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 Recently, there has been a notable increase in the use of video content on the 

internet, leading for the creation of improved codecs like versatile-video-

coding (VVC) and high-efficiency video-coding (HEVC). It is important to 
note that these video coding techniques continue to demonstrate quality 

degradation and the presence of noise throughout the decoded frames.  

A number of deep-learning (DL) algorithm-based network structures have 

been developed by experts to tackle this problem; nevertheless, because 
many of these solutions use in-loop filtration, extra bits must be sent among 

the encoding and decoding layers. Moreover, because they used fewer 

reference frames, they were unable to extract significant features by taking 

advantage from the temporal connection between frames. Hence, this paper 
introduces inter-layer motion prediction aware multi-loop video coding 

(ILMPA-MLVC) techniques. The ILMPA-MLVC first designs an multi-

loop adaptive encoder (MLAE) architecture to enhance inter-layer motion 

prediction and optimization process; second, this work designs multi-loop 
probabilistic-bitrate aware compression (MLPBAC) model to attain 

improved bitrate efficiency with minimal overhead; the training of ILMPA-

MLVC is done through novel distortion loss function using UVG dataset; 

the result shows the proposed ILMPA-MLVC attain improved peak-singal-
to-noise-ratio (PSNR) and structural similarity (SSIM) performance in 

comparison with existing video coding techniques. 

Keywords: 

Bit-rate 

Deep learning 

Entropy coding 

Inter-layer 

Learned video compression 

Motion prediction 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Sandeep Gowdra Siddaramappa 

Department of Information Science and Engineering, R. V. College of Engineering 

Affiliated to Visvesvaraya Technological University 

Belagavi-590018, India 

Email: yashasgowdaniharika@gmail.com 

 

 

1. INTRODUCTION 

The proliferation of portable electronic devices like smartphones and tablets has boosted innovation 

in the video sector, making video content accessible from anywhere, at any time. High-resolution [1] movies 

are becoming more integrated into the daily lives of individuals because of technical advancements. To create 

a more real-life experience, new video codecs are being developed, such as high-frame rate (HFR), high-

dynamic-range (HDR) and ultra-high definition (UHD) having 8K and 4K resolutions [2]. Therefore, it is 

crucial to find ways to compress video information more efficiently without losing quality [3]. Moreover, 

improved quality of transmission and decreased transmission and storage costs are also possible outcomes of 

technological advancements in video encoding and decoding [4]. Several global video-coding standards are 

being developed in order to improve performance even further, increase adaptability, and ease the burden on 

the Internet. The latest of the video-coding standards is versatile-video-coding (VVC), which is a variant of 

https://creativecommons.org/licenses/by-sa/4.0/
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high-efficiency video-coding (HEVC). Despite the high compressing performance attained by these 

standards, they still face a number of issues. Hence, these methods are not capable of meeting the 

requirements for low latency, high frame-rate, and high resolution [5]. 

The latest innovation in video and image compression is through end-to-end learning which has 

been brought about by the development of deep-learning (DL) [6], [7]. When comparing DL-based video and 

image compression approaches to standard block-based video-compressing approaches, it has been observed 

that the DL-based approaches can accomplish higher data compressing rates without compromising the 

image or video quality. Du et al. [7] established a significant link among the compression of images along 

with the hyperprior-based approach, resulting in the development of end-to-end image-compression. 

Moreover, numerous cutting-edge neural video compression (NVC) approaches [7], [8] use compensation 

networks and motion estimation to forecast between frames to achieve a short delay configuration. These 

include pixel-motion convolutional neural network (PMCNN) [8], which relies on hybrid forecasting 

networks and movement extension; NVC [9], which aggregates connected spatial-temporal assumptions; and 

deep video compression (DVC) [10], which uses end-to-end deep video encoding instead of the conventional 

video-coding architectures. These techniques employed variational auto-encoder (VAE) for compressing 

optical-flow and residuals, and utilized motion vectors estimates, like optical-flow, for representing temporal 

data contained within the video. 

Additionally, several solutions for B-frame compression have been developed by various 

researchers. For example, Jia et al. [11] developed allocation methods and recurrent improvement techniques. 

