
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 37, No. 2, February 2025, pp. 985~994

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v37.i2.pp985-994 985

Journal homepage: http://ijeecs.iaescore.com

Enhancing malware detection capabilities using deep learning

with advanced hyperparameter tuning

Walid El Mouhtadi, Yassine Maleh, Soufyane Mounir
LaSTI Laboratory, National School of Applied Sciences Khouribga, Sultan Moulay Slimane University, Beni Mellal, Morocco

Article Info ABSTRACT

Article history:

Received May 23, 2024

Revised Sep 16, 2024

Accepted Sep 29, 2024

 As the threat landscape evolves with sophisticated malware and advanced

persistent threats (APTs), the need for effective detection solutions

increases. Traditional methods, such as signature-based and heuristic

analysis, struggle to keep up with rapidly changing malicious activities.

While machine learning offers a promising approach, it often falls short due

to the manual extraction and selection of features, leading to time-

consuming and error-prone processes. This research introduces a novel

malware detection solution leveraging deep learning and focusing on

portable executable (PE) file analysis to address these weaknesses. By

customizing the hyperparameters of artificial neural networks (ANN),

convolutional neural networks (CNN), and recurrent neural networks

(RNN), the proposed approach enhances detection capabilities. The primary

objective is to overcome the limitations of traditional and machine learning

methods by tailoring these deep learning algorithms. The methodology

includes a comparative study to demonstrate the advantages of the

customized approach over conventional methods. Key findings reveal the

proposed solution’s superior performance, accuracy, and adaptability in

combating evolving cyber threats. This research contributes to the

development of robust and adaptive malware detection solutions.

Keywords:

ANN

CNN

Data balancing

Deep learning

Malware detection

Optimization

RNN

This is an open access article under the CC BY-SA license.

Corresponding Author:

Walid El Mouhtadi

LaSTI Laboratory, National School of Applied Sciences Khouribga, Sultan Moulay Slimane University

Casablanca, Morocco

Email: walid.elmouhtadi@usms.ac.ma

1. INTRODUCTION

The constantly changing threat landscape [1], characterized by advanced malware [2], requires

innovative detection solutions. Traditional methods [3], such as signature-based [4] and heuristic analysis [5],

are increasingly inadequate. Signature-based techniques [6], although initially effective, fail to address novel

threats due to their reliance on known patterns [7]. Heuristic methods attempt to detect malicious behavior [8]

but are prone to false positives and require constant updates.

Researchers have turned to machine learning techniques [9], which analyzes patterns in large

datasets for malware detection. While machine learning has improved detection capabilities [10], it typically

relies on manual feature extraction [11], which is labor-intensive and error-prone [12]. Recent advances in

deep learning [13] offer promising solutions by automating feature extraction and adapting to evolving

threats, particularly when dealing with PE files [14], which are a common target for malware [15].

Significant contributions in this area include Abualhaj et al. [16] used k-nearest neighbors (KNN) algorithm,

which focuses on data transformation and normalization to enhance performance. Their MW-KNN model

addresses the limitations of traditional signature-based methods, particularly for polymorphic and

metamorphic malware. Another notable work is MalNet by Yan et al. [17] which discusses a deep learning

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 2, February 2025: 985-994

986

method for malware detection that analyzes Windows executable files through grayscale image conversion

for CNN and opcode sequence analysis using LSTM networks. This dual approach improves detection

accuracy and automates feature learning. Yılmaz and Bakır [18] used a system based on machine learning for

android devices to optimize performance through methods like SMOTE and ClusterCentroids for imbalanced

datasets, achieving a detection accuracy of 98.98%. ALGorain and Clark [19] investigated hyperparameter

optimization techniques for malware detection, particularly focusing on Windows PE files, and demonstrated

the importance of tailored parameter tuning. Lad and Adamuthe [20] proposed a deep learning model for

static PE files malware detection, achieving high accuracy of 97.53% and 94.09% for the 2017 and 2018

datasets

Despite these advancements, challenges remain, particularly in automating feature extraction and

adapting to new threats. Hyperparameter tuning in deep learning is a critical yet often underexplored aspect

that can significantly impact performance [21]. This study builds upon these existing works by focusing on

hyperparameter tuning across multiple deep learning models ANN, CNN, and RNN specifically applied to

PE files. By customizing these parameters, our approach aims to surpass current detection accuracy levels

and improve the detection of evolving malware threats, offering a more robust and comprehensive solution

than previously proposed methods.

