicted values with actual 

values, as illustrated in Table 1. 

 

 

Table 1. Confusion matrix 
  Actual 

  Positive (1) Negative (0) 

Predicted Positive (0) True positive False positive 

Negative (1) False negative True negative 

Note: True positives (TP): the number of correctly predicted instances as positive. False 

positives (FP): the number of instances predicted as positive but were actually negative. True 

negatives (TN): the number of correctly predicted instances as negative. False negatives (FN): 
the number of instances predicted as negative but were actually positive. 

 

 

The metrics TPR, TNR, precision, and accuracy can be calculated using the values in the confusion 

matrix, like illustrated in Table 2. In summary, the true positive rate (TPR) and true negative rate (TNR) 

indicate the algorithm’s capacity to correctly forecast positive and negative instances. Precision gauges the 

algorithm’s effectiveness in generating precise positive predictions, while accuracy serves as a 

comprehensive metric for evaluating the algorithm’s overall performance. 

 

 

Table 2. Metrics for performance algorithm  
Metric Description Calculation 

True positive rate (TPR) Sensitivity or Recall: Fraction of actual 

positives correctly classified as positive. TPR = ( 
TP

FN
 ) 

False positive rate (TNR) Specificity: Fraction of actual negatives 

incorrectly classified as positive. FPR = ( 
FP

FP +  TN
 ) 

Precision Fraction of positive predictions that were 

actually positive. Precision = ( 
TP

TP +  FP
 ) 

Accuracy Fraction of instances correctly classified 

by the algorithm. Accuracy = ( 
TP

TP +  FP
 ) 

 

 

4. RESULTS AND DISCUSSION 

A series of case studies were conducted, and the performance metrics for each default parameter for 

each algorithm under consideration are presented below in Table 3. These case studies encapsulate  

real-world scenarios, illustrating the practical efficacy of our models in distinguishing between malicious and 

legitimate files. 

 

 

Table 3. Before tunning 
Metric ANN before hyperparameter tuning CNN before hyperparameter tuning RNN before hyperparameter tuning 

Accuracy 0.49897 0.91526 0.75141 

Precision 0.50411 0.91537 0.75160 

True positive 0 6892 5421 
True negative 8333 8239 7003 

False positive 0 94 1330 

False negative 8197 1305 2776 
TPR 0.00000 0.84080 0.90179 

FPR 0.00000 0.01128 0.01464 

Running time 
(in sec) 

9.23649 0.72364 9.23649 

 

 

4.1.  Comparison of model creation and evaluation  

Hyperparameter tuning is a critical aspect of optimizing neural networks, and the journey from an 

original implementation to a refined model involves adjusting key parameters. Tables 4-6 showcase the 

transformation of hyperparameters of ANN, CNN, and RNN from the original implementation to 

recommended settings. 
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4.2.  Performance metrics after tuning 

Performance evaluation is crucial for understanding how tuning affects algorithm performance. 

Adjusting hyperparameters is a key process in optimizing deep learning models, and the impact of these 

adjustments is evident in the performance metrics. By examining the performance criteria values, one can see 

how fine-tuning enhances model effectiveness. The improvements achieved through this process highlight 

the significance of hyperparameter optimization in refining performance. This analysis is essential for 

evaluating the success of tuning and guiding future enhancements. To prepare that, we will review Table 7, 

which displays the values of performance criteria for each algorithm after tuning. 

 

 

Table 4. Comparative analysis of hyperpameter settings in ANN optimization 
Hyperparameter ANN original implementation ANN recommended hyperparameter 

Number of neurons (Layer 1) 128 (Dense layer) ‘units1’ (128, Dense layer) 

Dropout rate (Layer 1) 0.2 (Dropout layer) N/A (Not tuned in Code 2) 
Number of neurons (Layer 2) 64 (Dense layer) ‘units2’ (64, Dense layer) 

Dropout rate (Layer 2) 0.2 (Dropout layer) N/A (Not tuned in Code 2) 

Number of neurons (Layer 3) 4 (Dense layer) ‘units3’ (4, Dense layer) 
Learning rate ‘adam’ optimizer used (no specific learning rate) ‘learning_rate’ (0.001, GridSearchCV) 

