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 This research paper explores the efficacy of two nature-inspired optimization 

algorithms, the whale optimization algorithm (WOA) and Harris Hawks 

optimization (HHO), for feature selection in the context of intrusion 
detection and prevention systems (IDPS). Leveraging the NSL-KDD dataset 

as a benchmark, our study employs Python for implementation and uses 

decision tree (DT) as the classification model. The objective is to assess the 

impact of the HHO and WOA optimization techniques on the performance 
of IDPS through feature selection. The WOA and HHO techniques were able 

to lessen the features from 40 to 16 and 13, respectively. Results indicate 

that DT integrated with HHO achieves an impressive accuracy of 97.59%, 

outperforming the WOA-enhanced model, which attains an accuracy of 
97.5%. This study contributes valuable insights into the comparative 

effectiveness of WOA and HHO optimization algorithms in enhancing the 

accuracy of IDPSs, shedding light on their potential applications in the realm 

of cybersecurity. 
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1. INTRODUCTION 

The world is gradually moving into cyberspace. One key issue is the sheer number of cyberattacks 

launched against cyberspace [1], [2]. Several cybersecurity tools are used to protect against cyberattacks, 

such as the intrusion detection and prevention system (IDPS). Several techniques are adopted in the IDPS 

system to detect cyberattacks. One of the main techniques is signature-based, which inspects the data for a 

known pattern or signature of a cyberattack. Another key technique is behavior-based, which inspects the 

deviation of data from the usual data behavior. Besides, the IDPS systems are adopting machine learning 

(ML) algorithms to handle the new advanced cyberattacks, particularly those using artificial intelligence (AI) 

algorithms [3], [4]. 

ML is the part of AI that creates systems that can learn from the available data to make predictions 

of the incoming unrevealed data. Weaponizing the IDPS with ML improves its ability to detect cyberattacks. 

However, one key issue when integrating IDPS systems and ML is the large amount of data the IDPS needs 

to handle. As the size of data increases, the ability to detect cyberattacks is decreased [5], [6]. ML has 

specific types of algorithms, called feature selection algorithms, to handle large amounts of data and increase 

the ability of IDPS systems to detect cyberattacks. Feature selection is selecting the subset of the most 

relevant features from the original features set by removing the redundant, irrelevant, or noisy features. 

Metaheuristic algorithms are one key type of feature selection algorithms that are designed based on 
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modeling ideas that exist in nature [7], [8]. Among the most famous metaheuristic algorithms are the whale 

optimization algorithm (WOA) and Harris Hawks optimization (HHO). This work will compare the 

performance of the HHO and WOA with the IDPS systems using the decision tree (DT) classifier [9], [10].  

Several wroks have been proposed for intrusion detection. Various versions of IDPS have been 

developed, with many modified to enhance system efficiency by reducing attack features. This section 

summarizes previous studies conducted on the NSLKDD dataset with feature selection. Subba et al. [11] 

employed principal components analysis (PCA) to decrease dimensionality. The classifiers, such as support 

vector machines (SVM), multi-layer perceptron (MLP), C4.5, and Naïve Bayes (NB), evaluated a total of 17 

features. The evaluation was conducted on both multiclass and binary-class datasets. The SVM algorithm 

achieved good accuracy in both multiclass and binary classification tasks. However, it should be noted that 

this performance was only evaluated on the particular data and may not necessarily applied to unseen data. 

Aziz et al. [12] employed the sequential floating forward selection technique to derive 26 features from the 

entire NSLKDD dataset. Then, the classification was applied in two layers. The first layer for normal 

detection uses genetic algorithm detection generation (GADG), where attacks are labeled as normal or attack. 