This research aims to advance malware detection by developing a highly optimized deep learning

framework that enhances detection accuracy and improves precision to raise the adaptability of detection to

new and sophisticated malware strains. Doing so, we seek to contribute a more resilient solution to the

cybersecurity community and provide a foundation for future security research. Our approach is designed to

readily apply to other security solutions, ultimately raising the maturity of the malware detection field.

The present paper is structured as follows: section 2 offers a detailed explanation of the adopted

methodology and the proposed framework design, demonstrating how our approach addresses the challenges

in current methods. Section 3 covers the findings, examinations, discussion, and assessment methodology,

showing the effectiveness of our optimized models. Finally, section 4 delineates and summarizes the study’s

overall conclusion, along with the planned future work, highlighting our research’s contributions and

potential impact.

2. METHOD

2.1. Data collection

This research may lead to a new approach to deep learning, we’ve developed an efficient and

optimized architecture and a strong workflow to address a specific challenge. We aim to enhance data

processing and workflow by tackling weaknesses through methods like data balancing and

hyperparameter tuning. This helps avoid issues caused by complex models, preventing overfitting for more

effective results.

This research project focuses on analyzing a substantial number of malicious and legitimate files,

leveraging datasets sourced from the Kaggle [22]. The testing phase incorporates diverse samples from

Virustotal [23] and Virusshare [24]. This study aims to develop an effective deep learning algorithm for

malware detection by utilizing a robust dataset comprising 137,000 files with 57 features, including 96,000

malicious and 41,000 legitimate samples. This approach ensures the effectiveness of data distribution in both

the learning and testing phases, mitigating bias that could compromise the accuracy of results. A meticulous

hyperparameter tuning process is conducted for the ANN, CNN, and RNN to optimize the performance of

deep learning algorithms. This configuration aims to improve the confusion matrix values and enhance each

model’s accuracy and precision. Each deep learning algorithm undergoes training and evaluation using the

prepared dataset. Evaluation metrics are computed to assess each model’s accuracy, precision, and optimized

confusion matrix. The best-performing model is selected based on it is effective and robust confusion matrix

and high accuracy and precision. This model is saved for future use in classifying unseen files.

When an unseen file requires analysis for classification, the header of its PE is extracted [25],

feature selection is automatically performed based on importance, and the previously saved best model is

utilized for classifying the file. The result of the classification (malicious or legitimate) is determined by the

saved model, enhancing the detection capability and improving the quality and speed of file classification.

The examples below in Figure 1 detail the model optimization workflow, outlining each step in

refining data processing and model training to maximize detection accuracy. Figure 2, in turn, illustrates the

architecture designed for the accurate classification of previously unseen files, highlighting the notable

impact of this approach on improving malware detection capabilities.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancing malware detection capabilities using deep learning with advanced … (Walid El Mouhtadi)

987

Figure 1. Model optimization workflow and data

processing

Figure 2. Advanced architecture for accurate

classification of unseen files

2.2. Data fairness through data balancing

This step of data balancing ensures that the training data is evenly spread across all classes, preventing

any bias in the model. Balancing the data is crucial, as an uneven distribution can lead to a distorted model. The

Figures 3 and 4 show how the class distribution changes before and after balancing the data.

