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ABSTRACT

High tracking accuracy and fast convergence are essential features in the control
of wheeled mobile robots for autonomous navigation applications. However,
the design of a control system for these robots faces significant challenges due
to the inherent complexity of their nonlinear dynamics and their non-holonomic
underactuated nature. This article introduces a novel control framework for tra-
jectory tracking of a three-wheeled mobile robot (3WMR), considering external
and internal disturbances. To address the uncertain nonlinear and underactuated
non-holonomic dynamics of the 3WMR, an adaptive hierarchical fast terminal
sliding mode control (AHFTSMC) strategy is proposed. In this approach, an
adaptive neural network scheme adjusts the sliding surface coefficients in real
time to minimize tracking errors and mitigate the chattering phenomenon. In
addition, a finite time disturbance observer (FTDO) is designed to accurately
estimate and compensate for unknown lumped disturbances, which helps to im-
prove the disturbance rejection capability. The stability of the closed-loop sys-
tem is demonstrated using Lyapunov theory. The proposed control approach is
validated by numerical simulations, and a comparative analysis of recent hier-
archical sliding mode controllers (SMC) is performed. The results demonstrate
that the proposed approach achieves superior performance in terms of fast con-
vergence and tracking accuracy, which are crucial features for the autonomous
navigation of mobile robots.
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1. INTRODUCTION
In recent years, wheeled mobile robots have emerged as a significant field of research, driven by their

agility and energy efficiency, which make them suitable for various applications such as logistics, security, and
agriculture [1], [2]. Despite these advantages, controlling wheeled mobile robots presents significant challenges
due to their nonlinear and complex dynamics, as well as their underactuated and non-holonomic nature, which
means they possess more degrees of freedom than available control inputs [3]. Designing an autonomous
control system for trajectory tracking in these robots is particularly challenging and requires advanced control
techniques to ensure efficient performance.

Various control approaches have been investigated in the literature to tackle path tracking in wheeled
mobile robots, including linear control techniques like proportional integral derivative (PID) [4], [5] and linear
quadratic regulator (LQR) [6], [7]. For instance, [4] introduced a robust PID control structure enhanced by
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genetic algorithms for better performance, while [5] proposed a double-loop fractional-order PID control to
improve robustness and accuracy. Similarly, LQR control was applied in [6] using a cascade control scheme for
a two-wheeled robot, and [7] combined PI and LQR controls to address trajectory tracking amidst obstacles.
However, these linear control techniques present limitations in their effectiveness since they operate stably
only near the equilibrium point, where the dynamic model of the system is linearized [8]. Moreover, they lack
robustness in environments with large external and internal disturbances.

Given these limitations, nonlinear control techniques have gained relevance. Sliding mode control
(SMC) is a popular nonlinear technique in robotics due to its robustness against uncertainties and ability to
manage imprecise models [9], [10]. For example, second-order SMC was applied in [11], [12] for trajectory
tracking of four-wheeled robots, incorporating adaptive laws in [11] and extended state observer in [12] to han-
dle external disturbances. However, these approaches employ linear sliding surfaces that can cause chattering
in the control signal, potentially damaging electric motors in practical applications [13].

Recently, control approaches with advanced sliding surfaces have been proposed to overcome
these limitations and improve control performance in mobile robot trajectory tracking. For example,
Labbadi et al. [14], a fractional-order SMC approach was designed for a differential mobile robotic system,
while [15] proposed an adaptive non-singular fast terminal SMC scheme. However, these works [14], [15]
did not take into account the full dynamic model of the mobile robot, limiting themselves only to kinematic
control, and although they addressed external disturbances, they did not evaluate the robustness against internal
disturbances. On the other hand, Goswami and Padhy [16], a dynamic controller based on a PID-type sliding
surface was proposed for path tracking of a differentially driven mobile robot, taking into account measure-
ment noise, frictional disturbances, and modeling inaccuracies. Xie et al. [17], a non-singular fast terminal
SMC dynamic controller with adaptive laws to handle parametric uncertainties and external disturbances was
presented. Finally, in the most recent work [18], an innovative PI-type adaptive SMC grounded in the dynamic
model was presented for the path tracking of a mobile robot. Despite these advances, it is essential to note
that these approaches [14]-[18] fail to achieve satisfactory tracking accuracy due to the underactuation problem
inherent to non-holonomic wheeled mobile robots, which limits their ability to follow trajectories accurately.

Given the challenges associated with underactuated nonlinear systems, hierarchical sliding mode con-
trol (HSMC) has been investigated as a potential solution [19]. HSMC preserves the benefits of SMC while
allowing simultaneous control of multiple outputs by decomposing the system into subsystems [20]. This ap-
proach has been broadly applied in the trajectory tracking of various underactuated systems, including inverted
pendulums [21], aerial robots [22], flexible robotic manipulators [23], and wheeled mobile robots [24]-[27]. In
the field of mobile robots, in [24], an HSMC with a PID-type sliding surface was proposed, showing promis-
ing results in tracking accuracy. However, the robustness of the control against external disturbances was not
assessed. Wu and Karkoub [25], a hierarchical fuzzy sliding mode adaptive control (HFSMAC) with a PI-
type sliding surface was presented, using fourier series-based function approximations to address uncertainties.
More recent work [26], [27] combined backstepping and sliding mode techniques to develop a backstepping
hierarchical sliding mode control (BHSMC). Although these approaches [24]-[27] improve trajectory tracking
accuracy, it is essential to note that these works employed conventional sliding surfaces, which lead to asymp-
totic stability and hence slow convergence speed in time to the reference trajectory, limiting their applicability
in practical environments where fast convergence in finite time is required.