The second layer for multiclass attack classification utilizes certain classifiers such as NB, DT, J48, RF tree, 

and MLP, utilizing the NSLKDD and 20% KDD datasets. Each classifier exhibited optimal detection 

performance for a specific attack while demonstrating suboptimal performance for another type. Gupta and 

Kulariya [13] introduced two frameworks that utilize correlation for feature selection to identify the most 

pertinent feature. Additionally, they offered a feature selection method based on hypothesis testing. The 

performance frameworks are assessed using the KDD'99 and NSLKDD'99 datasets. Their accuracy reached 

80.96% using hypothesis testing-based feature selection, with a testing time of 2.24 seconds. In their study, 

Lee et al. [14] demonstrated the significance of feature selection by examining its impact on enhancing 

accuracy in IDPS. The NSLKDD whole dataset is processed using an RF binary classifier in the detection 

model, utilizing all features without feature selection. Next, a sequential floating search is utilized to choose 

the optimal feature that maximizes the detection rate while minimizing false positives. 

 

 

2. METHOD 

2.1.  NSLKDD dataset preprocessing 

The NSLKDD dataset will be used to assess the achievement of the WOA and HHO techniques with 

the help of the DT classifier. The NSLKDD dataset contains 40 features to identify the attacks [15], [16]. 

These features are dst_host_srv_diff_host_rate, land, srv_count, dst_host_same_srv_rate, num_compromised, 

dst_host_same_src_port_rate, wrong_fragment, Count,  num_shells, same_srv_rate, dst_host_srv_rerror_rate, 

dst_host_count, dst_host_srv_count, dst_host_serror_rate, dst_bytes, num_failed_logins, protocol_type, 

srv_diff_host_rate, service, src_bytes, srv_rerror_rate,  hot, logged_in, srv_serror_rate, num_outbound_cmds, 

root_shell, dst_host_rerror_rate, rerror_rate, su_attempted, diff_srv_rate, num_root, num_file_creations, 

num_access_files, dst_host_diff_srv_rate, is_host_login, dst_host_srv_serror_rate, urgent, is_guest_login, 

serror_rate, Flag. Besides, the NSLKDD dataset contains 148,518 samples of attacks and benging data. The 

attack data is divided into four types: denial of service (DoS), probe, (R2L), and user to root (U2R). Each of 

the four types contains several subtypes [16]-[18]. This paper only considers the binary classification of data, 

classifying data as attack or benging. Therefore, all the labels in the output column will be replaced with 

“Attack,” regardless of the attack kinds or subkinds. Thus, for binary classification, the output column will 

only contain attack and benign values. 

Part of the NSLKDD dataset is categorical data, which hinders the function of the ML techniques. 

Therefore, the label-encoder algorithm replaced the categorical values with numeric values. The label-

encoder algorithm replaces the values of a categorical feature with 0 to n, where n is the number of different 

values within the feature minus 1. For example, the “protocol_type” feature contains three different values: 

tcp, udp, and icmp. The label-encoder algorithm replaces these three values with 0, 1, and 2, respectively. 

Another example is the label column, which contains two different values: Bengin and Attack values. The 

label-encoder technique replaces these two values with 0 and 1, respectively. In addition, some of the 

features of the NSLKDD dataset contain data distributed over wide ranges, which impacts the function of the 

ML techniques. Therefore, the Min-Max scaler algorithm replaces the features’ data with small ranges 

between zero and one, which avoids the bias toward large data by ML algorithms [15], [16]. Tables 1 and 2 

show a sample of the NSLKDD dataset before and after the Min-Max scaler and label-encoder techniques. 

In the NSLKDD dataset preprocessing operation, the selecting feature process comes after 

converting data into numbers and scaling it in the same range. The HHO and WOA techniques will be used 

on the NSLKDD dataset to perform the feature selection process. As the name implies, the WOA simulates 

the whales' hunting behaviors, and the HHO simulates the hawks' hunting behaviors. The two optimizers 

have several advantages: i) they can be used in a wide range of optimization issues, ii) they provide robust 
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exploitation and exploration mechanisms, and iii) they are quite simple algorithms that can be easily 

understood and implemented. However, the effectiveness of these techniques can vary depending on the issue 

problem they are applied to. The choice between WOA and HHO, or any other optimization algorithm, 

depends on the characteristics of the issue at hand and the computational resources available [9], [10], [19]-[21].  