Figure 3. Before balancing Figure 4. After balancing

Identifying key characteristics is essential for accurately categorizing files as either malicious or

benign. After preprocessing the dataset by removing columns such as Name of the file, MD5, and label, a

total of 54 features were retained from the original 57 columns, the meticulous selection of the most

informative features becomes imperative to circumvent overfitting [26], preserve model interpretability, and

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 2, February 2025: 985-994

988

reduce computational expenses. The abundance of features can detrimentally affect model performance,

introducing complexity and impeding pattern recognition. Furthermore, excess features extend the

computational time required for training and prediction [27]. Thus, a comprehensive feature selection process

becomes essential to streamline the model, enhance efficiency [28], and focus on the most pertinent features.

In this study, feature selection performed by deep learning algorithms played a crucial role in aiding file

classification, pinpointing 13 features essential for accurate categorization. The utilization of these key

features significantly bolstered classification accuracy, underscoring the effectiveness of the deep learning

algorithms in identifying pivotal features for file classification. Figure 5 presents the relevant features

selected by deep learning and their importance.

Figure 5. Important relevant feature

2.3. Experimental setup and execution environment

This research project carried out trials on a computing system equipped with an Intel Core i5 central

processing unit (CPU) boasting 8 Gigabytes (GB) of random-access memory (RAM) and an Intel® UHD

graphics processing unit (GPU) featuring 4.1 Gigabytes of dedicated video memory. The utilized operating

system was Windows 10. The trials were executed using the Python programming language, specifically

version 3.8.5, and an array of libraries, including NumPy, Pandas, Scikit-learn, PeFile, and TensorFlow. The

data employed in the trials were locally stored as files.

3. PROPOSED DEEP LEARNING FOR MALWARE DETECTION FRAMEWORK

Once the fundamental attributes have been identified, the subsequent stage involves training and

testing various classification algorithms using these attributes. This can be achieved by partitioning the data

into a training set and a test set and utilizing the training set for the model’s training, while the test set is

employed to appraise the model’s performance. The data division was conducted to guarantee the assessment

of the accuracy of the deep learning algorithms. The training set comprised “X train” and “y train.” “X train”

encapsulates all the feature values for each row, excluding the label column, while “y train” exclusively

contains the label values for each row. In the experiment, three deep learning algorithms were incorporated

following the data division, including ANN, CNN, and RNN, the trained models were subsequently utilized

to categorize the data in the test set “X test” and “y test” and assess their accuracy. The outcomes of this

evaluation yield insights into the efficacy and performance of each deep learning algorithm.

Following common research practices, it is recommended to follow a specific series of steps. First,

train and assess the computational methods. After completing this process, it’s crucial to identify the most

effective framework by calculating various metrics such as precision, false positives, and false negatives.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancing malware detection capabilities using deep learning with advanced … (Walid El Mouhtadi)

989

Finally, save the framework with the highest effectiveness as a file for future use. The efficiency of

each computational method is evaluated using metrics like precision, false positive ratio, and false negative

ratio. Framework accuracy is assessed using the scoring function from the Python Scikit library. Calculating

false positive and false negative ratios is done using the confusion matrix, and the error matrix. This matrix

summarizes the performance of a binary categorization technique by comparing predicted values with actual

values, as illustrated in Table 1.

Table 1. Confusion matrix
 Actual

 Positive (1) Negative (0)

Predicted Positive (0) True positive False positive

Negative (1) False negative True negative

Note: True positives (TP): the number of correctly predicted instances as positive. False

positives (FP): the number of instances predicted as positive but were actually negative. True

negatives (TN): the number of correctly predicted instances as negative. False negatives (FN):
the number of instances predicted as negative but were actually positive.

The metrics TPR, TNR, precision, and accuracy can be calculated using the values in the confusion

matrix, like illustrated in Table 2. In summary, the true positive rate (TPR) and true negative rate (TNR)

indicate the algorithm’s capacity to correctly forecast positive and negative instances. Precision gauges the

algorithm’s effectiveness in generating precise positive predictions, while accuracy serves as a

comprehensive metric for evaluating the algorithm’s overall performance.