Hu et al. [12] focused on designing interpolation-based video encoding networks and used optical-flow 

encoding networks which were capable of decoding both interpolation coefficients and optical-flow 

simultaneously. Nevertheless, the presented DL-based video encoding [13]-[17] methods have restrictions on 

the total quantity of references that may be utilized to encode more frames, which limits their capacity to 

investigate temporal correlations and eliminate redundancies. Furthermore, earlier DL-based method’s [18], 

[19], i.e., entropy coding similarly estimated the probability associated with the hidden feature 

representations upon every frame separately, neglecting the relationship among adjacent frames hidden 

feature representations. From a researcher’s perspective, it is worth noting that time correlations in the hidden 

feature area can additionally be investigated using a hybrid learning approach combining convolutional and 

recurrent networks. Hence, this paper proposes an inter-layer motion prediction-aware multi-loop video 

coding (ILMPA-MLVC) which is composed of multiloop adaptive encoder and multiloop probabilistic 

bitrate aware compression model. The presented ILMPA-MLVC method utilizes recurrent networks to 

represent a given input; reconstructs encoded outputs and models probabilistic function during entropy 

coding. For more specific information, the multi-layer adaptive-encoder (MLAE) network has been presented 

where all preceding frames can be considered as points of reference for compressing the present frame.  

In addition, the given multi-loop probabilistic-bitrate aware compression (MLPBAC) network iteratively 

constructs the video frame’s probability function based on all past hidden feature representations; thus,  

has the capability of achieving a lower bit-rate for compressing video frames. The main contribution of the is 

given below: 

 The proposed ILMPA-MLVC utilized convolution and recurrent framework within learned video 

compression to effectively utilize the temporal relationship between a wide range of video frames. 

 To increase the number of possible reference frames, ILMPA-MLVC presents a method using an auto-

encoder designed combining convolutional and recurrent networks. For estimating the hidden feature 

representational temporally conditioned probability functions, the ILMPA-MLVC utilized a recurrent 

probabilistic approach to obtain good bit-rate performance. 

 The ILMPA-MLVC method outperformed state-of-the-art video compression techniques throughout the 

tests, and the performance of ILMPA-MLVC was confirmed through the results. 

The paper organization is as follows. In section 2 discusses various current methodologies designed 

to attain enhanced bitrate performance and highlight metric and dataset used to validate the model and its 

limitations. In section 3 presents a novel deep learning-based video encoder architecture that is efficient in 

effectively predicting inter-layer motion prediction and optimizing it for better temporal representation. In 

section 4, the performance efficiency of proposed approach is studied using UVG dataset in terms of peak-

singal-to-noise-ratio (PSNR) and structural similarity (SSIM) and compared with current baseline video 

compression models. In section 5 discusses the significance of proposed approaches and future research 

direction. 

 

 

2. LITERATURE SURVEY 

This section studies various existing video coding method to attain improved video quality with 

better perception and limited computation overhead. Hu et al. [12], presented an approach called hyperprior 
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deep-video compression (HDVC). This work considered end-to-end compression instead of block-based 

compression using deep learning. They presented a residual-channel attention intermediary module for both 

decoding and encoding for enhancing the frames during reconstruction. The evaluation was done using MS-

SSIM and PSNR on UVG dataset. Findings show that HDVC achieved 32.93 average PSNR and 40.92 MS-

SSIM on UVG dataset. Further evaluation was conducted on MCL-JCV dataset where it achieved PSNR of 

6.03 and MS-SSIM of 21.85. Das et al. [13], presented a neural-network which was based on post-processing 

approach for enhancing decoded frames. Here, they used quantization-parameter (QP) mapping initially for 

achieving high-quality images. Further, this work utilized a convolutional neural network (CNN) where the 

QP map output along with the reconstructed frame from the dataset were used as an input for the CNN layer. 

The CNN layer extracted n features from the images and finally provided a quality-enhanced frame.  

This work utilized the videos from MCL-JCV dataset [14], and two metrics were used for evaluation, i.e., 

peak-singal-to-noise-ratio (PSNR) and Bjøntegaard Delta (BD∆). Findings from the results showed that,  

the neural-network achieved BD∆ values of 5.21% for all-intra configurations, 4.13% for low-delay 

configurations and 4.54% for random access (RA) configuration. The PSNR values also showed better values 

in comparison with a CNN post-processing approach [15]. 