The key findings from previous studies highlight the need for further research to address the unre-
solved issues in trajectory tracking control for wheeled mobile robots. Although the HSMC architecture has
proven effective, there is a need for new control strategies with nonlinear sliding surfaces that can achieve high
tracking accuracy, fast response, and robustness simultaneously. In this context, in this research, we propose
a novel neuro-adaptive hierarchical SMC system for improved trajectory tracking in a three-wheeled mobile
robot (3WMR). The main contributions of this paper are as follows: first, unlike previous works [24]-[27],
which rely on conventional sliding surfaces, this research introduces an adaptive hierarchical fast terminal
sliding mode control (AHFTSMC) strategy. Moreover, our method dynamically adjusts the sliding surface
coefficients in real time through a neural network to reduce tracking errors and mitigate chattering effects.
Second, a finite-time disturbance observer (FTDO) is developed to quickly and accurately estimate unknown
lumped disturbances. Unlike previous approaches [24]-[27], this study considers external and internal distur-
bances affecting the mobile robot. Third, compared to existing control methods [25], [27], the proposed system
demonstrates significantly superior performance in trajectory tracking, evidenced by faster convergence, higher
accuracy, and enhanced robustness.
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The remainder of the document is organized as follows: section 2 details the research methodology,
which encompasses the dynamic modeling of the 3WMR, the development of the control system, and the
stability evaluation. In section 3 provides the findings and analysis of the study. Lastly, section 4 offers the
conclusions.

2. RESEARCH METHOD
This section presents the methodology adopted to address the trajectory tracking control problem of a

3WMR in the presence of external and internal disturbances. First, the mathematical modeling of the 3WMR
is developed, which establishes the basis for the design and analysis of the control system. Next, the design of
the proposed control system is introduced, consisting of three main components: a FTDO, a nonlinear control
strategy, and adaptive laws based on a neural network. Finally, a stability analysis of the closed-loop system is
conducted to ensure that the tracking errors converge to zero within a finite time.

2.1. Mathematical model
A 3WMR is a non-holonomic robotic system consisting of two driving wheels and a rotating wheel,

allowing it to move horizontally. This mobile robot operates with differential drive, meaning the two rear
wheels are powered, allowing the driving and steering functions to be controlled independently. Figure 1
shows a top view of the 3WMR in a horizontal plane, where (OB , XB , YB) represents the coordinate frame
fixed on the mobile robot, and (OG, XG, YG) represents the global coordinates. The position vector of the
mobile robot is denoted as q = [x, y, θ]T where x and y represent the cartesian position, and θ represents the
orientation.

2r

2L

Figure 1. Non-holonomic 3WMR

Using the Euler-Lagrange formulation, the following equation describes the dynamics and kinematics
of the non-holonomic 3WMR [3]:

M(q)q̈ + C(q, q̇)q̇ = E(q)T −AT (q)λ (1)

here M(q) represents a positive definite inertia matrix, C(q, q̇) denotes the Coriolis matrix along with the
centripetal terms, A(q) is the matrix related to the nonholonomic constraints, T represents the vector of input,
and E(q) is the transformation matrix of the control inputs. Their expressions are denoted by [27].

M(q) =

m 0 0
0 m 0
0 0 J

 , C(q, q̇) =

00
0

 , T =

[
T1

T2

]

E(q) =
1

r

cos θ cos θ
sin θ sin θ
L −L

 , AT (q) =
1

r

−sin θ
cos θ
0

 (2)

The characteristics of the 3WMR are outlined as follows: m and J indicate the mass and moment of
inertia of the mobil robot, respectively. T1 and T2 are the torques exerted by the right and left motors associated
with the driving wheels. In addition, r is the radius of the driving wheels, L signifies half the distance between
the rear wheels, and λ represents the Lagrange multiplier.

Taking into account non-holonomic constraints and conditions for anti-slip rolling, we derive the (3).
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ẋ sin θ − ẏ cos θ = 0 (3)

The determination of the Lagrangian bond strength factor is performed as (4) [26].

λ = −mθ(ẋ cos θ − ẏ sin θ) (4)

Therefore, the dynamic model of the 3WMR is described as (5) [27]:
ẍ =

λ

m
sin θ +

1

rm
cos θ u1 + dx(t),

ÿ = − λ

m
cos θ +

1

rm
sin θ u1 + dy(t),

θ̈ =
L

r J
u2 + dθ(t),

(5)

where u1 = T1−T2, u2 = T1+T2 represent the control inputs, with T1 = 0.5(u1+u2) and T2 = 0.5(u2−u1).
The terms dx(t), dy(t), dθ(t) denote the unknown lumped disturbances affecting the mobile robot.