Table 2. Metrics for performance algorithm
Metric Description Calculation

True positive rate (TPR) Sensitivity or Recall: Fraction of actual

positives correctly classified as positive. TPR = (
TP

FN
)

False positive rate (TNR) Specificity: Fraction of actual negatives

incorrectly classified as positive. FPR = (
FP

FP + TN
)

Precision Fraction of positive predictions that were

actually positive. Precision = (
TP

TP + FP
)

Accuracy Fraction of instances correctly classified

by the algorithm. Accuracy = (
TP

TP + FP
)

4. RESULTS AND DISCUSSION

A series of case studies were conducted, and the performance metrics for each default parameter for

each algorithm under consideration are presented below in Table 3. These case studies encapsulate

real-world scenarios, illustrating the practical efficacy of our models in distinguishing between malicious and

legitimate files.

Table 3. Before tunning
Metric ANN before hyperparameter tuning CNN before hyperparameter tuning RNN before hyperparameter tuning

Accuracy 0.49897 0.91526 0.75141

Precision 0.50411 0.91537 0.75160

True positive 0 6892 5421
True negative 8333 8239 7003

False positive 0 94 1330

False negative 8197 1305 2776
TPR 0.00000 0.84080 0.90179

FPR 0.00000 0.01128 0.01464

Running time
(in sec)

9.23649 0.72364 9.23649

4.1. Comparison of model creation and evaluation

Hyperparameter tuning is a critical aspect of optimizing neural networks, and the journey from an

original implementation to a refined model involves adjusting key parameters. Tables 4-6 showcase the

transformation of hyperparameters of ANN, CNN, and RNN from the original implementation to

recommended settings.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 2, February 2025: 985-994

990

4.2. Performance metrics after tuning

Performance evaluation is crucial for understanding how tuning affects algorithm performance.

Adjusting hyperparameters is a key process in optimizing deep learning models, and the impact of these

adjustments is evident in the performance metrics. By examining the performance criteria values, one can see

how fine-tuning enhances model effectiveness. The improvements achieved through this process highlight

the significance of hyperparameter optimization in refining performance. This analysis is essential for

evaluating the success of tuning and guiding future enhancements. To prepare that, we will review Table 7,

which displays the values of performance criteria for each algorithm after tuning.

Table 4. Comparative analysis of hyperpameter settings in ANN optimization
Hyperparameter ANN original implementation ANN recommended hyperparameter

Number of neurons (Layer 1) 128 (Dense layer) ‘units1’ (128, Dense layer)

Dropout rate (Layer 1) 0.2 (Dropout layer) N/A (Not tuned in Code 2)
Number of neurons (Layer 2) 64 (Dense layer) ‘units2’ (64, Dense layer)

Dropout rate (Layer 2) 0.2 (Dropout layer) N/A (Not tuned in Code 2)

Number of neurons (Layer 3) 4 (Dense layer) ‘units3’ (4, Dense layer)
Learning rate ‘adam’ optimizer used (no specific learning rate) ‘learning_rate’ (0.001, GridSearchCV)

Number of epochs 20 5 (Epochs for GridSearchCV)

Batch size 32 32 (Batch Size for GridSearchCV)
Verbose 1 (Prints progress bar) 0 (Verbose for GridSearchCV)

Table 5. Comparative analysis of hyperpameter settings in CNN optimization
Hyperparameter CNN original implementation CNN recommended hyperparameter

Number of filters (Conv1) 32 (Conv1D layer) 32 (Best value from GridSearchCV)

Number of filters (Conv2) 64 (Conv1D layer) 64 (Best value from GridSearchCV)

Kernel size (Conv1) 3 (Conv1D layer) 3 (Best value from GridSearchCV)
Kernel size (Conv2) 3 (Conv1D layer) 3 (Best value from GridSearchCV)

Pooling size (MaxPool1) 2 (MaxPooling1D layer) 2 (Best value from GridSearchCV)

Pooling size (MaxPool2) 2 (MaxPooling1D layer) 2 (Best value from GridSearchCV)
Dense units 1 (Dense layer) 1 (Best value from GridSearchCV)

Learning rate N/A 0.001 (Best value from GridSearchCV)

Number of epochs 20 5 (Best value from GridSearchCV)
Batch size 32 32 (Best value from GridSearchCV)