Thang and Bang [16], presented an interpolation network approach for improving the prediction of 

inter-frames. Here, they presented a RA configuration within a neural video coding and a frame network for 

predicting the next frame. Finally, they presented an end-to-end-hierarchal deep video-compression network 

and a loss function was used for evaluating the losses for maximizing the quality of frame during 

reconstruction. This work utilized the UVG dataset [17] and HEVC dataset [18] for evaluating their work. 

Also, this work utilized the BD∆ and running time as performance metrics. The findings show that the for 

UVG dataset, the interpolation network achieved 48.01% of BD∆ and for HEVC-class B dataset, the 

interpolation network achieved 50.96% of BD∆ when compared with deep-video-compression (DVC), DVC 

Pro [19], and scale-space flow (SSF) compression [20] approaches. Yoon et al. [21], first presented a 

textural-detail preservation-network (TDPNet) for analysing the details, noise and texture of the frame in a 

video. Form the analysis, this work presented an approach called perceptual-training method (PTM) for 

solving issue of PSNR for preserving high number of textural details. Further, they presented a multi-scale 

resolution-training method (MRTM) for solving problem of poor efficiency when evaluating on different 

datasets. This work evaluated their work on UVG, SNU-FILM [22], HD [23], and Vimo90K [24] datasets. 

Further, the evaluation was done using PSNR, perceptual similarities, DISTS [25], and LPIPS [26].  

The findings showed PTM achieved an PSNR of 29.3. He et al. [27], presented an approach called deep 

neural representation for videos (D-NeRV) for encoding various kinds of videos by decoupling specified 

frame visual-content using motion data, providing temporal decision making for implicit neural networks and 

using a task-oriented approach for the intermediary output for reducing spatial redundancy. The evaluation 

was done on two datasets, i.e., UVG, DAVIS [28], and UCF101 [29] dataset. The evaluation was done using 

multi-scale structural similarity (MS-SSIM) and PSNR. The D-NeRV achieved average PSNR of 35.52 for 

UVG, 30.06 and 0.951 for PSNR and MS-SSIM for UCF-101 dataset and average PSNR of 21.3 for DAVIS 

dataset. 

Choi et al. [30], presented an approach called Bi-directional optical-flow (BDOF) for refining bi-

prediction block. Further, this work presented a design called an attention-based Bi-prediction-network 

(ABPN) for substituting the entire current existing bi-prediction approaches for achieving better video 

reconstruction. The evaluation was conducted using DVI-DVC [31] dataset. The findings show that the 

proposed approach achieved better results, i.e., reduced BD∆ by 4.91% and 5.89% for LDB and RA in 

comparison with existing approach. Kwan et al. [32], presented an approach called HiNeRV which contains 

light-weight layers having layered wise positional-encodings. This work used deep CNN approach, multi-

layer-perceptron (MLP) and interpolation networks for encoding the frames of videos and offering a better 

approach for solving the issue of patches in videos. The evaluation was done using MCL-JCV and UVG 

dataset. Also, evaluation was conducted using PSNR. Findings show that the HiNeRV approach achieved 

better bit-rate saving of 72.3% and 43.4% PSNR in comparison with existing approaches. The HiNeRV 

achieved average PSNR of 36.27 on UVG dataset. Wang et al. [33], presented an edge-oriented compressed-

video super-resolution network (EOCVSR) for reconstruction of video frames providing better quality 

details. In this work, they first presented a motion-guided alignment-module (MGAM) for achieving Bi-

direction motions in a multi-scale way. Further, presented an edge-oriented recurrent-block (EOB) for 

reconstructing edges of the frames using implicit and explicit edge extraction approach. This work 

considered Vimeo, MCL-JCV, UVG, and CTC [34] dataset. Evaluation of EOCVSR was done by 

considering quality-enhancement PSNR and rate-distortion (BD∆). The EOCVSR achieved average PSNR of 

30.262 for CTC and Vimeo and average PSNR of 31.76 for UVG and MCL-JCV dataset. 

 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 1, January 2025: 569-579 

572 

3. PROPOSED METHOD 

This section introduces a novel multi-loop video coding scheme through effective inter-layer motion 

prediction employing novel multi-loop encoder architecture combined with multiloop probabilistic bitrate 

aware encoder-decoder model, as presented in Figure 1. Finally, shows the training optimization adopted 

using proposed video encoder model to attain improved PSNR and SSIM. 

