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ABSTRACT

This study used machine learning (ML) algorithms to investigate the simula-
tion of light ray behavior in biconvex converging lenses. While earlier studies
have focused on lens image formation and ray tracing, they have not applied re-
inforcement learning (RL) algorithms like proximal policy optimization (PPO)
and soft actor-critic (SAC), to model light refraction through 3D lens models.
This study addresses that gap by assessing and contrasting the performance of
these two algorithms in an optical simulation context. The findings of this study
suggest that the PPO algorithm achieves superior ray convergence, surpassing
SAC in terms of stability and accuracy in optical simulation. Consequently,
PPO offers a promising avenue for optimizing optical ray simulators. It allows
for a representation that closely aligns with the behavior in biconvex converging
lenses, which holds significant potential for application in more complex optical
scenarios.
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1. INTRODUCTION
Converging lenses, such as biconvex lenses, are designed to form both real and virtual images [1].

These lenses are essential for improving the precision with which we observe and study objects [2]. Through
the refraction of light, converging lenses enable illuminated objects to project onto a screen, creating images
that can be examined for various scientific purposes [3]. While several applications simulate image formation
through these lenses, many do not fully capture the complex behavior of light rays.

One such application, AR-GiOs, as analyzed in [4], has shown promising results in the academic
field, particularly for learning about the formation of real and virtual images. However, despite its success in
educational settings, AR-GiOs still struggles to accurately simulate the behavior of rays passing through optical
systems. This gap highlights the limitations of current simulation tools in capturing the subtle details of ray
behavior, which are fundamental to the study of physical optics.

Several applications attempt to simulate image formation through lenses, but they often fail to accu-
rately model the light rays involved in the process [4], [5]. These rays, referred to as principal, central, and focal
rays, are essential for understanding key optical behaviors when light passes through lenses or mirrors. Accu-
rate simulation of these rays is crucial because they dictate how images are formed and how optical systems
function, yet many existing tools lack the necessary fidelity to simulate them effectively.

Journal homepage: http://ijeecs.iaescore.com



358 ❒ ISSN: 2502-4752

No studies have been identified that apply reinforcement learning (RL) algorithms to model light
refraction through lenses. RL methods like proximal policy optimization (PPO) [6], [7] and soft actor-critic
(SAC) [8], [9] are extensively used in artificial intelligence (AI) and machine learning (ML) for decision-
making tasks [10], [11]. These algorithms operate based on learning from interactions with their environment,
where an agent makes decisions and is given feedback through rewards or penalties [12]. Due to the dynamic
nature of light refraction, RL algorithms have the potential to improve the precision of ray simulations.

This article proposes the use of PPO and SAC algorithms to control the trajectory of rays as they pass
through a lens, guiding them to converge at points where virtual or real images are formed. By applying the
thin lens equation and magnification formulas, the deviation and trajectory of the rays are calculated as they
interact with the lens [13]. A simulator created in Unity utilizes these RL algorithms to simulate the passage of
the three critical rays (principal, central, and focal) through a converging lens, aiming to achieve accurate ray
convergence and image formation.

While it is possible to simulate converging rays through a lens, achieving an accurate simulation of
rays passing through a 3D lens model requires highly complex and computationally demanding models. Given
the detailed geometry of converging lenses, it is not feasible to approximate their shape using multiple primitive
models in Unity. Therefore, moderately complex 3D models and RL algorithms are employed to enhance the
accuracy of the simulation.

The remainder of this article is structured as follows: section 2 covers related works, section 3 details
the proposed simulation of ray behavior in biconvex converging lenses, and section 4 provides the results and
discussion. Lastly, section 5 outlines our conclusions and suggests directions for future work.

2. RELATED WORKS
2.1. Converging biconvex lenses

Biconvex lenses, with their two curved surfaces facing outward, serve as an example of converging
lenses. It is crucial to note that, despite their appearance, these lenses are positive (with thickness decreasing
from the center towards the edges) and have the ability to focus light rays [14]. Commonly used in optics
courses in schools or universities, these lenses are employed to illustrate the principles of refraction and the
formation of both real and virtual images [1].

2.2. Machine learning
ML is a crucial branch of AI, enabling computers to process information and learn from it [12].

Through the use of algorithms, ML addresses complex data problems and automates processes, with applica-
tions in various fields such as data mining, image analysis, and predictive modeling [15]. Its broad applicability
extends into numerous scientific areas, particularly within the physical sciences, where it applies algorithms and
modeling techniques for data analysis in disciplines like statistical mechanics, high-energy physics, cosmology,
quantum many-body systems, quantum computing, chemistry, and materials research [16].

