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 The development of machine learning (ML) technologies provide a new 

development direction for cryptanalysis. Several ML research in the field of 

cryptanalysis was carried out to identify the cryptographic algorithm used, 
find out the secret key, and even recover the secret message The first 

objective of this study is to see how much influence optimization and 

activation function have on the multi-layer perceptron (MLP) model in 

performing cryptanalysis. The second research objective, which is to 
compare the performance of cryptanalysis in recovering keys and the 

plaintext. Several experiments have been carried out, the observed 

parameters found that the use of the rectified linear unit (ReLU) activation 

function and the ADAM optimizer improves the performance of deep 

learning (DL)-based cryptanalysis as evidenced by a significantly smaller 

error rate. DL-based cryptanalysis works more effectively in recovering keys 

than recovering plaintext. DL-based cryptanalysis managed to recover the 

keys with an average loss of 0.007, an average of 49 epochs, and an average 
time of 0.178 minutes. 
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1. INTRODUCTION  

Cryptography is the study of techniques to ascertain confidentiality and or authenticity of 

information. Cryptography research primarily focuses on two areas: cryptographic design and cryptanalysis [1]. 

Cryptanalysis, commonly known as “code-breaking,” involves techniques to decipher encrypted information. 

Cryptanalysis is the techniques used for deciphering a message without any knowledge of the enciphering 

[2]. Existing cryptanalytic techniques no longer work on new algorithms [3]. Traditional cryptanalysis 

techniques tend to require a large amount of time and resources so that they are not compatible with new 

algorithms, so a new cryptanalysis technique is needed [4]. Advancements in machine learning (ML) 

technology offer a new direction for cryptography and cryptanalysis [5]. The connection between 

cryptography and ML was initially introduced in 1991 [6]. Since then, numerous researchers have explored 

using ML techniques to conduct cryptanalysis on block ciphers. Several ML research in the field of 

cryptanalysis was carried out to guess or identify the cryptographic algorithm used, guess the S-Box, find out 

the secret key and even recover the secret message [4], [7], [8]. Based on previous studies, AI capabilities, 

https://creativecommons.org/licenses/by-sa/4.0/
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especially in the field of deep learning (DL) for cryptanalysis, are considered quite effective against existing 

algorithms [4], [3], [9]. 

Research utilizing DL for cryptanalysis is often found in the context of known-plaintext attack 

(KPA), where the attacker has access to pairs of plaintext and ciphertext, and then uses this information to 

recover the key. [4], [9], [10]–[16]. Previous research in recover plaintext [1] the experimental results show 

that the neural network model developed in this paper achieves excellent results in restoring plaintext, with a 

fitting accuracy exceeding 90% compared to the actual plaintext. Future work will involve further refinement 

in selecting and adapting neural network weights during training. There may be alternative types of neural 

networks for cryptanalysis that could yield surprising outcomes. A lot of experiments [17] using varied 

datasets, keys, and neural network types are planned, with the aim of performing known ciphertext attacks 

through ML algorithms, specifically leveraging neural networks. Research focused on recovering keys on the 

S-DES algorithm was conducted [9], [16] where the accuracy achieved 80%. 

Based on the results of the author’s search, many cryptanalyses of plaintext and key recovery were 

found to be almost balanced, where the purpose of both cryptanalyses is the same to recover the secret key. 

This research is to conduct on what cryptanalysis method is most effective by comparing the two types of 

cryptanalyses. In this study, the author uses the multi-layer perceptron (MLP) neural network model which 

has higher accuracy compared to convolutional neural network (CNN) and long short-term memory (LSTM) 

[9]. Training neural network architectures such as MLP can be formulated as optimization problems; hence, 

they can be solved by some optimization methods [18]. ADAM represents the latest trends in DL 

optimization [19], [20]. More memory efficient and less computational power are two advantages of ADAM. 