The HHO and WOA techniques are widely used in cybersecurity fields, particularly with IDPS 

systems [9], [20]. These two techniques have been used with the NSLKDD dataset to compare their 

performance with IDPS. The WOA optimizer has selected 16 out of 40 features from the NSLKDD dataset: 

same_srv_rate, dst_host_same_src_port_rate, service, srv_diff_host_rate, num_outbound_cmds, Flag, 

dst_host_rerror_rate, src_bytes, is_guest_login, num_failed_logins, serror_rate, num_root, num_access_files, 

is_host_login, srv_count, and srv_serror_rate. On the other hand, the HHO optimizer has selected 13 out of 

40 features from the NSLKDD dataset: Count, num_access_files, dst_host_count, diff_srv_rate, 

dst_host_srv_count, dst_host_same_src_port_rate, dst_host_diff_srv_rate, protocol_type, Flag, src_bytes, 

dst_bytes, urgent, and hot.  

 

 

Table 1. Instances of the NSLKDD dataset before Min-Max scaler and label-encoder techniques 
No Instances Output 

1 tcp, http, SF, 300, 13788, 0 Normal 

2 icmp, eco_i, SF, 18, 0, 0 Attack 

3 tcp, http, SF, 233, 616, 0 Normal 

4 tcp, http, SF, 343, 1178, 0 Normal 

5 tcp, http, SF, 253, 11905, 0 Normal 

6 udp, other, SF, 147, 105, 0 Normal 

 

 

Tables 2. Instances of the NSLKDD dataset after Min-Max scaler and label-encoder techniques 
No Instances Output 

1 0.5, 0.028985507, 0.9, 2.17E-07, .05E-05, 0 0 

2 0, 0.043478261, 0.9, 1.30E-08, 0,0 1 

3 0.5, 0.028985507, 0.9, 1.69E-07, 4.70E-07, 0 0 

4 0.5, 0.028985507, 0.9, 2.49E-07, 8.99E-07, 0 0 

5 0.5, 0.028985507, 0.9, 1.83E-07, 9.09E-06, 0 0 

6 1, 0.014492754, 0.9, 1.07E-07, 8.02E-08, 0 0 

 

 

2.2.  Attack classification using DT  

DTs are a type of acyclic graph constructed by iteratively splitting the training data until all of the 

members of each partition belong to the same class label or until no more features can be partitioned. It is 

possible to refer to internal nodes as “Decision nodes,” which denote the feature name. The leaf nodes are 

referred to as “Class nodes,” and they are responsible for representing the correct class label. Each path of the DT 

describes a decision rule. Figure 1 clarifies the DT classifier [22], [23]. The DT classifier will be used to evaluate 

each WOA and HHO optimizer for attack classification with IDPS systems using the NSLKDD dataset. 

 

 

 
 

Figure 1. Clarifies the DT classifier 
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3. RESULTS AND DISCUSSION 

The comparison of HHO and WOA was carried out on a desktop with Ubuntu 19.10 O. S, Intel Core 

i9-13900KS CPU (36M Cache, up to 6.00 GHz, 24 Core), 256 GB SSD, and 16 GB RAM. Python was 

utilized to deploy HHO, WOA, and DT to obtain to results. The K-Fold Cross-Validation method, with k 

equal 5, has been used to validate the results. Five evaluation metrics, based on true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN), were used to evaluate the WOA and HHO in 

enhancing the achievement of the IDPS. The metrics are accuracy (1), precision (2), recall (3), Matthews 

correlation coefficients (MCC) (4), and F1-Score (5) [24], [25].  

 

Accuracy =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (1) 

 

Precision =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (2) 

 

Recall =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (3) 

 

𝑀𝐶𝐶 =  
((𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁))

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)
 (4) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
Precision×Recall

Precision+Recall
 (5) 

 

Figure 2 shows the accuracy of the WOA compared to the HHO. The WOA achieved an accuracy of 

97.50%, while the HHO achieved an accuracy of 97.59%. Clearly, the HHO outperforms the WOA by 0.09% 

in terms of accuracy in detecting the attack by the IDPS systems using the NSLKDD dataset and DT 

classifier. 