2.2. Proposed control system design
This section outlines the development of the proposed control system. Initially, the design of the

FTDO, intended to estimate and mitigate the combined disturbances, is explained. Following this, the control
approach is formulated. Based on the dynamic model in (5), the control framework is separated into underac-
tuated and fully actuated components. The underactuated system is responsible for controlling the Cartesian
position of the mobile robot, i.e., the variables x and y, with a single control action. To achieve this, an underac-
tuated control architecture called the HFTSMC strategy is employed. Conversely, the fully actuated system is
responsible for controlling the orientation of the mobile robot, for which the FTSMC strategy is employed.
Finally, the adaptive laws are designed to adjust the sliding surface coefficients in real-time dynamically.
Figure 2 illustrates the design of the proposed control system.

POSITION
CONTROL

ORIENTATION
CONTROL

Finite Time 
Disturbance 

Observer

Neural 
Network

 
External 

Disturbances

Neural 
Network

PROPOSED CONTROL SYSTEM

Figure 2. Proposed control system structure

2.2.1. FTDO design
In (5) can be expressed in the state space representation as:

Π̇T = ΠT +1

Π̇T +1 = f(ΠT ) + g(ΠT )u + d(t)
(6)

here, ΠT = [x, ẋ, y, ẏ, θ, θ̇]T denotes the state vector, u = [u1, u2]
T represents the control actions, f(ΠT ) and

g(ΠT ) are two continuous functions that depend on ΠT , and d(t) indicates the aggregated disturbances.

- Assumption 1, the derivative of d(t) is bounded and satisfies limt→∞ ḋ(t) = 0.
- Theorem 1 considering the dynamic system in (6), the FTDO design is defined as follows [8], [28]:
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Υ̇0 = Γ0 + f(ΠT ) + g(ΠT )u

Γ0 = −ξ1L
1/3
q |Υ0 − q̇|2/3sign(Υ0 − q̇) + Υ1

Υ̇1 = Γ1

Γ1 = −ξ2L
1/2
q |Υ1 − Γ0|1/2sign(Υ1 − Γ0) + Υ2

Υ̇2 = −ξ3Lqsign(Υ2 − Γ1)

(7)

where ξi, i = 1, 2, 3, and Lq are constant values defined as positive, which represent the gains of the observer.
The variables Υ0, Υ1, and Υ2 represent the estimates of q̇, d(t) and ḋ(t), respectively, where q̇ = [ẋ, ẏ, θ̇]T

denotes the velocity of the mobile robot. This configuration of FTDO can accurately identify the lumped
disturbances d(t) in finite time [28].

- Proof 1 we define observer errors as follows:

eobs1 = Υ0 − q̇, eobs2 = Υ1 − d(t), eobs3 = Υ2 − ḋ(t) (8)

by performing the time derivative of (8) and substituting (7), the following expression is obtained:

ėobs1 = −ξ1L
1/3
q |eobs1 |2/3sign(eobs1 ) + eobs2

ėobs2 = −ξ2L
1/2
q |eobs2 − ėobs1 |1/2sign(eobs2 − ėobs1 ) + eobs3

ėobs3 = −ξ3Lqsign(eobs3 − ėobs2 )− d̈(t)

(9)

the rest of the proof is similar to Theorem 1 of [8], so it is omitted for space reasons. Nevertheless, according
to that theorem, the observation errors eobs1 , eobs2 , and eobs3 converge to the origin in finite time by appropriately

selecting the parameters ξ1, ξ2, ξ3, and Lq , i.e. Υ0 ≡ ̂̇q, Υ1 ≡ d̂(t), Υ2 ≡ ̂̇
d(t).

2.2.2. HFTSMC strategy design
Considering the dynamic model of the non-holonomic 3WMR given in (5), the following dynamic

model for the position control system is introduced.
ẍ =

λ

m
sin θ +

1

rm
cos θ u1 + dx(t),

ÿ = − λ

m
cos θ +

1

rm
sin θ u1 + dy(t),

(10)

Based on the HSMC theory [20], the underactuated dynamic system given in (10) is decomposed into two
subsystems for each state. To achieve this, we define the following state variables: X = [χ1, χ2, χ3, χ4] =
[x, ẋ, y, ẏ]T . The state-space representation of (10) can then be expressed as (11):

χ̇1 = χ2,

χ̇2 = f1(X) + g1(X)u1 + dx(t)

χ̇3 = χ4,

χ̇4 = f2(X) + g2(X)u1 + dy(t)

(11)

where,

f1(X) =
λ

m
sin θ, g1(X) =

1

rm
cos θf2(X) = − λ

m
cos θ, g2(X) =

1

rm
sin θ (12)

Considering (11), we define the position tracking errors as:

ex1 = χ1 − xd, e
x
2 = χ2 − ẋde

y
1 = χ3 − yde

y
2 = χ4 − ẏd (13)

deriving in time (13), we obtain the dynamics of the errors as (14).{
ėx1 = ex2 ,
ėx2 = f1(X) + g1(X)u1 + dx(t)− ẍd.