ADAM is used to modify the weights to minimize losses on the network. In this study, we focus on the  

S-DES cipher, which, despite its simplicity, effectively encapsulates the core principles of its more complex 

predecessors. The first objective of this study is to see how much influence optimization and activation 

function have on the MLP model in performing cryptanalysis. The second research objective, which is to 

compare the performance of cryptanalysis in recovering keys and the plaintext. Some of the parameters that 

will be observed are loss, epoch and the time take for the cryptanalysis process to run. The contributions of 

this research are: i) to see how much influence optimization and activation functions have on the MLP model 

in performing cryptanalysis; ii) to compare cryptanalysis in terms of recovering keys and plaintext in terms of 

time, epoch and accuracy 

This research offers valuable insights into the application of DL models for cryptanalysis, 

showcasing their potential in breaking down complex encryption schemes. This research discusses 

cryptanalysis for recovering plaintext and keys. Although there have been studies on this topic, they have 

typically been conducted separately and none have explicitly addressed a comparison of the analyzed objects. 

By demonstrating how these advanced algorithms can be leveraged to analyze and potentially compromise 

cryptographic systems, the study paves the way for applying similar techniques to other types of ciphers. 

Furthermore, it establishes a solid foundation for future research in both cybersecurity and cryptography, 

highlighting the need for continued exploration of how artificial intelligence and ML can enhance our 

understanding and capabilities in these critical fields. This work not only contributes to the advancement of 

cryptanalytic methods but also encourages the development of more robust security measures against 

emerging threats. 

 

 

2. LITERATURE REVIEW 

2.1.  Cryptanalysis 

Cryptography is a way to ensure the security of information between communicating parties [21]. 

Cryptography includes cryptography and cryptanalysis [22]. Analytical criticism is known as “breaking the 

code”. Cryptanalysis is a method used by attackers to access information without knowing the secret key 

used [23]. Cryptanalysis with a positive direction can be used as a method to evaluate the security level of 

cryptographic algorithms so as to find weaknesses in order to improve future development directions.  

Critical analysis can also prevent the use of insecure algorithms for real communication. 

 

2.2.  MLP 

MPL a type of feedforward artificial neural network (ANN), is an algorithm for supervised learning. 

It is often regarded as the foundational architecture for DL or deep neural networks (DNN). Typically,  

an MLP is a fully connected network comprising an input layer that handles the incoming data, an output 

layer responsible for making decisions or predictions about the input, and one or more hidden layers 

positioned between these two, which are viewed as the core computational elements of the network. MLP 

employs a supervised learning method known as “Backpropagation” for its training, which is considered a 

crucial component of neural networks and is widely utilized for training feedforward neural networks.  
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The main goal of backpropagation is to adjust the network weights to effectively map inputs to the desired 

outputs. MLP is affected by feature scaling and requires tuning various hyperparameters such as the number 

of hidden layers, neurons, and iterations, which can make it computationally intensive for solving complex 

security models. Nonetheless, MLP is advantageous in learning non-linear models, even in real-time or 

online learning scenarios, by using partial fit [24]. 
 

2.3.  Simplified data encryption standard (S-DES) 

S-DES is a simplified version of the DES algorithm. While it shares characteristics with DES, it 

uses a smaller block size and key, operating on 8-bit message blocks with a 10-bit key. The algorithm 

produces an 8-bit ciphertext block as output. The decryption process is similar to encryption, with the 

primary distinction being that the steps are executed in reverse order [14]. S-DES was designed as a test 

block cipher for learning about modern cryptanalytic techniques [25]. 
 

2.4.  ADAM optimization 

This algorithm optimizes stochastic objective functions using a first-order gradient-based approach 

that relies on adaptive estimates of lower-order moments. It is easy to implement, computationally efficient, 

requires minimal memory, and remains unaffected by diagonal rescaling of gradients. It is particularly 

effective for large-scale problems involving extensive data or numerous parameters and performs well with 

non-stationary objectives or when gradients are highly noisy or sparse. Additionally, the hyper-parameters 

are intuitively meaningful and generally need minimal adjustment [26]. 
 

2.5.  Activation function 

The activation function determines whether the neuron is activated. This means using simpler 

mathematical operations to determine whether the input of neurons to the network is important in the 

prediction process. The role of the activation function is to get the output of a set of input values supplied to 

the node (or layer [27]. Rectified linear unit (ReLU), may appear to be a linear function, yet it has a 

derivative that supports backpropagation, making it both computationally efficient and suitable for training 

neural networks. Mathematically it can be represented as 𝑓(𝑥) = max(0, 𝑥). A key aspect of the ReLU 

function is that it does not activate all neurons simultaneously; neurons become inactive only if the output of 

the linear transformation is below zero. Leaky ReLU enhances the ReLU function by addressing the dying 

ReLU issue, as it introduces a small positive slope in the negative region. Mathematically it can be 

represented as 𝑓(𝑥) = max(0.1𝑥, 𝑥). Its output is not 0 for negative inputs, so it is the improvement of ReLu 

function for the problem of “Dying ReLu”. 