 

 

 
 

Figure 1. The architecture of proposed multi-loop inter-layer motion prediction aware video coder 

 

 

3.1.  System framework 

The architecture of ILMPA-MLVC is presented in Figure 2. This work has drawn inspiration from 

conventional video codecs and uses motion-optimization, which has already been shown to be extremely 

useful in learning compression [34], and to decrease video frame redundancies. To pinpoint the temporal 

motion difference among the preceding compressed frame along with the earlier compressed frame, for 

instance, 𝑔𝑢 and �̂�𝑢−1, we utilize an optical-flow network [34]. 

 

 

 
 

Figure 2. Framework of proposed multi-loop adaptive video coding 

 

 

In this work the compressed and raw frames are represented as {�̂�𝑢}𝑢=1
𝑈  and {𝑔𝑢}𝑢=1

𝑈  respectively. 

Further, the suggested MLAE compresses the predicted motion 𝑦𝑢
𝑛, and the resulting compression motion �̂�𝑢

𝑛 

is used as motion-optimization. The motion-optimization approach used in our work is similar to [34].  
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In this study, the residual (𝑦𝑢
𝑠) among the original frame 𝑔𝑢 along with the motion- optimized frame 𝑔𝑢

′  was 

determined and compressed using an additional MLAE. Considering the compressed-residual as �̂�𝑢
𝑠, the 

compressed frame �̂�𝑢 = 𝑔𝑢
′ + �̂�𝑢

𝑠 is capable of being reconstructed. The residual and motion compression, 

represented as 𝑧𝑢
𝑠 and 𝑧𝑢

𝑛 respectively, the proposed MLAE utilizes two layer-encoders (LEs) in every frame 

to generate latent-representations. Further, for compressing 𝑧𝑢
𝑠 and 𝑧𝑢

𝑛 into bit-streams, this work presents 

MLPBAC network for recursively predicting temporal condition probability-function of {𝑧𝑢
𝑠}𝑢=1

𝑈  and 

{𝑧𝑢
𝑛}𝑢=1

𝑈 . The conditioned cross-entropy is anticipated to be less compared to the independent cross-entropy 

employed in standard learning techniques because there exists a temporal link between video frames. 

Therefore, bit-rate for entropy-coding is successfully decreased by employing conditional probability-

function calculated by proposed MLPBAC network [12]. 

 

3.2.  Multi-loop adaptive encoder architecture 

As previously stated, two LEs are utilized for compressing 𝑦𝑢
𝑛 and 𝑦𝑢

𝑠. To keep things simple, we 

will refer to both 𝑦𝑢
𝑛 and 𝑦𝑢

𝑠 as 𝑦𝑢 in the following subsections since the structure of the two LEs is identical. 

In standard learning-based video compression techniques [12], the 𝑢𝑡ℎ frame is compressed by mapping the 

input 𝑦𝑢 into a hidden feature-representation using an encoder 𝐹, which is parameterized with 𝜑𝐹. Next, the 

continuous-valued �̃�𝑢 is converted into a discrete-valued 𝑧𝑢 = ⌊�̂�𝑢⌋ by quantization. The �̂�𝑢 can be 

represented using (1). Further, the output which has been compressed is built again using decoder by 

utilization of quantized hidden feature-representations as presented in (2). By providing the decoder and 

encoder with solely the present frame’s 𝑦𝑢 and 𝑧𝑢 as inputs, they are unable to make use of the temporal 

connection between succeeding frames. 

 

�̂�𝑢 = 𝐸(𝑦𝑢; 𝜑𝐹) (1) 

 

�̂�𝑢 = 𝐸(𝑧𝑢; 𝜑𝐸) (2) 

 

On the other hand, the suggested MLAEs incorporate recurring cells within the decoder and 

encoder. The structure for the MLAEs network is depicted in Figure 3. In this work, we implemented an 

encoder for MLAE using four 2 × down-sampling layers of convolution, following the approach described in 

[12]. We also used the enhanced GDN [35] as an activating function for the encoder. Within the MLAE 

architecture consisting of 4 layers of convolution, a ConvGRU [36] cell is incorporated to establish a multi-

loop encoder framework. Consequently, any information coming from preceding frames is transmitted across 

the encoding network for the present frame using the hidden configurations of ConvGRU. Thus, the MLAEs 

suggested in this study produce hidden feature-representations by considering both present and prior inputs. 
 