Verbose 0 0 (Verbose for GridSearchCV)

Table 6. Performance after hyperpameter settings in RNN optimization
Hyperparameter RNN original implementation RNN recommended hyperparameter tuning

Number of units 64 (SimpleRNN layer) 64 (Best value from GridSearchCV)

Learning rate N/A 0.001 (Best value from GridSearchCV)

Number of epochs 20 5 (Best value from GridSearchCV)
Batch size 32 32 (Best value from GridSearchCV)

Verbose 0 0 (Verbose for GridSearchCV)

Table 7. Performance of algorithm after tunning
Metric ANN before

tuning

ANN after

tuning

CNN before

tuning

CNN after

tuning

RNN before

tuning

RNN after

tuning

Accuracy 0.49897 0.876 0.91526 0.950 0.75141 0.820
Precision 0.50411 0.883 0.91537 0.947 0.75160 0.831

True positive 0 6759 6892 7333 5421 6570

True negative 8333 8245 8239 8223 7003 7489
False positive 0 88 94 110 1330 844

False negative 8197 1438 1305 864 2776 1627

True positive rate 0.00000 0.824 0.84080 0.895 0.90179 0.801
False positive rate 0.00000 0.010 0.01128 0.013 0.01464 0.101

Running time (sec) 9.23649 9.500 0.72364 0.750 9.23649 9.800

Figures 6-8 present the confusion matrices for the ANN, CNN, and RNN models after

hyperparameter tuning, highlighting the classification accuracy and the impact of tuning on true positives,

false positives, true negatives, and false negatives. Figure 9 presents the ROC Curves for ANN, CNN, and

RNN models after hyperparameter tuning. These curves illustrate the trade-off between the true positive rate

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancing malware detection capabilities using deep learning with advanced … (Walid El Mouhtadi)

991

and false positive rate for each model, highlighting the effects of hyperparameter adjustments on

classification performance.

The performance metrics provide compelling evidence supporting the initial hypothesis that

prioritizing hyperparameter tuning would significantly enhance the effectiveness and accuracy of deep

learning models in malware detection. Among the models tested, the CNN consistently demonstrated

superior performance, with post-tuning accuracy improving from 0.915 to 0.950 and precision from 0.915 to

0.947. The substantial increase in the CNN TPR from 0.840 to 0.895 further underscores its exceptional

ability to capture and differentiate complex patterns in the data. This is reflected in its highest area under the

curve (AUC) of 0.92, confirming the hypothesis that the CNN, when optimized, would be the most robust

and efficient solution for this application.

Figure 6. Confusion matrix for ANN after

hyperparameter tuning

Figure 7. Confusion matrix for CNN after

hyperparameter tuning

Figure 8. Confusion matrix for RNN after hyperparameter tuning

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 2, February 2025: 985-994

992

Figure 9. ROC curve for ANN, CNN, and RNN after hyperparameter tuning

Our choice to emphasize hyperparameter tuning as a critical component of the methodology is

strongly supported by both theoretical foundations and empirical results. For instance, the significant

improvements observed in the ANN, where accuracy jumped from 0.498 to 0.876 and precision from 0.504

to 0.883, validate the hypothesis that such tuning is essential for enhancing model performance. Theoretical

insights in machine learning suggest that when properly tuned, models like ANN and CNN can better capture

intricate relationships within data, leading to improved generalization and classification accuracy. This was

evident as the ANN AUC improved to 0.91 post-tuning, aligning with our hypothesis regarding the potential

of optimized models. In contrast, while the RNN also improved post-tuning with accuracy rising from 0.751

to 0.820 and precision from 0.751 to 0.831, it still lags behind the CNN in overall performance, achieving an

AUC of 0.85. This outcome was anticipated in our hypothesis, which recognized that while RNN are

well-suited for sequential data processing, they are less effective than CNN in capturing the complex spatial

features critical for high-performance malware detection. This comparative analysis further solidifies the

rationale behind our methodological choices, reinforcing the effectiveness of CNN in this domain.