2.3. Reinforcement learning
RL is a ML method where an agent engages with its environment and discovers an optimal strategy

through trial and error [10], [17]. It is recognized as one of the three primary types of ML, alongside super-
vised and unsupervised learning. Unlike other approaches, its objective is to acquire different actions based
on the conditions in the environment, with the agent serving as the principal decision-maker [17]. RL has
demonstrated significant potential for advancing AI [18]. In this framework, the agent receives feedback from
the environment but lacks access to labeled data or explicit guidance. It is employed in sequential decision-
making tasks across various domains, including natural and social sciences, engineering, and AI [19].

2.3.1. Proximal policy optimization
PPO is a RL technique that has demonstrated cutting-edge performance across a range of challenging

tasks [20]. PPO has been utilized in multiple areas, including robotics, gaming, and autonomous systems, to
improve agent performance in complex environments. For example, in [21], PPO was employed to automate
simulated autonomous driving, leading to enhanced outcomes. Similarly, in [22], PPO was effectively used to
predict stock market trends, highlighting its versatility and efficiency in financial applications.
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2.3.2. Soft actor-critic
SAC operates within the maximum entropy RL framework, aiming to maximize both expected perfor-

mance and entropy simultaneously, thereby enabling actors to act with maximum randomness while achieving
task success [8]. Its efficacy has been extensively evaluated in various experiments, including tests on Atari
games and a large-scale MOBA game, as demonstrated in [23]. In comparative studies, PPO has consistently
emerged as a top performer, as evidenced by comparisons with SAC across different test conditions [24].
Specifically, PPO showcased superior performance, especially in scenarios involving a high number of units
and layers.

In research comparing RL algorithms, PPO consistently demonstrates remarkable performance, sur-
passing SAC in various conditions, particularly when dealing with complex architectures [25]. Furthermore, in
comparative studies of deep RL algorithms, PPO consistently outperforms alternatives like DDPG, SAC, and
TD3, as demonstrated in [26]. To implement RL in simulation environments, practitioners often leverage tools
such as Unity and ML-Agents, as highlighted in previous research [27], [28].

3. METHOD
3.1. Proposed simulation of ray behavior in converging biconvex lenses

This work aims to develop a simulation of ray behavior in converging biconvex lenses using 3D
models, utilizing RL techniques like PPO and SAC to modify the refraction angles of light rays passing through
a lens. The goal is to compare the feasibility and stability of these algorithms in achieving more accurate
simulation results. The proposal includes the following steps as outlined in Table 1.

Table 1. Steps for simulating light through a biconvex lens
Steps Description

1 Define the objective
2 Model the converging biconvex lens using Blender
3 Develop a simulation environment using Unity
4 Identify constraints and critical properties
5 Explanation of PPO and SAC algorithms
6 RL environment configuration

3.2. Simulation of converging biconvex lens behavior
To validate the proposal, a simulator based on RL algorithms, specifically PPO and SAC, has been

developed. These algorithms were employed to accurately model and simulate the behavior of light rays in
converging biconvex lenses under simulated conditions.

3.2.1. Define the objective
The objective is to compare the feasibility and stability of the PPO and SAC algorithms within the

context of simulating converging biconvex lenses. The purpose is to determine which of these algorithms is
more effective in achieving accurate and reliable simulation results that precisely describe the behavior of light
rays interacting with converging biconvex lenses.

PPO and SAC were selected because of their extensive use in the literature, being recognized for
effectively managing both single-agent settings as well as multi-agent cooperative and competitive scenar-
ios. Additionally, other RL algorithms, such as MA-POCA [29], also support these types of environments.
However, this study focuses on PPO and SAC due to their popularity and demonstrated success in complex
physical simulations.

3.2.2. Modeling the converging biconvex lens using Blender
In the simulation, two distinct models of converging biconvex lenses were implemented to ensure high

precision in ray tracing. Each model, depicted in Figure 1, was constructed using Blender 3D version 3.6.1 and
has a size of 6.5 MB. These models consist of 141,604 vertices and 269,316 triangles, with one model having
its surface normals oriented inward and the other outward. This difference in normal orientation was essential
to enable precise collision detection by the rays emitted using Unity’s Raycast function, both when entering
and exiting the lens. The models were generated by intersecting two spheres, which were created in Blender
with the highest possible level of detail, constrained by the computational capabilities and the limits of the
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Blender software. Each sphere has a radius of 10 meters, and their centers are separated by a distance of 19.9
units, resulting in an intersection of 0.1 meters. This intersection was chosen to produce a lens thin enough to
avoid the optical aberration that occurs in thicker lenses.