;

{
ėy1 = ey2,
ėy2 = f2(X) + g2(X)u1 + dy(t)− ÿd.

(14)
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To ensure accurate performance and fast convergence in the underactuated control system, and unlike
the approaches in [26], [27], in this research we propose a robust nonlinear fast terminal sliding surface for the
first layer of the hierarchical structure, defined as:

σx =ex2 + c1e
x
1 + c2|ex1 |αxsign(ex1) + c3|ex1 |βxsign(ex1)

σy =ey2 + c4e
y
1 + c5|ey1|αy sign(ey1) + c6|ey1|βy sign(ey1)

(15)

where αi ≥ 1 and 0 < βi < 1 with i = x, y. The parameters ci > 0, i = 1, 6, are the positive coefficients of
the sliding surface, which will be adjusted using a neural network in the following section.

Deriving in time the sliding surfaces (15) and substituting the expressions (14), we obtain:

σ̇x =ėx2 + c1ė
x
1 + c2αx|ex1 |αx−1 + c3βx|ex1 |βx−1

=f1(X) + g1(X)u1 + dx(t)− ẍd + c1ė
x
1 + c2αx|ex1 |αx−1 + c3βx|ex1 |βx−1

σ̇y =ėy2 + c4ė
y
1 + c5αy|ey1|αy−1 + c6βy|ey1|βy−1

=f2(X) + g2(X)u1 + dy(t)− ÿd + c4ė
y
1 + c5αy|ey1|αy−1 + c6βy|ey1|βy−1

(16)

By setting σ̇i = 0, i = x, y, we obtain the equivalent control laws for each subsystem:

ux
eq =

1

g1(X)

[
ẍd − f1(X)− d̂x − c1ė

x
1 − c2αx|ex1 |αx−1 − c3βx|ex1 |βx−1 − kxsign(σx)

]
uy
eq =

1

g2(X)

[
ÿd − f2(X)− d̂y − c4ė

y
1 − c5αy|ey1|αy−1 − c6βy|ey1|βy−1 − kysign(σy)

] (17)

where kx, ky are the positive coefficients and will be adjusted using a neural network in the following section.
The hierarchical total control law for the position control system can be expressed as follows [19]:

u1 = ux
eq + uy

eq + ux,y
sw (18)

where ux
eq, u

y
eq are the equivalent control laws of the first layer of the hierarchical structure, and ux,y

sw is the
switching control law.

Since we have already established the two sliding surfaces of the first layer according to (15), we
proceed to define the sliding surface of the second layer of the hierarchical structure as follows:

s1 = η1σx + η2σy (19)

where η1 and η2 are two positive definite design parameters. Deriving in time (19) and substituting the expres-
sions of (16), we obtain:

ṡ1 = η1σ̇x + η2σ̇y =η1
[
f1(X) + g1(X)u1 + d̂x − ẍd + c1ė

x
1 + c2αx|ex1 |αx−1 + c3βx|ex1 |βx−1

]
+

η2
[
f2(X) + g2(X)u1 + d̂y − ÿd + c4ė

y
1 + c5αy|ey1|αy−1 + c6βy|ey1|βy−1

] (20)

Substituting the expressions of (18) into (20) and performing some mathematical operations, we obtain
the following expression:

ṡ1 =η1
[
f1(X) + g1(X)(ux

eq + uy
eq + ux,y

sw ) + d̂x − ẍd + c1ė
x
1 + c2αx|ex1 |αx−1 + c3βx|ex1 |βx−1

]
+

η2
[
f2(X) + g2(X)(ux

eq + uy
eq + ux,y

sw ) + d̂y − ÿd + c4ė
y
1 + c5αy|ey1|αy−1 + c6βy|ey1|βy−1

]
=η1

[
g1(X)(uy

eq + ux,y
sw )

]
+ η2

[
g2(X)(ux

eq + ux,y
sw )

] (21)

To ensure a fast reach to the sliding manifold, we use the exponential approach law, defined as:

ṡ1 = −ks11 s1 − ks12 sign(s1) (22)

where ks11 and ks12 are two positive definite parameters. Therefore, combining expressions (21) and (22), we
design the switching control law as:

ux,y
sw =

1

η1g1(X) + η2g2(X)

[
− η1g1(X)uy

eq − η2g2(X)ux
eq − ks11 s1 − ks12 sign(s1)

]
(23)

Finally, by substituting expressions (17) and (23) into (18), we obtain the final position control law of the
mobile robot:

u1 =
1

η1g1(X) + η2g2(X)

[
η1g1(X)ux

eq + η2g2(X)uy
eq − ks11 s1 − ks12 sign(s1)

]
(24)
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2.2.3. FTSMC strategy design
Considering the dynamic model of the non-holonomic 3WMR given in (5), the following dynamic

model for the orientation control system is introduced:

θ̈ =
L

r J
u2 + dθ(t) (25)