In developing our approach, we prioritized models based on their strengths in different aspects of

pattern recognition CNN for spatial data and RNN for sequential data while emphasizing the critical role of

hyperparameter tuning. The results confirm that our initial hypothesis was correct, the CNN architecture,

optimized through careful tuning, proves to be the most effective model for distinguishing between malware

and non-malware samples. The significant gains across all models post-tuning also reaffirm the theoretical

premise that optimal hyperparameter configurations are essential for unlocking a model’s full potential. Our

CNN model’s superior performance, with an accuracy of 0.950 and an AUC of 0.92, surpasses KNN-based

methods, complex hybrid models like MalNet, and feature-intensive machine learning approaches. Achieving

these results through simpler, yet effective, hyperparameter tuning confirms our hypothesis that this approach

would deliver higher precision and accuracy without requiring extensive pre-processing or complex

configurations. The empirical results validate our methodology, showing that our work outperforms related

methodologies in both accuracy and efficiency, making it the most reliable approach for malware detection as

hypothesized. The applications and methods developed through this work are poised for adoption by

researchers who are seeking ready-to-implement solutions, without the need for further energy-intensive

investigations to enhance algorithm performance.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancing malware detection capabilities using deep learning with advanced … (Walid El Mouhtadi)

993

5. CONCLUSION

Our contribution to the evolution of deep learning algorithms ANN, CNN, and RNN has

underscored the transformative power of hyperparameter tuning. This process emerged as a unifying force,

guiding each algorithm toward enhanced performance by addressing the unique challenges inherent in

different datasets. The significance of customization in model training was evident, as it enabled these

models to achieve superior accuracy and precision. The divergence in performance among the algorithms

became clear, with CNN standing out due to its exceptional ability to capture intricate patterns,

demonstrating a nuanced strength distinct from ANN and RNN. Although ANN and RNN showed significant

improvements, CNN ability to excel in malware detection tasks reaffirmed its position as the most robust

model in this context. The iterative nature of hyperparameter tuning highlighted the adaptability and

responsiveness of these deep earning models, contributing to their overall predictive capabilities. Looking

ahead, future work will involve combining our recent contributions focused on refining malware detection

using enhanced machine learning algorithms and hyperparameter tuning with this research to create a

comprehensive anti-malware solution. This solution will incorporate the architecture outlined, where data

samples undergo preprocessing and classification based on their type (byte or assembly). By leveraging

techniques like opcode analysis for assembly code and multi-antivirus validation, this approach aims to

enhance the accuracy and precision of detection. This comprehensive anti-malware framework could

significantly contribute to future antivirus and endpoint detection and response (EDR) systems, offering a

robust defense mechanism against evolving threats. Additionally, exploring ensemble methods to combine

the strengths of multiple algorithms and leveraging transfer learning with pre-trained models will be crucial

in advancing the field. Emphasis on interpretability and real-world applicability remains essential for

widespread adoption, and continuous iteration to stay abreast of the latest developments in Deep Learning

will be key to unlocking new possibilities.

REFERENCES
[1] C. Do Xuan and M. H. Dao, “A novel approach for APT attack detection based on combined deep learning model,” Neural

Computing and Applications, vol. 33, no. 20, pp. 13251–13264, Oct. 2021, doi: 10.1007/s00521-021-05952-5.

[2] Data mining. STYLUS Publishing, 2017.
[3] S. K. Sahay, A. Sharma, and H. Rathore, “Evolution of Malware and its detection techniques,” in Advances in Intelligent Systems

and Computing, 2020, pp. 139–150. doi: 10.1007/978-981-13-7166-0_14.

[4] J. Scott, “Signature based malware detection is dead,” Cybersecurity Think Tank, Institute for Critical Infrastructure Technology,
pp. 1–15, 2017.