Figure 1. Characteristics of the spheres with 256 rings and 2048 segments each, with dimensions of 10x10x10
meters and an intersection of 0.10 meters, resulting in a converging biconvex lens of approximately 67 rings,

2048 segments, and dimensions of 1.977 meters x 1.977 meters x 0.1 meters

3.2.3. Develop a simulation environment using Unity
In the context of optical ray simulation with a converging lens, a simulation environment was devel-

oped using Unity version 2021.3.11f1 and the RL agents library, a popular tool in RL environments [7]. This
environment includes elements such as a converging biconvex lens, focal points, and a ray launch point to
determine the initial direction and trajectory of the rays passing through the lens. The development aimed to
apply PPO and SAC algorithms to simulate and optimize the behavior of light rays.

Figure 2 presents a screenshot of the simulation environment within Unity. It illustrates the converging
lens, focal points, and the trajectory of three types of rays projected from a designated origin point. These rays
include the principal, central, and focal rays, moving from left to right from the viewpoint, showcasing the
simulated optical phenomena.

The simulator designed for this study integrates physics optics principles into Unity’s framework,
providing a platform for comparing the performance of PPO and SAC algorithms in simulating light ray tra-
jectories. Central to the simulator is the algorithm responsible for tracing the path of light rays as they interact
with the lens surfaces. By recording collision points, the behavior of rays can be analyzed, informing adjust-
ments required for accurate simulation. The utilization of the thin lens formula and lens magnification aids in
calculating the optimal points for ray passage or approach, enhancing the realism of the simulation.

Figure 2. Simulation environment developed in Unity. The environment contains a converging biconvex lens.
Focal points are located on both sides of the lens. Three rays – principal ray, central ray, and focal ray – are

projected from the origin point. All rays are projected from left to right from the viewpoint

3.2.4. Identifying constraints and critical properties
A key constraint is to limit the rays to three specific types: principal, central, and focal, due to their

relevance in the field of optics. Additionally, the launch point of the rays was restricted to a distance of 10
meters from the lens, and along the Y and Z axes within a range that ensures collision with the lens, preventing
the rays from escaping into empty space or striking the lens edges. Given that the lens has a radius of 1 meter,
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a maximum radius of 0.975 meters was chosen to avoid reaching the edge. Furthermore, the refractive index
of the lens was set to 2, despite glass typically having a value of 1.45, in order to achieve tighter convergence
of the rays. Finally, the number of interactions during the training of the PPO and SAC algorithms was limited
to 500k due to the time required for training, with 48 simulated ray instances, taking approximately 20 to 30
minutes to complete the training for each ray type.

3.2.5. Explanation of PPO and SAC algorithms
The PPO method is a widely used on-policy algorithm in RL, based on combining value and policy

gradients to optimize agent performance [21], [30]. Its key objective is to make sure that, after updating the
policy, it remains relatively close to the previous one. To avoid drastic shifts, PPO incorporates a clipping
mechanism. This algorithm samples data from its environment and uses stochastic gradient descent to optimize
a clipped loss function [31].

In contrast, SAC is an off-policy algorithm in RL that follows an actor-critic approach and does not rely
on predefined models or rules [30]. SAC employs a revised RL objective function and emphasizes maximizing
rewards over the agent’s lifespan along with policy entropy [31]. Therefore, in this study, visual analyses were
conducted to assess whether the AI agent responsible for adjusting the angle in optical ray simulators was
trained using ML, ensuring its stability and applicability. To achieve this, the Unity ML agent was utilized, and
a comparison between the PPO and SAC algorithms was performed.

3.2.6. RL environment configuration
In this study, the ray’s origin point is randomly selected within a distance of 2F from the X-axis,

allowing its location at any point within the area of a circle defined by the Y and Z axes, as shown in Figure 3.
In this context, the variable observed by the agent is the radius, representing the distance from the center of the
circle to the origin point of the ray. The agent makes decisions based on this variable while interacting with the
environment and the converging biconvex lens.

Figure 3. The starting points of the rays originate at a distance of 2F from the right side. Knowing that F is at
a distance of 2.5 meters and 2F at 5 meters

To ensure proper behavior and prevent unnecessary collision repetitions, a small displacement of
10−8 meters in the direction of the ray was applied each time a collision occurred with the lens model. This
displacement was necessary because the ray could collide with both internal and external colliders generated
from the normals of the lens model, ensuring that the ray continued its trajectory without additional interference
in subsequent collisions Figure 4. Throughout the training process, the agent received observations from the
environment, aiding in the decision-making process. Rewards were utilized to motivate the agent to adjust the
angle of the rays after colliding with the lens.