The following state variables X = [χ5, χ6] = [θ, θ̇]T are defined. Then, the state-space representation of (25)
is given as:{

ẋ5 = x6,

ẋ6 = g(θ)u2 + dθ(t)
; g(θ) =

L

r J
(26)

considering (26), we define the tracking errors as:

eθ1 = χ5 − θd, eθ2 = χ6 − θ̇d (27)

deriving in time (35), we obtain the dynamics of the errors as (28).{
ėθ1 = eθ2,

ėθ2 = g(θ)u2 + dθ(t)− θ̈d
(28)

To ensure accurate performance and fast convergence in the fully actuated control system, we propose
a robust nonlinear fast terminal sliding surface, defined as:

s2 = eθ2 + c7e
θ
1 + c8|eθ1|αθ sgn(eθ1) + c9|eθ1|βθ sgn(eθ1) (29)

where αθ ≥ 1 and 0 < βθ < 1. The parameters ci > 0, i = 7, 9 are the positive coefficients of the sliding
surface, which will be adjusted using a neural network in the following section.

Deriving in time (29) and substituting the expression of (28), we obtain:

ṡ2 =ėθ2 + c7ė
θ
1 + c8αθ|ėθ1|αθ−1 + c9βθ|ėθ1|βθ−1

=g(θ)u2 + dθ(t)− θ̈d + c7ė
θ
1 + c8αθ|ėθ1|αθ−1 + c9βθ|ėθ1|βθ−1

(30)

to ensure fast reach of the sliding manifold, we use the exponential approach law, defined as:

ṡ2 = −ks21 s2 − kθsign(s2) (31)

here ks21 and kθ are two positive-definite parameters, with kθ being adjusted using a neural network in the
following section.

Therefore, combining expressions (30) and (31), we design the orientation control law of the mobile
robot as:

u2 =
1

g(θ)

[
θ̈d − d̂θ − c7ė

θ
1 − c8αθ|ėθ1|αθ−1 − c9βθ|ėθ1|βθ−1 − ks21 s2 − kθsign(s2)

]
(32)

2.2.4. Design of adaptive laws
In this section, a neural network is employed to dynamically adjust the sliding surface coefficients in

real-time. Specifically, the coefficients ĉi > 0 for i = 1, 9 and k̂l > 0 for l = x, y, θ are adjusted, where
ĉi and k̂l represent the estimates of ci and kl respectively. This approach aims to minimize tracking errors
and mitigate the chattering phenomenon. The neural network is trained using an online specialized learning
architecture [29], [30], which uses the backpropagation algorithm to dynamically adapt the coefficients of the
sliding surfaces. To this end, we initially design the adaptive laws for the coefficients ĉi > 0, i = 1, 3 and k̂x
through the following steps:

- First, we establish the performance error Ex = 1
2

[
x − xd

]2
, which is formulated as a function of the

difference between the desired state and the current state of the mobile robot.

Neuro-adaptive hierarchical sliding mode control ... (Jose Carlos Vizarreta Mamani)
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- Using the steepest descent approach [29], we derive the following adaptive equations:

k̂x = kx,0 − ω

∫ t

0

∂Ex

∂k̂x
, ĉ1 = c1,0 − ω

∫ t

0

∂Ex

∂ĉ1
, ĉ2 = c2,0 − ω

∫ t

0

∂Ex

∂ĉ2
, ĉ3 = c3,0 − ω

∫ t

0

∂Ex

∂ĉ3
, (33)

where ω is the learning rate, kx,0, c1,0, c2,0 and c3,0 are initial values of k̂x, ĉ1, ĉ2 and ĉ3 respectively.
- By applying the chain rule for partial derivatives, the following expressions can be derived:

∂Ex

∂k̂x
=

∂Ex

∂x

∂x

∂ux
eq

∂ux
eq

∂k̂x
= −(ex1)sign

(
∆x

∆ux
eq

)
1

g1(X)
sign(σx),

∂Ex

∂ĉ1
=

∂Ex

∂x

∂x

∂ux
eq

∂ux
eq

∂σx

∂σx

∂ĉ1
= −sign

(
∆x

∆∂ux
eq

)
1

g1(X)

(
4e−2σxkx

(1 + e−2σx)2

)
(ex1)

2,

∂Ex

∂ĉ2
=

∂Ex

∂x

∂x

∂ux
eq

∂ux
eq

∂σx

∂σx

∂ĉ2
= −sign

(
∆x

∆ux
eq

)
1

g1(X)

(
4e−2σxkx

(1 + e−2σx)2

)
|ex1 |αx+1sign(ex1),

∂Ex

∂ĉ3
=

∂Ex

∂x

∂x

∂ux
eq

∂ux
eq

∂σx

∂σx

∂ĉ3
= −sign

(
∆x

∆ux
eq

)
1

g1(X)

(
4e−2σxkx

(1 + e−2σx)2

)
|ex1 |βx+1sign(ex1).