Number of epochs 20 5 (Epochs for GridSearchCV) 

Batch size 32 32 (Batch Size for GridSearchCV) 
Verbose 1 (Prints progress bar) 0 (Verbose for GridSearchCV) 

 

 

Table 5. Comparative analysis of hyperpameter settings in CNN optimization 
Hyperparameter CNN original implementation CNN recommended hyperparameter 

Number of filters (Conv1) 32 (Conv1D layer) 32 (Best value from GridSearchCV) 

Number of filters (Conv2) 64 (Conv1D layer) 64 (Best value from GridSearchCV) 

Kernel size (Conv1) 3 (Conv1D layer) 3 (Best value from GridSearchCV) 
Kernel size (Conv2) 3 (Conv1D layer) 3 (Best value from GridSearchCV) 

Pooling size (MaxPool1) 2 (MaxPooling1D layer) 2 (Best value from GridSearchCV) 

Pooling size (MaxPool2) 2 (MaxPooling1D layer) 2 (Best value from GridSearchCV) 
Dense units 1 (Dense layer) 1 (Best value from GridSearchCV) 

Learning rate N/A 0.001 (Best value from GridSearchCV) 

Number of epochs 20 5 (Best value from GridSearchCV) 
Batch size 32 32 (Best value from GridSearchCV) 

Verbose 0 0 (Verbose for GridSearchCV) 

 

 

Table 6. Performance after hyperpameter settings in RNN optimization 
Hyperparameter RNN original implementation RNN recommended hyperparameter tuning 

Number of units 64 (SimpleRNN layer) 64 (Best value from GridSearchCV) 

Learning rate N/A 0.001 (Best value from GridSearchCV) 

Number of epochs 20 5 (Best value from GridSearchCV) 
Batch size 32 32 (Best value from GridSearchCV) 

Verbose 0 0 (Verbose for GridSearchCV) 

 

 

Table 7. Performance of algorithm after tunning 
Metric ANN before 

tuning 

ANN after 

tuning 

CNN before 

tuning 

CNN after 

tuning 

RNN before 

tuning 

RNN after 

tuning 

Accuracy 0.49897 0.876 0.91526 0.950 0.75141 0.820 
Precision 0.50411 0.883 0.91537 0.947 0.75160 0.831 

True positive 0 6759 6892 7333 5421 6570 

True negative 8333 8245 8239 8223 7003 7489 
False positive 0 88 94 110 1330 844 

False negative 8197 1438 1305 864 2776 1627 

True positive rate 0.00000 0.824 0.84080 0.895 0.90179 0.801 
False positive rate 0.00000 0.010 0.01128 0.013 0.01464 0.101 

Running time (sec) 9.23649 9.500 0.72364 0.750 9.23649 9.800 

 

 

Figures 6-8 present the confusion matrices for the ANN, CNN, and RNN models after 

hyperparameter tuning, highlighting the classification accuracy and the impact of tuning on true positives, 

false positives, true negatives, and false negatives. Figure 9 presents the ROC Curves for ANN, CNN, and 

RNN models after hyperparameter tuning. These curves illustrate the trade-off between the true positive rate 
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and false positive rate for each model, highlighting the effects of hyperparameter adjustments on 

classification performance. 

The performance metrics provide compelling evidence supporting the initial hypothesis that 

prioritizing hyperparameter tuning would significantly enhance the effectiveness and accuracy of deep 

learning models in malware detection. Among the models tested, the CNN consistently demonstrated 

superior performance, with post-tuning accuracy improving from 0.915 to 0.950 and precision from 0.915 to 

0.947. The substantial increase in the CNN TPR from 0.840 to 0.895 further underscores its exceptional 

ability to capture and differentiate complex patterns in the data. This is reflected in its highest area under the 

curve (AUC) of 0.92, confirming the hypothesis that the CNN, when optimized, would be the most robust 

and efficient solution for this application. 