Figure 4. The guidelines, for instance, in the case of the principal ray at the top of the lens, are as follows: the
green lines represent the ray’s trajectory, the red lines correspond to the normals at the points where the ray

collided, and the yellow line is used to project the resulting ray
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RL agent, the RL agent’s task is to adjust the ray’s direction each time it passes through the lens,
aiming to minimize the distance between the resulting ray’s path and the target point. This target point is
calculated using the thin lens formulas in (1) and the magnification in (2). The formula applied for converging
thin lenses is known as the thin lens equation, which relates the image distance (di), object distance (do), and
focal length (f ) of the lens, as shown in (2). Additionally, lateral magnification is used, linking the image
height (hi), object height (ho), image distance (di), and object distance (do) as presented in (1).

The availability of these actions for the agent depends on the state of the environment at that moment.
In this particular case, the decision has been made to apply the RL algorithms PPO and SAC, taking only one
action in each training cycle. Unlike many approaches described in the literature, where multiple actions are
taken in each training cycle, in this environment, the agent takes only one action out of two possible actions in
each training cycle:

- The refraction angle will only be modified when the emitted light reaches the four key points (the point of
origin, the external collision point where the light enters the lens, the internal collision point where it exits
the lens, and the endpoint).

- Rays that have three points or fewer will be discarded and will not be considered in the simulation because
some rays do not collide with the lens, which is due to defects in the 3D model.

1

f
=

1

do
+

1

di
(1)

m =
hi

ho
= − di

do
(2)

Hyperparameters, similar to other RL algorithms, both PPO and SAC have multiple hyperparameters
that influence the agent’s performance in a converging lens environment. In this case, the objective is to adjust
the angle of refraction to produce an outgoing ray trajectory that falls within a precision threshold of 0.01
meters from the point previously calculated using lens and magnification formulas. The reward is determined
by the distance between the resulting ray and the target point. Table 2 lists the hyperparameters of PPO and
SAC used in this study, with both configurations based on examples from Unity’s ML-Agents toolkit.

Table 2. Hyperparameters for PPO and SAC algorithms in the experiment. Parameters include policy
deviation penalty, learning rate, batch size, iterations, samples, and entropy settings. These values affect the

agents’ performance in simulating light ray trajectories through a converging lens
Hyperparameter PPO value SAC value

Policy deviation penalty coefficient 0.2 -
Learning rate 0.0001 0.0003

Batch size 64 0.-
Number of iterations 10 -

Number of collected samples 1000 -
Replay buffer size - 1000

Target entropy - 0.2
Entropy regularization factor - 0.01

Minimum entropy - 0.5

Reward function, Figure 5 provides a visual representation of how this reward function operates within
the agent-environment interaction. The reward mechanism plays a crucial role in the agent’s learning process
[32]. To achieve the intended behavior, a specific goal needs to be defined for optimization. The agent’s task is
to adjust the angle of refraction so that the resulting ray is within at least 0.01 meters of the target point. As the
ray passes through the 3D model, the reward is determined by:

- If the distance to the target is less than or equal 0.01 m.

- Reward = 1.0
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- If the distance to the target is greater than to 0.01 m.

- The change in distance to the target is calculated, indicating whether the ray is approaching or moving
away from the target. This is achieved by subtracting the current distance to the target from the distance
it had in the previous step.

- If the change in distance is positive, the agent is rewarded for approaching the target.
- If the change in distance is negative, the agent is penalized for moving away from the target.

Figure 5. Visual depiction of the reward function governing agent-environment interaction. Rewards are
determined by ray proximity to the target, encouraging convergence and discouraging divergence. The figure

clarifies reward dynamics in collision scenarios and distance relationships

Experiment environment, the setup includes an AMD Ryzen 7 3800XT processor, an NVIDIA GeForce
RTX 3070 GPU, and 32 GB of RAM. Additionally, the following software versions were utilized: Unity En-
gine 2021.3.11f1, TensorFlow 2.13.0, and Unity ML-Agents Toolkit Release 20. These specifications were
chosen to ensure a robust and efficient system capable of handling complex simulations and the computation-
ally demanding tasks required for training RL algorithms in optical ray simulations.

4. RESULTS AND DISCUSSION
We found that the PPO algorithm achieved superior ray convergence with higher stability and accuracy

than SAC. PPO reached a reward above 0.99 in fewer steps for principal, central, and focal rays, while SAC
showed improvement only after 500k steps, making PPO better suited for optimizing optical ray simulators.