(34)

- Substituting (34) into (33), the adaptive coefficients of the sliding surface σx are designed as follows:

k̂x =kx,0 + ω

∫ t

0

(ex1)sign
(

∆x

∆ux
eq

)
1

g1(X)
sign(σx),

ĉ1 =c1,0 + ω

∫ t

0

sign
(

∆x

∆∂ux
eq

)
1

g1(X)

(
4e−2σx k̂x

(1 + e−2σx)2

)
(ex1)

2,

ĉ2 =c2,0 + ω

∫ t

0

sign
(

∆x

∆ux
eq

)
1

g1(X)

(
4e−2σx k̂x

(1 + e−2σx)2

)
|ex1 |αx+1sign(ex1),

ĉ3 =c3,0 + ω

∫ t

0

sign
(

∆x

∆ux
eq

)
1

g1(X)

(
4e−2σx k̂x

(1 + e−2σx)2

)
|ex1 |βx+1sign(ex1).

(35)

where ∆ refers to the upward difference operator, defined as ∇ζk = ζk − ζk−1 [29].

By applying the same method as in the earlier steps, the coefficients for the sliding surfaces σy and sθ
are determined as follows:



k̂y=ky,0+ω

∫ t

0

Ξy(e
y
1)

g2(X)
sign(σy),

ĉ4=c4,0+ω

∫ t

0

Ξy(e
y
1)

2

g2(X)

(
4e−2σy k̂y

(1 + e−2σy )2

)
,

ĉ5=c5,0+ω

∫ t

0

Ξysignαy+1(ey1)

g2(X)

(
4e−2σy k̂y

(1 + e−2σy )2

)
,

ĉ6=c6,0+ω

∫ t

0

Ξysignβy+1(ey1)

g2(X)

(
4e−2σy k̂y

(1 + e−2σy )2

)
.



k̂θ=kθ,0+ω

∫ t

0

Ξθ(e
θ
1)

g2(θ)
sign(sθ),

ĉ7=c7,0+ω

∫ t

0

Ξθ(e
θ
1)
2

g2(θ)

(
4e−2sθ k̂θ

(1 + e−2sθ )2

)
,

ĉ8=c8,0+ω

∫ t

0

Ξθsignαθ+1(eθ1)

g2(θ)

(
4e−2sθ k̂θ

(1 + e−2sθ )2

)
,

ĉ9=c9,0+ω

∫ t

0

Ξsignβθ+1(eθ1)

g2(θ)

(
4e−2sθ k̂θ

(1 + e−2sθ )2

)
.

(36)

where Ξy = sign
(

∆y
∆uy

eq

)
,Ξθ = sign

(
∆θ
∆u2

)
.

The adaptive laws developed in (35) and (36), together with the estimation of the external disturbances
in (7) and the control laws defined in (24) and (32), form a robust and efficient control system for trajectory
tracking in a 3WMR. Algorithm 1, which details the necessary steps to implement the control system proposed.
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Algorithm 1. Algorithm of the proposed control system
1: Input:
2: Define the physical characteristics of the mobile robot: m,J, r, L
3: Define the parameters of the FTDO observer: ξ1, ξ2, ξ3, Lq

4: Define the parameters of the control strategy: αx, αy, αθ, βx, βy, βθ, η1, η2, k
s1
1 , k

s2
1

5: Define the adaptive parameters for the neural network: kx,0, ky,0, kθ,0, c1,0, c2,0, c3,0, c4,0, c5,0, c6,0, c7,0, c8,0, c9,0
6: while Repeat do
7: Underactuated Control System
8: Acquire the current states: x, ẋ, y, ẏ
9: Compute the tracking errors: ex1 , e

x
2 , e

y
1 , e

y
2

10: Define the neural network performance error: Ex, Ey

11: Calculate the adaptive parameters for the sliding surface: k̂x, k̂y, ĉ1, ĉ2, ĉ3, ĉ4, ĉ5, ĉ6
12: Define the sliding surfaces of the first layer in the hierarchical structure: σx, σy

13: Time derivative of the sliding surfaces of the first layer: σ̇x, σ̇y

14: Calculate the equivalent control laws: ux
eq, u

y
eq

15: Define the sliding surface of the second layer in the hierarchical structure: s1
16: Time derivative of the sliding surface of the second layer: ṡ1
17: Calculate the switching control law: ux,y

sw
18: Calculate the position control law: u1

19: Fully Actuated Control System
20: Acquire the current states: θ, θ̇
21: Calculate the tracking errors: eθ1, e

θ
2

22: Define the neural network performance error: Eθ

23: Calculate the adaptive parameters for the sliding surface: k̂θ, ĉ7, ĉ8, ĉ9
24: Define the sliding surface: s2
25: Time derivative of the sliding surfaces: ṡ2
26: Calculate the orientation control law: u2

27: FTDO Observer
28: Acquire the control inputs: u1, u2

29: Acquire the current states: x, ẋ, y, ẏ, θ, θ̇
30: Calculate the disturbance estimations: d̂x(t), d̂y(t), d̂θ(t)

31: end while

2.3. Stability analysis
- Theorem 2 considering the dynamical system in (25), together with the control law designed in (32) and the

design of the adaptive laws defined in (36), then the system states will reach the sliding surface in a finite
time. As a result, the tracking errors in (27) will approach zero in a finite time.