 

 

  
  

Figure 6. Confusion matrix for ANN after 

hyperparameter tuning 

Figure 7. Confusion matrix for CNN after 

hyperparameter tuning 

  

  

 
 

Figure 8. Confusion matrix for RNN after hyperparameter tuning 
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Figure 9. ROC curve for ANN, CNN, and RNN after hyperparameter tuning 

 

 

Our choice to emphasize hyperparameter tuning as a critical component of the methodology is 

strongly supported by both theoretical foundations and empirical results. For instance, the significant 

improvements observed in the ANN, where accuracy jumped from 0.498 to 0.876 and precision from 0.504 

to 0.883, validate the hypothesis that such tuning is essential for enhancing model performance. Theoretical 

insights in machine learning suggest that when properly tuned, models like ANN and CNN can better capture 

intricate relationships within data, leading to improved generalization and classification accuracy. This was 

evident as the ANN AUC improved to 0.91 post-tuning, aligning with our hypothesis regarding the potential 

of optimized models. In contrast, while the RNN also improved post-tuning with accuracy rising from 0.751 

to 0.820 and precision from 0.751 to 0.831, it still lags behind the CNN in overall performance, achieving an 

AUC of 0.85. This outcome was anticipated in our hypothesis, which recognized that while RNN are  

well-suited for sequential data processing, they are less effective than CNN in capturing the complex spatial 

features critical for high-performance malware detection. This comparative analysis further solidifies the 

rationale behind our methodological choices, reinforcing the effectiveness of CNN in this domain. 

In developing our approach, we prioritized models based on their strengths in different aspects of 

pattern recognition CNN for spatial data and RNN for sequential data while emphasizing the critical role of 

hyperparameter tuning. The results confirm that our initial hypothesis was correct, the CNN architecture, 

optimized through careful tuning, proves to be the most effective model for distinguishing between malware 

and non-malware samples. The significant gains across all models post-tuning also reaffirm the theoretical 

premise that optimal hyperparameter configurations are essential for unlocking a model’s full potential. Our 

CNN model’s superior performance, with an accuracy of 0.950 and an AUC of 0.92, surpasses KNN-based 

methods, complex hybrid models like MalNet, and feature-intensive machine learning approaches. Achieving 

these results through simpler, yet effective, hyperparameter tuning confirms our hypothesis that this approach 

would deliver higher precision and accuracy without requiring extensive pre-processing or complex 

configurations. The empirical results validate our methodology, showing that our work outperforms related 

methodologies in both accuracy and efficiency, making it the most reliable approach for malware detection as 

hypothesized. The applications and methods developed through this work are poised for adoption by 

researchers who are seeking ready-to-implement solutions, without the need for further energy-intensive 

investigations to enhance algorithm performance. 
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5. CONCLUSION 

Our contribution to the evolution of deep learning algorithms ANN, CNN, and RNN has 

underscored the transformative power of hyperparameter tuning. This process emerged as a unifying force, 

guiding each algorithm toward enhanced performance by addressing the unique challenges inherent in 

different datasets. The significance of customization in model training was evident, as it enabled these 

models to achieve superior accuracy and precision. The divergence in performance among the algorithms 

became clear, with CNN standing out due to its exceptional ability to capture intricate patterns, 

demonstrating a nuanced strength distinct from ANN and RNN. Although ANN and RNN showed significant 

improvements, CNN ability to excel in malware detection tasks reaffirmed its position as the most robust 

model in this context. The iterative nature of hyperparameter tuning highlighted the adaptability and 

responsiveness of these deep earning models, contributing to their overall predictive capabilities. Looking 

ahead, future work will involve combining our recent contributions focused on refining malware detection 

using enhanced machine learning algorithms and hyperparameter tuning with this research to create a 

comprehensive anti-malware solution. This solution will incorporate the architecture outlined, where data 

samples undergo preprocessing and classification based on their type (byte or assembly). By leveraging 

techniques like opcode analysis for assembly code and multi-antivirus validation, this approach aims to 

enhance the accuracy and precision of detection. This comprehensive anti-malware framework could 

significantly contribute to future antivirus and endpoint detection and response (EDR) systems, offering a 

robust defense mechanism against evolving threats. Additionally, exploring ensemble methods to combine 

the strengths of multiple algorithms and leveraging transfer learning with pre-trained models will be crucial 

in advancing the field. Emphasis on interpretability and real-world applicability remains essential for 

widespread adoption, and continuous iteration to stay abreast of the latest developments in Deep Learning 

will be key to unlocking new possibilities. 
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