4.1. Evaluate the behavior of PPO and SAC algorithms
The learning results were visualized using TensorBoard, a tool from TensorFlow, with data generated

for the principal, central, and focal rays. As shown in Figures 6 and 7, the PPO algorithm achieved rewards of
0.9932, 0.9943, and 0.9938 for the principal, central, and focal rays, respectively, within 200k steps, success-
fully meeting the target reward of 0.99 with a precision threshold of 0.01m. In contrast, the SAC algorithm
obtained rewards of 0.8951, 0.8829, and 0.8715 for the same rays over the same steps, falling short of the
target. While SAC showed improvement between 200k and 500k steps, it still lagged behind PPO in accuracy
and stability. PPO’s results closely aligned with the predictions from the thin lens formula, demonstrating its
superior performance, consistent with previous studies highlighting PPO’s effectiveness in achieving reliable
outcomes in similar simulation tasks.
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Figure 6. Comparison of PPO and SAC algorithms in different rays (a) principal ray, (b) center ray, and
(c) focal ray. The graphs represent environment/cumulative reward. PPO is represented in blue, and SAC in

pink. The PPO algorithm shows stable performance throughout while SAC experiences early signs of
overfitting but eventually stabilizes
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Figure 7. Results of all rays (principal, central, and focal) for the PPO and SAC algorithms at the 200k step

4.2. Principal findings
Optical physics simulators are a critical area of study, as they require agents capable of executing

behaviors in real-time under various circumstances. In this project, a simulator for converging rays and lenses
was designed to evaluate the performance of algorithms like PPO and SAC. The results contribute to improving
realistic representations of optical phenomena, showing that PPO effectively emulates the behavior of objective
optical systems and accurately reproduces the predicted outcomes.

4.3. Comparison to prior work
In comparison with previous applications of PPO and SAC in other domains, such as game simulations

and general physics environments [12], [30], this project stands out by developing a simulator focused on the
behavior of rays in converging biconvex lenses. Unlike other applications that use rays as guides but do not
simulate them correctly [4], this work allows for the visualization of the optical phenomenon using only rays
trained with RL. The results demonstrate how a ray is refracted when entering and exiting the lens. The choice
of PPO, based on its stability and adaptability, has proven effective for this complex task, distinguishing this
research from previous works focused on broader or less specific areas.

4.4. Strengths and limitations
This study explored the application of RL algorithms to simulate ray behavior in a single type of con-

verging biconvex lens with three specific ray types (principal, central, and focal). However, further and more
comprehensive studies are needed to explore the behavior of additional ray types and more complex optical
systems, such as multi-lens setups. Using a dense 3D polygonal mesh also introduced computational chal-
lenges, such as memory limitations and occasional missed collisions, which may have impacted the accuracy
of the simulations.

5. CONCLUSION
This research successfully applied RL algorithms to simulate the behavior of light rays passing through

biconvex converging lenses, demonstrating the viability of RL in modeling optical phenomena. The results,
particularly with PPO achieving a reward exceeding 0.99 with high accuracy, indicate its superior stability
and efficiency in this context. In contrast, SAC, while known for its general applicability in various domains,
underperformed in this specific scenario. This finding aligns with the need to tailor RL algorithms to problem-
specific dynamics, as SAC’s versatility in other studies was not considered in this study. Recent observations
suggest that RL algorithms can significantly improve the accuracy of optical ray simulations. Our findings
provide conclusive evidence that PPO, in particular, enhances the precision of ray convergence through bicon-
vex lenses, making it a promising tool for future optical system modeling. Our study demonstrates that PPO
is more reliable for simulating ray behavior in optical systems. Future studies may explore the application of
these algorithms to multi-lens systems, where ray tracing becomes more intricate.

AKNOWLEDGMENTS
Thanks to the ”Research Center, Transfer of Technologies and Software Development R + D + i” -

CiTeSoft EC-0003-2017-UNSA, for their collaboration in the use their equipment and facilities, for the devel-
opment of this research work.

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 1, April 2025: 357–366



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 365

REFERENCES
[1] H. Isik, “Comparing the images formed by uses of lens surfaces,” Physics Education, vol. 58, no. 3, p. 035002, May 2023,

doi: 10.1088/1361-6552/acb87d.
[2] K. Fliegauf, J. Sebald, J. M. Veith, H. Spiecker, and P. Bitzenbauer, “Improving early optics instruction using a phenomenological

approach: a field study,” Optics, vol. 3, no. 4, pp. 409–429, Nov. 2022, doi: 10.3390/opt3040035.
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