Figure 3 shows the precision of the WOA compared to the HHO. The WOA achieved a precision of 

97.50%, while the HHO achieved a precision of 97.59%. Clearly, the HHO outperforms the WOA by 0.09% 

in terms of precision in detecting the attack by the IDPS systems using the NSLKDD dataset and DT 

classifier. 

 

 

 
 

Figure 2. Accuracy of the WOA and HHO 

optimizers 

 
 

Figure 3. Precision of the WOA and HHO  

optimizers 

 

 

Figure 4 shows the recall of the WOA compared to the HHO. The WOA achieved a recall of 

97.50%, while the HHO achieved a recall of 97.59%. Clearly, the HHO outperforms the WOA by 0.09% in 

terms of recall in detecting the attack by the IDPS systems using the NSLKDD dataset and DT classifier. 
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Figure 5 shows the MCC of the WOA compared to the HHO. The WOA achieved an MCC of 

96.02%, while the HHO achieved an MCC of 96.17%. Clearly, the HHO outperforms the WOA by 0.15% in 

terms of MCC in detecting the attack by the IDPS systems using the NSLKDD dataset and DT classifier. 

Figure 6 shows the F1-Score of the WOA compared to the HHO. The WOA achieved an F1-Score 

of 97.50%, while the HHO achieved an F1-Score of 97.59%. Clearly, the HHO outperforms the WOA by 

0.09% in terms of F1-Score in detecting the attack by the IDPS systems using the NSLKDD dataset and DT 

classifier. 

 

 

 
 

Figure 4. Recall of the WOA and HHO optimizers 

 

 

 
 

Figure 5. MCC of the WOA and HHO optimizers 

 

 

 
 

Figure 6. F1-Score of the WOA and HHO optimizers 

 

 

In summary, the HHO optimization algorithm outperforms the WOA optimization algorithm in 

terms of enhancing the achievement of the IDPS systems with the five evaluation metrics. In particular, 

accuracy, recall, precision, and F1-Score have all gone up by 0.09% and MCC by 0.15% when the HHO 

optimization algorithm for feature selection is used instead of the WOA optimization algorithm in IDPS 

systems. The superior performance of HHO over WOA in terms of feature selection and resulting accuracy 

can be attributed to WOA’s balanced approach to exploration and exploitation, its ability to maintain 

diversity, adaptive position updates, and an effective encircling mechanism. These characteristics enable 

WOA to select a more relevant, non-redundant, and generalizable subset of features, leading to better model 
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performance and higher accuracy. Therefore, the WOA optimization algorithm and DT classifier prove to be 

highly efficient tools with the IDPS systems, offering superior performance and reliability. 

 

 

4. CONCLUSION 

In conclusion, this research has methodically investigated the use of WOA and HHO for feature 

selection in IDPS using the NSL-KDD dataset. Our findings highlight the commendable performance of both 

optimization algorithms in enhancing the accuracy of IDPS when coupled with the DT classification model. 

The experimental results reveal that DT with HHO outshines its WOA counterpart, achieving an accuracy of 

97.59% compared to 97.5%. This disparity underscores the nuanced efficiency of optimization algorithms in 

the specific context of feature selection for intrusion detection. The study not only reaffirms the potential of 

nature-inspired algorithms in cybersecurity applications but also emphasizes the need for careful algorithm 

selection based on the intricacies of the problem domain. Future work could delve deeper into fine-tuning 

parameters, exploring other datasets, and extending the analysis to diverse ML models. Overall, the insights 

gleaned from this research contribute to the ongoing discourse on optimization algorithms in cybersecurity, 

paving the way for continued advancements in intrusion detection methodologies. Future works will compare 

other optimization algorithms for feature selection. In addition, more classifiers will be tested with the WOA 

optimization algorithm.  
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