 

 
 

Figure 3. Multiloop adaptive encoder architecture 
 

 

Furthermore, the decoder present in MLAE utilizes ConvGRU cell in between of four 2 × up-

sampling layers of convolutional using IGDN [35], and further reconstruction of �̂�𝑢 takes place using 

previous and current latent-representations. In conclusion, the MLAE network is formulated using (3). From 

both the (3) and (4), it is possible to consider all prior frames as frames of reference for compressing the 

present one. This means that the present method can utilize data from an extensive variety of frames, which is 

a significant improvement compared to the small number of reference frames used in up-to-date baseline 

techniques [12]. 
 

𝑧𝑢 = ⌊𝐹(𝑦1, … , 𝑦𝑢; 𝜑𝐹)⌉ (3) 
 

�̂�𝑢 = (𝑧1, … , 𝑧𝑢; 𝜑𝐸) (4) 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 1, January 2025: 569-579 

574 

3.3.  Multi-loop probabilistic bitrate aware compression model 

In compressing the complete sequences of hidden feature-representations, represented as {𝑧𝑢}𝑢=1
𝑈 , in 

this work a network called as MLPBAC is presented for entropy-coding is presented in Figure 4. Initially, 

this work utilizes 𝑟(𝑧𝑢) and 𝑞(𝑧𝑢) for representing estimated and true independent probability functions of 𝑧𝑢. 
 

 

 
 

Figure 4. Architecture of multiloop probabilistic bitrate aware compression model 
 

 

The anticipated bit-rate for 𝑧𝑢 is represented as cross-entropy presented in (5). It should be taken 

into account that entropy-coding [12] has the capability of encoding 𝑧𝑢 with a bit-rate which is equivalent to 

that of cross-entropy, with minimal additional data. It is evident from (5) that when 𝑧𝑢 possesses a higher 

level of certainty, the bit-rate is likely to be reduced. Moreover, distribution of 𝑧𝑢 in successive frames is 

associated because of the temporal link between video frames. Thus, given the knowledge of prior latent-

representations 𝑧1, … , 𝑧𝑢−1, it is anticipated that the present representation 𝑧𝑢 will exhibit a higher level of 

certainty. In other words, we can define 𝑟𝑢(𝑧𝑢|𝑧1, … , 𝑧𝑢−1) and 𝑞𝑢(𝑧𝑢|𝑧1, … , 𝑧𝑢−1) as estimated and true 

temporal conditioning probabilistic functions of 𝑧𝑢, and it has to be noted that the condition cross-entropy 

could be less in comparison with independent cross-entropy presented in (5). Hence, for achieving the 

anticipated bit-rate, (6) is presented. The (6) represents the MLPBAC network which is used as recurrent 

model for the condition probabilistic functions 𝑟𝑢(𝑧𝑢|𝑧1, … , 𝑧𝑢−1). 
 

𝐻(𝑞, 𝑟) = ℰ𝑧𝑢~𝑞[−𝑙𝑜𝑔2𝑟(𝑧𝑢)] (5) 

 

𝐻(𝑞𝑢 , 𝑟𝑢) = ℰ𝑧𝑢~𝑞𝑢
[−𝑙𝑜𝑔2𝑞𝑢(𝑧𝑢|𝑧1, … , 𝑧𝑢−1)] (6) 

 

To be more precise, adaptable entropy-coding [12] enables us to modify the probability functions 

associated with every component in 𝑧𝑢, resulting in the estimation of various conditional probability 

functions 𝑟𝑗𝑢(𝑧𝑗𝑢|𝑧1, … , 𝑧𝑢−1), for various components 𝑧𝑗𝑢. In this study, 𝑧𝑗𝑢 has been defined as the 

component located within the 𝑗𝑡ℎ 3𝐷 position in 𝑧𝑢. The condition probabilistic functions of 𝑧𝑢 are 

mathematically expressed as (7) where 𝑂 represents overall 3𝐷 positions present in 𝑧𝑢. In this work, the 

𝑟𝑗𝑢(𝑧𝑗𝑢|𝑧1, … , 𝑧𝑢−1) is modeled for every component as separated logistic-distribution. Given that the 

quantification functioning in LE quantifies all �̃�𝑗𝑢 into a single value of 𝑧𝑗𝑢, hence, we can determine the 

condition probabilistic function of the quantified 𝑧𝑗𝑢 through integration of a continuous logistic-distribution 

from (𝑧𝑗𝑢 + τ) to (𝑧𝑗𝑢 − τ). 