 

 

3. RESEARCH METHOD 
The research method outlines the research framework in this study. The framework presents step by 

step procedures to be carried out at each stage of the research. The concept of DL for cryptanalysis in this 

study consist of two experiments, recovering the secret key and recovering the plaintext. The expected result 

is a comparison of the level of accuracy, time required and the resulting loss. The utilized research method 

will be explained in Figure 1. Figure 1(a) is a cryptanalytic DL concept for recovering keys. The network 

requires input in the form of a pair of plaintext and ciphertext. The output of the targeted network is a key. 

Figure 1(b) shows the concept of DL cryptanalysis to recover plaintext. Input on the network in the form of 

ciphertext. The targeted output is plaintext. To see the performance of DL-based cryptanalysis done with 

compare the ReLu and LeakyRelu activation functions. To improve network accuracy, ADAM optimization 

is added. Measurement of loss value is calculated using MSE. The success of model learning is largely 

determined by the loss achieved ≤ 0.01. 
 
 

  
(a) (b) 

 

Figure 1. Research method of the DL-based cryptanalys (a) to break the key and (b) to break the plaintext 
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3.1.  Encryption using S-DES 

S-DES is a simplified version of the DES algorithm designed for educational purposes. S-DES uses 

a 10-bit key and operates on 8-bit data blocks. The S-DES encryption process involves the following steps 

explained in the Figure 2. 

 

 

 
 

Figure 2. S-DES algorithm [14] 

 

 

a) Key generation: from the original 10-bit key, two 8-bit subkeys are generated using permutation and 

rotation operations. These are known as subkeys K1 and K2. 

b) Initial permutation (IP): the 8-bit plaintext block undergoes an initial permutation called the IP to 

scramble the bits of the plaintext. 

c) Feistel rounds: the encryption process involves two Feistel rounds. In each round: the 8-bit block is 

divided into two 4-bit parts (L and R). The R part is processed using the Feistel function (F), which 

involves expansion/permutation, substitution using S-boxes (S0 and S1), and permutation. The result of 

the Feistel function is XOR with the L part to produce a new R part, and the old R becomes the new L 

part. 

d) Subkey application: subkey K1 is used in the first round, and subkey K2 is used in the second round. 

e) Switching (SW): after the first round, L and R are swapped before the second round begins. 

f) Inverse initial permutation (IP⁻¹): After the two rounds are completed, the resulting 8-bit block undergoes 

a final permutation called the IP⁻¹ to produce the ciphertext. 

Table 1 shows the 8 varying binary keys used in the S-DES encryption. The keys were generated 

randomly to produce varied binary plaintext. The plaintext used in this experiment consists of 94 ASCII 

character. 

 

 

Table 1. S-DES binary key 
Binary key 

0101010101 

1111111111 

0000000000 

1010101010 

1111100000 

1100111010 

1001111000 

 

 

3.2.  Deep learning cryptanalysis 

In this study the architecture of the model used is MPL with 10 hidden layers and each consisting of 

512 nodes. The architecture used is based on references from previous researchers [4]. The architecture is 

built using the tensorflow 2 library, the python programming language and the pycharm IDE. The training 
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process is carried out with the target of stopping two conditions, namely when the target error is 0.01 or 

reaches an epoch of 200,000. In detail the architecture of the DL model can be seen in Table 2. 