- Proof 2 considering the following Lyapunov candidate function as:

V =
1

2
(eθ1)

2 +
1

2
(s2)

2 +
1

2
(k̃θ)

2 +
1

2
(c̃7)

2 +
1

2
(c̃8)

2 +
1

2
(c̃9)

2 (37)

where c̃i, (i = 7, 8, 9) is the adaptive estimation error, then c̃i = ĉi − ci. Deriving in time (37), we obtain:

V̇ = eθ1(e
θ
2) + s2(ṡ2) + k̃θ(

˙̃
kθ) + c̃7(˙̃c7) + c̃8(˙̃c8) + c̃9(˙̃c9) (38)

Substituting the expressions of (28) and (30) into (38), we obtain the following:

V̇ =eθ1(−ĉ7e
θ
1 − ĉ8|eθ1|αθ sgn(eθ1)− ĉ9|eθ1|βθ sgn(eθ1))+

s2(−ks21 s2 − k̂θsign(s2)) + k̃θ(
˙̂
kθ) + c̃7( ˙̂c7) + c̃8( ˙̂c8) + c̃9( ˙̂c9)

(39)

By performing some mathematical operations and adding and subtracting some terms, the following expression
is obtained:

V̇ =− ĉ7|eθ1|2 − ĉ8|eθ1|αθ+1 − ĉ9|eθ1|βθ+1 − ks21 |s2|2 − k̂θ|s2|+ k̃θ(
˙̂
kθ) + c̃7( ˙̂c7) + c̃8( ˙̂c8)+

c̃9( ˙̂c9) + c7|eθ1|2 − c7|eθ1|2 + c8|eθ1|αθ+1 − c8|eθ1|αθ+1 + c9|eθ1|βθ+1 − c9|eθ1|βθ+1 + kθ|s2| − kθ|s2|

=− c̃7|eθ1|2 − c̃8|eθ1|αθ+1 − c̃9|eθ1|βθ+1 − k̃θ|s2| − ks21 |s2|2 + k̃θ(
˙̂
kθ) + c̃7( ˙̂c7) + c̃8( ˙̂c8) + c̃9( ˙̂c9)−

kθ|s2| − c7|eθ1|2 − c8|eθ1|αθ+1 − c9|eθ1|βθ+1

(40)
Putting together some common terms, we obtain:

V̇ =− (c7 + c8|eθ1|αθ−1 + c9|eθ1|βθ−1)|eθ1|2 − (ks21 + kθ/s2)|s2|2 − (|s2| − ˙̂
kθ)|k̃θ|−

(|eθ1|2 − ˙̂c7)|c̃7| − (|eθ1|αθ+1 − ˙̂c8)|c̃8| − (|eθ1|βθ+1 − ˙̂c9)|c̃9|
(41)
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To simplify the expression, we define the following variables:

Φ1 =(c7 + c8|eθ1|αθ−1 + c9|eθ1|βθ−1),Φ2 = (ks21 + kθ/s2),Φ3 = (|s2| − ˙̂
kθ),

Φ4 =(|eθ1|2 − ˙̂c7),Φ5 = (|eθ1|αθ+1 − ˙̂c8),Φ6 = (|eθ1|βθ+1 − ˙̂c9)
(42)

According to (42), the (41) is obtained:
V̇ =− Φ1|eθ1|2 − Φ2|s2|2 − Φ3|k̃θ| − Φ4|c̃7| − Φ5|c̃8| − Φ6|c̃9| (43)

Performing some mathematical adjustments, we obtain the following:

V̇ =− Φ1|eθ1|2 − Φ2|s2|2 −
√
2Φ3

(
|k̃θ|2

2

)ε

−
√
2Φ4

(
|c̃7|2

2

)ε

−
√
2Φ5

(
|c̃8|2

2

)ε

−
√
2Φ6

(
|c̃9|2

2

)ε

(44)
where ε = 1/2. Now, according to Lemma 3 of [31] and grouping common terms, we obtain:

V̇ =− Φ1

[(
|eθ1|2

2

)ε

− (1− ε)ε
ε

1−ε

]
− Φ2

[(
|s2|2

2

)ε

− (1− ε)ε
ε

1−ε

]
−

−
√
2Φ3

(
|k̃θ|2

2

)ε

−
√
2Φ4

(
|c̃7|2

2

)ε

−
√
2Φ5

(
|c̃8|2

2

)ε

−
√
2Φ6

(
|c̃9|2

2

)ε

=− Φ1

(
|eθ1|2

2

)ε

− Φ2

(
|s2|2

2

)ε

−
√
2Φ3

(
|k̃θ|2

2

)ε

−
√
2Φ4

(
|c̃7|2

2

)ε

−

√
2Φ5

(
|c̃8|2

2

)ε

−
√
2Φ6

(
|c̃9|2

2

)ε

+ (Φ1 +Φ2)(1− ε)ε
ε

1−ε = −KV V
ε + PV

(45)

where KV =
{
Φ1,Φ2,

√
2Φ3,

√
2Φ4,

√
2Φ5,

√
2Φ6

}
and PV =

{
(Φ1 +Φ2)(1− ε)ε

ε
1−ε

}
.