 

𝑟𝑢(𝑧𝑢|𝑧1, … , 𝑧𝑢−1) = ∏ 𝑟𝑗𝑢(𝑧𝑗𝑢|𝑧1, … , 𝑧𝑢−1)𝑂
𝑗=1  (7) 

 

𝑟𝑗𝑢(𝑧𝑗𝑢|𝑧1, … , 𝑧𝑢−1) = ∫ Logistic(𝑧; 𝛽𝑗𝑢 , 𝑡𝑗𝑢)𝑑𝑧
𝑧𝑗𝑢+ τ

𝑧𝑗𝑢− τ
 (8) 

 

Where the logistic-distribution is evaluated using (9). Also, the sigmoid-distribution for (9) can be 

denoted using (10). From (8)-(10), the overall condition probabilistic function can be represented using (11). 
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Further, from (11), the conditional probabilistic function for every location is defined using variables 𝑡𝑗𝑢 (12) 

and 𝛽𝑗𝑢 (13) which keep on vary with respect to the various location present in 𝑧𝑢. Hence, the MLPBAC 

network persistently estimates the logistic-distribution using (10). 

 

Logistic(𝑧; 𝛽, 𝑡) =
exp(−(𝑧−𝛽) 𝑡⁄ )

𝑡(1+exp(−(𝑧−𝛽) 𝑡⁄ ))
2 (9) 

 

Logistic(𝑧; 𝛽, 𝑡)𝑑𝑧 = Sigmoid(𝑧; 𝛽, 𝑡) + 𝐶 (10) 

 

𝑟𝑗𝑢(𝑧𝑗𝑢|𝑧1, … , 𝑧𝑢−1) = Sigmoid(𝑧𝑗𝑢 + 0.5; 𝛽𝑗𝑢 , 𝑡𝑗𝑢) − Sigmoid(𝑧𝑗𝑢 + 0.5; 𝛽𝑗𝑢 , 𝑡𝑗𝑢) (11) 

 

𝑡𝑢 = {𝑡𝑗𝑢}
𝑗=1

𝑂
 (12) 

 

𝛽𝑢 = {𝛽𝑗𝑢}
𝑗=1

𝑂
 (13) 

 

Figure 4 presents the framework that makes up the MLPBAC network, showcasing the inclusion of 

a network of recurrence 𝑄 with layers of convolution along with a ConvGRU cell positioned in the center. 

Further, the generation of 𝛽𝑢 and 𝑡𝑢 is dependent upon all prior hidden feature-representations, which is 

caused by the recurrent architecture. This is represented using (14) where, 𝜑𝑄 denotes the training variable in 

MLPBAC. As 𝑃 considers prior hidden feature -representations 𝑧1, … , 𝑧𝑢−1 as an input, 𝛽𝑢 along with 𝑡𝑢 

trains the model using the probability function of every 𝑧𝑢 on the basis of 𝑧1, … , 𝑧𝑢−1 using (11). Further, 

condition probabilistic function 𝑟𝑗𝑢(𝑧𝑗𝑢|𝑧1, … , 𝑧𝑢−1) are subjected to the adaptable entropy-coding [12] for 

encoding 𝑧𝑢 into a bit-stream. 

 

𝛽𝑢 , 𝑡𝑢 = 𝑄(𝑧1, … , 𝑧𝑢−1; 𝜑𝑄) (14) 

 

3.4.  Training optimization 

In this study, the PSNR and MS-SSIM index are utilized for evaluation of compression quality 

through optimization of distortion 𝐷. The bit-rates for 𝑧1
𝑛 and 𝑧1

𝑠 are denoted as 𝑆1(𝑧1
𝑛) and 𝑆1(𝑧1

𝑠) 

respectively. The P-frames provided in the dataset have been compressed using the MLPBAC network 

suggested in our research. For 𝑢 ≥ 2, the researcher is able to determine the exact bit-rate. The relationship 

between 𝑟𝑢(𝑧𝑗𝑢|𝑧1, … , 𝑧𝑢−1) is represented by the suggested MLPBAC approach, as described in (7) to (14). 