 

 

Table 2. DL-based cryptanalysis model setup 
Description Amount 

Hidden layer 10 
Hidden node 512 
Error target ≤0.01 

Epoch 200,000 
Learning rate 0.001 

 

 

3.3.  Loss function 

The loss function addresses the core task of a neural network by measuring the gap between the 

predicted output and the target value. The target value comes with the training data but is not visible to the 

neural network during training, while the predicted value is generated by the network. Different types of loss 

functions exist, each serving specific purposes. The loss function to be used in this research is the mean 

squared error (MSE). MSE loss always produces a positive result, regardless of the sign of the actual and 

predicted values. To improve the model’s accuracy, the loss should be as small as possible or reach the 

perfect value of 0.0. The goal of the training phase in this DNN cryptanalytic research model is to get the 

same predicted value as the plaintext. The MSE loss function can be expressed as follows: 

 

𝑀𝑆𝐸 =
1

𝑁𝑟.𝑚
∑ ∑ (𝑘𝑖

(𝑗)
− �̂�𝑖

(𝑗)
)2𝑚−1

𝑖=0
𝑁𝑟
𝑗=1   

 

where 𝑁𝑟 = number of training sampels; 𝑘𝑖
(𝑗)

 = ith bit of the key corresponding to the jth sample and �̂�𝑖
(𝑗)

 = ith 

output of the DNN corresponding to the jth sample. 

 

 

4. RESULTS AND DISCUSSION 

The first experiment was conducted to obtain the best parameters for the model by comparing the 

use of ReLU and LeakyReLU activation functions. To enhance the model’s performance, the author 

attempted to add ADAM optimization. The resulting loss has an average of 60.1784. Second experiment uses 

the LeakyReLU activation function and the ADAM optimizer. The resulting loss has an average of 40.2961. 

Third experiment uses the ReLU activation function and the ADAM optimizer. The resulting loss has an 

average of 0.04825. The results of this comparison can be seen in Figure 3. 

 

 

 
 

Figure 3. DL-cryptanalysis comparison chart of leakyrelu and relu using adam optimizer 

 

 

From the three experiments, it can be concluded that the best loss resulting from the DL-based 

cryptanalysis model using the ReLU activation function and the ADAM optimizer is 0.04825. This is due to 

the target characteristics of the output data which must have a range between 0 and positive numbers,  
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ReLU is a suitable activation function in this case. ADAM is well known for achieving better performance 

than other methods in the non-convex case. ADAM combines the best properties of the AdaGrad and 

RMSProp algorithms to provide an optimization algorithm that can handle sparse gradients in noise 

problems. In addition to the adaptive learning rate, the weights in the neural network are also adjusted 

adaptively based on the first and second moments of the gradient. This helps achieve faster convergence, 

avoid large spikes in weight updates, and optimize overall model performance and yield. The second 

experiment was conducted to test the performance of DL-based cryptanalysis using the ReLU activation 

function and the ADAM optimizer. The experimental results are presented in Table 3. 

 

 

Table 3. DL-based cryptanalysis comparison on plaintext and key recovery on 26 characters 
 Plaintext recovery Key recovery 

Key Loss Epoch Time (minutes) Loss Epoch Time (minutes) 

0101010101 0.01 100,661 6.71 0.010 12,241 0.8 

1111111111 0.01 35,721 2.3 0.008 24,239 1.6 

0000000000 0.01 32,316 2.15 0.002 10 0.0006 

1010101010 0.01 101,546 6.7 0.009 5,923 0.39 

1111100000 0.01 83,708 5.5 0.010 28,679 1.9 

1100111010 0.600 119,062 7.9 0.009 22,110 1.4 

1001111000 0.086 81,756 5.4 0.010 19,571 1.3 

 

 

Table 3 showing the comparison results between key recovery and plaintext recovery in terms of 

loss, epoch and time required. In this experiment, DL-based cryptanalysis attempted to compare the 

performance in recovering plaintext and recovering keys. The data set tested was 26 characters consisting  

of the letters a to z. Given seven different kinds of keys from patterned to random. The DL-based 

cryptanalysis experiment in recovering plaintext resulted in an average loss of 0.105. While the experiment in 

recovering the key resulted in a smaller loss, namely an average of 0.008. In terms of the epochs in the  

DL-based cryptanalysis experiment to recover plaintext, the average epoch was 28,738. While the  

experiment in recovering the key resulted in smaller epochs, namely an average of 17 epochs. The time 

required in the DL-based cryptanalysis experiment to recover the plaintext resulted in an average of 5.23 

minutes. While the experiment in recovering the key resulted in a shorter time, namely 1.05 minutes  

on average. 