[5] M. Naseer et al, "Malware Detection: Issues and Challenges," Journal of Physics: Conference Series, vol. 1807, no. 1, p. 012011,

Apr. 2021, doi: 10.1088/1742-6596/1807/1/012011.
[6] R. Gutierrez, W. Villegas-Ch, L. Naranjo Godoy, A. Mera-Navarrete, and S. Luján-Mora, “Application of deep learning models

for real-time automatic malware detection,” IEEE Access, vol. 12, pp. 107742–107756, 2024, doi:

10.1109/ACCESS.2024.3436588.
[7] Y. Fan, Y. Ye, and L. Chen, “Malicious sequential pattern mining for automatic malware detection,” Expert Systems with

Applications, vol. 52, pp. 16–25, Jun. 2016, doi: 10.1016/j.eswa.2016.01.002.

[8] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behavior-based features model for malware detection,” Journal of Computer
Virology and Hacking Techniques, vol. 12, no. 2, pp. 59–67, May 2016, doi: 10.1007/s11416-015-0244-0.

[9] A. V. Kozachok and V. I. Kozachok, “Construction and evaluation of the new heuristic malware detection mechanism based on
executable files static analysis,” Journal of Computer Virology and Hacking Techniques, vol. 14, no. 3, pp. 225–231, Aug. 2018,

doi: 10.1007/S11416-017-0309-3/METRICS.

[10] A. Ijaz et al., “Innovative machine learning techniques for malware detection,” Journal of Computing and Biomedical
Informatics, vol. 7, no. 1, 2024.

[11] F. Nawshin, R. Gad, D. Unal, A. K. Al-Ali, and P. N. Suganthan, “Malware detection for mobile computing using secure and

privacy-preserving machine learning approaches: A comprehensive survey,” Computers and Electrical Engineering, vol. 117, Jul.
2024, doi: 10.1016/j.compeleceng.2024.109233.

[12] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, “A survey of android Malware detection with deep neural models,”

ACM Computing Surveys, vol. 53, no. 6, 2021, doi: 10.1145/3417978.
[13] F. Xiao, Z. Lin, Y. Sun, and Y. Ma, “Malware detection based on deep learning of behavior graphs,” Mathematical Problems in

Engineering, no. 1, Jan. 2019, doi: 10.1155/2019/8195395.

[14] S. J. Kattamuri, R. K. V. Penmatsa, S. Chakravarty, and V. S. P. Madabathula, “Swarm optimization and machine learning
applied to PE Malware detection towards cyber threat intelligence,” Electronics, vol. 12, no. 2, Jan. 2023, doi:

10.3390/electronics12020342.

[15] H. Bostani and V. Moonsamy, “EvadeDroid: A practical evasion attack on machine learning for black-box Android malware
detection,” Computers and Security, vol. 139, Apr. 2024, doi: 10.1016/j.cose.2023.103676.

[16] M. M. Abualhaj, A. A. Abu-Shareha, Q. Y. Shambour, S. N. Al-Khatib, and M. O. Hiari, “Tuning the k value in k-nearest

neighbors for malware detection,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 13, no. 2, pp. 2275–2282, Jun.
2024, doi: 10.11591/ijai.v13.i2.pp2275-2282.

[17] J. Yan, Y. Qi, and Q. Rao, “Detecting Malware with an ensemble method based on deep neural network,” Security and

Communication Networks, pp. 1–16, 2018, doi: 10.1155/2018/7247095.
[18] E. KAVALCI YILMAZ and H. BAKIR, “Hyperparameter tunning and feature selection methods for Malware detection,”

Politeknik Dergisi, vol. 27, no. 1, pp. 343–353, Feb. 2024, doi: 10.2339/politeknik.1243881.

[19] F. T. ALGorain and J. A. Clark, “Bayesian hyper-parameter optimisation for malware detection,” Electronics, vol. 11, no. 10,
May 2022, doi: 10.3390/electronics11101640.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 2, February 2025: 985-994

994

[20] S. S. Lad. and A. C. Adamuthe, “Improved deep learning model for static PE Files Malware detection and classification,”

International Journal of Computer Network and Information Security, vol. 14, no. 2, pp. 14–26, Apr. 2022, doi:
10.5815/ijcnis.2022.02.02.