It should be noted that, under the assumption that distribution for the set used for training is the same as the 

accurate distribution. Further, the actual bit-rate 𝑆𝑀𝐿𝑃𝐵𝐴𝐶(𝑧𝑢) is anticipated to correspond with the 

conditioned cross-entropy in (6). In our research strategy, we utilize a pair MLPBAC networks to process the 

hiddent feature-representations of residual and motion. The bit-rates for both of these networks are denoted 

as 𝑆𝑀𝐿𝑃𝐵𝐴𝐶(𝑧𝑢
𝑛) and 𝑆𝑀𝐿𝑃𝐵𝐴𝐶(𝑧𝑢

𝑠) respectively. The ILMPA-MLVC approach used in our research was 

developed on the traditional UVG [37] dataset. In this dataset, the initial frames were compressed as the I-

frame, while all the remainder the remaining frames were considered as P-frames. Therefore, the training 

process was improved by progressively incorporating P-frame 𝑔1. Initially, the inter-layer estimation of 

motion network underwent training using the loss function as presented in (16) where,  

𝑦1
𝑛 represents output for motion estimated network as presented in Figure 2, and 𝑋 represents warping 

process. Moreover, when the 𝕃𝐼𝐿𝑀𝐸 was converged, the MLAE network was incorporated for motion 

compression and for motion-optimization network in training process, utilizing the loss-function presented  

in (17). 

 

𝑆𝑀𝐿𝑃𝐵𝐴𝐶(𝑧𝑢) = − log2(𝑟𝑢(𝑧𝑢|𝑧1, … , 𝑧𝑢−1)) = ∑ log2 (𝑟𝑗𝑢(𝑧𝑗𝑢|𝑧1, … , 𝑧𝑢−1))𝑂
𝑗=1 ) (15) 

 

𝕃𝐼𝐿𝑀𝐸 = 𝐸(𝑔1, 𝑋(𝑔0, 𝑦1
𝑛))) (16) 

 

𝕃𝐼𝐿𝑀𝑂 = 𝛿 ∙ 𝐸(𝑔1, 𝑔1
′ ) + 𝑆1(𝑧1

𝑛)) (17) 

 

Further, after convergence of 𝕃𝐼𝐿𝑀𝑂, the overall network was merged and trained on 𝑔1 by using the 

loss represented in (18). Next, we use a loss function for training recurrent model end-to-end using the 

sequential-training frames as presented in (19). Throughout the training process, the relaxation of 

quantization was implemented using the method described in [12]. This is done in order to prevent the 
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occurrence of zero gradients. In our research, we followed the methodology outlined in [12] to determine the 

values of 𝛿. The Adam optimizer was employed for training. For each loss-functions presented in (16)-(19), 

the initial rate at which they are learned was set to 10−4. When training the entire model using the final loss 

presented in (19), the learning rate was decreased by a factor of 10 following convergence till it reaches 

10−6. The suggested ILMPA-MLVC approach demonstrates a favorable equilibrium among accomplishing 

higher PSNR and improved MS-SSIM, as illustrated in the below section. 

 

𝕃1 = 𝛿 ∙ 𝐸(𝑔1, �̂�1) + 𝑆1(𝑧1
𝑛) + 𝑆1(𝑧1

𝑠)) (18) 

 

𝕃 = 𝛿 ∙ ∑ 𝐸(𝑔1, �̂�1) + 𝑆1(𝑧1
𝑛) + 𝑆1(𝑧1

𝑠)𝑀𝐴𝑋
𝑢=1 + ∑ (𝑆𝑀𝐿𝑃𝐵𝐴𝐶(𝑧𝑢

𝑛) + 𝑆𝑀𝐿𝑃𝐵𝐴𝐶(𝑧𝑢
𝑠))𝑀𝐴𝑋

𝑢=1 ) (19) 

 

 

4. RESULTS AND DISCUSSION 

This section studies the performance of proposed ILMPA-MLVC over various existing video coding 

methodologies like hierarchical random-access coding for deep neural video compression (HRAC) deep 

neural video compression (DNVC) [4], HDVC [25]. The video compression performance is studied using 

UVG [37] dataset; the dataset is generated with video resolution of 3840×2160, a total of 7 videos, out of 

which like [16] the first 300 frames are used in each video for experiment analysis. Different case studies and 

methodologies have been considered and performance is measured in terms of PSNR and MS-SSIM. 