The experimental results in Table 3 are visualized graphically in Figure 4. Figure 4(a) is a graph that 

visualizes the comparison of errors in key and plaintext recovery. The key recovery error shows good and 

consistent results. However, plaintext recovery displays a random pattern, where the 6th and 7th keys used 

for encryption affect the resulting loss. Figure 4(b) is a graph that visualizes the comparison of epochs 

between key and plaintext recovery. Figure 4(c) is a graph that visualizes the comparison of time between 

key and plaintext recovery. Plaintext recovery shows that more epochs and time are needed compared to key 

recovery. The last experiment uses the ReLU activation function and the ADAM optimizer, the character is 

expand to 94 characters consisting of a combination of letters, numbers and symbols. The experimental 

results are presented in Table 4. 

Table 4 showing the comparison results between key recovery and plaintext recovery in terms of 

loss, epoch and time required with expanded data. The DL-based cryptanalysis experiment in recovering 

plaintext with 94 characters experienced a very large increase in loss, namely an average of 301,285. While 

the experiment in recovering the key resulted in a smaller loss, namely an average of 0.007. In terms of 

epochs required in DL-based cryptanalysis experiments to recover plaintext yielded average epochs above 

200,000. While the experiment in recovering the key resulted in smaller epochs, namely an average of 49 

epochs. The time required for DL-based cryptanalysis experiments to recover plaintext results in an average 

of over 30 minutes. While the experiment in recovering the key resulted in a shorter time, which was an 

average of 0.178 minutes. The experimental results in Table 4 are visualized graphically in Figure 5.  

Figure 5(a) is a graph that visualizes the comparison of errors in key and plaintext recovery. Figure 5(b) is a 

graph that visualizes the comparison of epochs for key and plaintext recovery. Figure 5(c) is a graph that 

visualizes the comparison of time for key and plaintext recovery. We found that increasing the amount of 

data affects the error, epochs, and time required for plaintext recovery. The model was unable to recover the 

plaintext and failed to learn the provided data patterns. The highly random nature of large data sets requires 

further research to construct effective data and models with enhanced hyperparameters. Future studies may 

explore using more varied data and an improved model. 
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(a) (b) 

  

 
(c) 

 

Figure 4. Comparison on plaintext and key recovery: (a) loss, (b) epoch, and (c) time required on  

26 characthers 
 

 

Table 4. DL-based cryptanalysis comparison on plaintext and key recovery 
 Plaintext recovery Key recovery 

Key Loss Epoch Time (minutes) Loss Epoch Time (minutes) 

0101010101 752 200.000 > 30 0.0082 318 0.02 

1111111111 331 200.000 > 30 0.0088 5,429 0.36 

0000000000 81 200.000 > 30 0.0090 7 0.0004 

1010101010 215 200.000 > 30 0.0025 2,051 0.13 

1111100000 145 200.000 > 30 0.0085 7,629 0.5 

1100111010 273 200.000 > 30 0.0083 1,316 0.087 

1001111000 312 200.000 > 30 0.0088 2,356 0.15 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 5. Comparison on plaintext and key recovery: (a) loss, (b) epoch, and (c) time required on  

94 characthers 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 2, May 2025: 1115-1123 

1122 

5. CONCLUSION 

The first objective of this study is to determine the influence of optimization and activation 

functions on the MLP model in performing cryptanalysis. The second objective is to compare cryptanalysis 

in terms of recovering keys and plaintext in terms of time, epochs, and accuracy. Based on the experimental 

results, it is shown that the selection of the appropriate activation function and optimization plays a crucial 

role in improving the accuracy of the network model. In this study, the best results were obtained using the 

ReLU activation function and ADAM optimization, as evidenced by a significant reduction in loss.  

The research results also indicate that cryptanalysis is more effective at recovering keys than plaintext.  

DL-based cryptanalysis successfully recovered keys with an average loss of 0.007, an average of 49 epochs, 

and an average time of 0.178 minutes. 

Future research can be developed by attempting hyperparameter selection using optimization 

algorithms. The appropriate selection of hyperparameters will maximize the model’s performance in 

conducting cryptanalysis. Cryptanalysis experiments on other lightweight cryptographic algorithms can also 

be conducted considering the emergence of new algorithms. 
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