[21] A. Djenna, A. Bouridane, S. Rubab, and I. M. Marou, “Artificial intelligence-based malware detection, analysis, and mitigation,”

Symmetry, vol. 15, no. 3, Mar. 2023, doi: 10.3390/sym15030677.
[22] “Kaggle: your machine learning and data science community.” Accessed: Aug. 11, 2024. [Online]. Available:

https://www.kaggle.com/.

[23] “VirusTotal-Home.” Accessed: Aug. 11, 2024. [Online]. Available: https://www.virustotal.com/gui/home/upload.
[24] “VirusShare.com.” Accessed: Aug. 11, 2024. [Online]. Available: https://virusshare.com/about.

[25] H. H. Al-Khshali and M. Ilyas, “Impact of portable executable header features on malware detection accuracy,” Computers,

Materials and Continua, vol. 74, no. 1, pp. 153–178, 2023, doi: 10.32604/cmc.2023.032182.
[26] E. S. Alomari et al., “Malware detection using deep learning and correlation-based feature selection,” Symmetry, vol. 15, no. 1,

Jan. 2023, doi: 10.3390/sym15010123.

[27] D. Ö. Şahin, O. E. Kural, S. Akleylek, and E. Kılıç, “A novel permission-based Android malware detection system using feature
selection based on linear regression,” Neural Computing and Applications, vol. 35, no. 7, pp. 4903–4918, Mar. 2023, doi:

10.1007/s00521-021-05875-1.

[28] K. Shaukat, S. Luo, and V. Varadharajan, “A novel deep learning-based approach for malware detection,” Engineering
Applications of Artificial Intelligence, vol. 122, Jun. 2023, doi: 10.1016/j.engappai.2023.106030.

BIOGRAPHIES OF AUTHORS

Walid El Mouhtadi is a Ph.D. student at LaSTI Laboratory, ENSA Khouribga,

part of Sultan Moulay Slimane University, Moroccco, since 2022. He works as Manager

Global SOC (Security Operations Center), Morocco, since 2024. He received Ingénieur d’État

in Network and Telecommunications Engineering, from National School of Applied Sciences

(École Nationale des Sciences Appliquées de Khouribga), from Sultan Moulay Slimane

University, since 2021. His reseaech interest includes cyber security, malware analysis, digital

forensics, machine learning, and deep learning. He can be contacted at email:

walid.elmouhtadi@usms.ac.ma.

Yassine Maleh is an associate professor of cybersecurity and IT governance at

Sultan Moulay Slimane University, Morocco, since 2019. He is a double Ph.D. in computer

sciences and IT management. He is the founding chair of IEEE Consultant Network Morocco

and founding president of the African Research Center of Information Technology and

Cybersecurity. He is a senior member of IEEE He has published over than 140 papers

(international journals, book chapters and conferences/workshops), 27 edited books, and 5

authored books. He is the editor-in-chief of the International Journal of Information Security

and Privacy. He can be contacted at email: y.maleh@usms.ma.

Soufyane Mounir is associate professor in the National School of Applied

Sciences of Sultan Moulay Slimane Slimane, Beni Mellal, Morocco, since 2014. He got his

Ph.D. in electronics and telecommunication, from University Hassan 1st, Morocco. His

research is multidisciplinary that focuses on telecommunications, VoIP, signal processing,

embedded systems and cyber security. He is an active member of LaSTI Laboratory, ENSA

Khouribga. He can be contacted at email: s.mounir@usms.ma.

https://orcid.org/0009-0008-8828-4429
https://scholar.google.com.pk/citations?hl=en&user=qhqmxacAAAAJ
https://www.webofscience.com/wos/author/record/IZF-3339-2023
https://orcid.org/0000-0003-4704-5364
https://scholar.google.fr/citations?user=fCfq24sAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=56780201500
https://www.webofscience.com/wos/author/record/O-6421-2018
https://orcid.org/0000-0001-5214-950X
https://www.scopus.com/authid/detail.uri?authorId=57442577900