 

4.1.  Case-study 1 

In the first case the performance of ILMPA-MLVC is compared with HRAC-DNVC [16], DVC-Pro 

[19], DVC [10], and SSF [38] using UVG dataset. Figure 5 shows the PSNR outcome considering varied 

BPP i.e., rate distortion curve; The curve with higher value indicates superior performance. The result shows 

SSF experience poor PSNR and HRAC-DNVC attains much better PSNR in comparison with DVC and 

DVCPro. On the other hand, the ILMPA-MLVC attains much improved PSNR in comparison with HRAC-

DNVC. Thus, are tolerable to varying distortion levels in comparison with all current video compression 

methods. 

 

4.2.  Case-study 2 

This section studies the performance of flow-based methods like CAIN [1], AdaCoF [2], ABME [3], 

RIFE [4], IFRNet [5], TDPNet [20], and proposed ILMPA-MLVC methods. Figure 6 shows the PSNR 

outcome considering varied Bpp i.e., rate distortion curve; The curve with higher value indicates superior 

performance. The result shows the proposed ILMPA-MLVC methods attain improved PSNR performance 

considering varied BPP in comparison with CAIN, AdaCoF, ABME, RIFE, IFRNet [5], and TDPNet [10] 

methods. In Table 1, comparative study between proposed ILMPA-MLVC and TDPNet methods in terms of 

PSNR considering two UVG video sequence such as Honeybee and Beuty. In both cases the ILMPA-MLVC 

attains much higher PSNR in comparison to TDPNet. Thus, shows the efficiency of the proposed video 

compression model. 

 

 

  
 

Figure 5. PSNR performance attained by different 

models with varying BPP levels 

 

Figure 6. PSNR performance attained by different 

models with varying BPP levels 
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Table 1. PSNR performance summary of literature survey 
Models PSNR [TDPNet] PSNR [ILMPA-MLVC] 

HoneyBee 38.672 40.3297 

Beauty 30.294 35.2415 

 

 

4.3.  Case-study 3 

In this case the performance of ILMPA-MLVC is compared with deep learning-based entropy 

coding methods like DVC [17], and HDVC [34] using UVG dataset. Figure 7 shows the PSNR outcome 

considering varied BPP i.e., rate distortion curve; the curve with higher value indicates superior performance. 

The result shows DVC experience poor PSNR and HDVC attains much better PSNR in comparison with 

DVC. On the other hand, the ILMPA-MLVC attains much improved PSNR in comparison with DVC and 

HDVC. Figure 8 shows the MS-SSIM outcome considering varied BPP i.e., rate distortion curve; The curve 

with higher value indicates superior performance. The result shows DVC experience poor MS-SSIM and 

HDVC attains much better MS-SSIM in comparison with DVC. On the other hand, the ILMPA-MLVC 

attains much improved MS-SSIM in comparison with DVC and HDVC. Thus, are tolerable to varying 

distortion levels in comparison with all current video compression methods. 

 

 

  
 

Figure 7. PSNR performance attained by different 

models with varying BPP levels 

 

Figure 8. PSNR performance attained by different 

models with varying BPP levels 

 

 

5. CONCLUSION 

In this paper a novel video compression method is introduced by leveraging the benefit of 

convolution neural network and recurrent neural network. A multi-loop adaptive encoder and multi-loop 

probabilistic bitrate aware compression model is devised to design effective adaptive entropy-based coding 

techniques. The study shows the current method uses lesser number of frames to perform encoding operation; 

on contrary, the proposed video compression method uses significant amount of reference frames with 

minimal overhead. The adoption of motion detection and optimization aided in improving models PSNR and 

MS-SSIM. The proposed ILMPA-MLVC is compared with various existing methodologies which includes 

flow-based, learning-based, and deep learning-based coding scheme; in all the cases the proposed methods 

attains much improved PSNR and MS-SSIM; however, in future work more optimization will be done during 

training process considering improved motion detection and distortion optimization considering more diverse 

dataset and performance metrics. 
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