Therefore, according to Lemma 4 of [32] and for any 0 < ϱ < 1, it can be inferred that the errors in
(34) can be stabilized to zero during the sliding motion s2 = 0 in a finite time Tf defined by:

Tf =
1

(1− ε)ϱKV

(
V 1−ε(0)−

(
PV

(1− ϱ)KV

) 1−ε
ε
)
. (46)

Thus, completing the proof.
- Remark 1 following the same procedure as in the proof of Theorem 2, it can be demonstrated that the

tracking errors in (13) stabilize to zero during the motion of the sliding surface s1 = 0 in finite time.

Figure 3 shows the simulation setup of the control system proposed in this paper, implemented in
MATLAB/Simulink software (version 2021a). The setup includes several blocks developed in this section,
such as the dynamic modeling of the 3WMR, the FTDO observer, the control strategy and the adaptive neural
network scheme.

Figure 3. Simulation setup of the proposed control system in MATLAB/Simulink
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3. RESULTS AND DISCUSSION
In this section, the proposed control system, designed in the previous section, is validated through

numerical simulations performed using MATLAB/Simulink software (version 2021a). The simulations were
executed on a Lenovo laptop with 8 GB of RAM, a 9th generation Intel Core i5 processor, and 466 GB of SSD
storage. To evaluate convergence time, tracking accuracy, and disturbance rejection capabilities, a comparative
study is conducted between our proposed control system, AHFTSMC, and two hierarchical control schemes:
HFSMAC [25] and adaptive backstepping hierarchical sliding mode control (ABHSMC) [27]. The parameters
of the mobile robot and the control system are detailed in Tables 1 and 2, respectively.

Table 1. 3WMR parameters
Parameters m J r L

Value 4 Kg 2.5 Kg/m2 0.04 m 0.2 m

Table 2. Control system parameters
Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

ξ1 5 c1,0 12 c5,0 2.5 c9,0 1.2 βx 2.5

ξ2 8 c2,0 2.5 c6,0 2.5 αx 2.1 βy 1.5
ξ3 6 c3,0 2.5 c7,0 8 αy 1.2 βθ 1.5

Lq 3 c4,0 12 c8,0 1.2 αθ 0.8 ks11 , ks21 5

3.1. Trajectory tracking of a straight line
The reference trajectory for this scenario is set as follows:

qd = [xd, yd, θd]
T = [0.25t, 0.25t, π/4]T

In this case, only external disturbances are considered, given by d(t) = [dx, dy] = [1.2,−1.2]T . These distur-
bances are introduced to the dynamic system at specific time instants. Since the 3WMR is an underactuated
system with coupled dynamics, external position disturbances inevitably affect the orientation of the mobile
robot.

The results are presented in Figures 4-6. Figure 4(a) shows the 3D simulation of the mobile robot
trajectory tracking with the different controllers, while Figure 4(b) shows a 2D view of the trajectory tracking
of the 3WMR. An initial analysis of these figures clearly demonstrates that our proposed control system exhibits
superior trajectory tracking performance compared to the HFSMAC and ABHSMC approaches.

HFSMAC ABHSMC AHFTSMC (Proposed) Reference

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x (m)

-1

0

1

2

3

4

5

6

y 
(m

)

HFSMAC ABHSMC AHFTSMC (Proposed) Reference

2.6 2.8 3

2.6

2.8

3

(b)

Figure 4. Trajectory tracking response under different controllers, (a) viewed in 3D and (b) viewed in 2D

Figure 5(a) presents the temporal response of the Cartesian position and orientation, demonstrating
faster convergence of our proposed control system across all three states of the mobile robot compared to
the HFSMAC and ABHSMC controllers. It also highlights the improved tracking accuracy of our approach,
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which is particularly evident in the zoomed-in regions, even in the presence of external disturbances. In Figure
5(b), the tracking errors are displayed, highlighting the outstanding ability of our system to reject external
disturbances. This results in greater robustness, as the errors converge to zero and remain consistently near the
origin, unlike the HFSMAC and ABHSMC controllers, which are clearly affected by these disturbances. The
control inputs are shown in Figure 6(a). Finally, Figure 6(b) illustrates the response of the FTDO, where the
designed observer accurately identifies the external disturbances acting on the mobile robot. These disturbances
are effectively compensated by the control system, further improving disturbance rejection.

AHFTSMC (Proposed)

(a)

AHFTSMC (Proposed)

(b)

Figure 5. Temporal response of (a) position and (b) tracking errors
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Disturbance Estimation
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Figure 6. Temporal response of (a) control inputs and (b) FTDO estimation

In this study, we use the performance indices of settling time, root mean squared error (RMSE), and
integral squared error (ISE) to provide a more accurate quantitative comparison between the results of our
proposed control system and those of the HFSMAC and ABHSMC controllers. These indices are calculated
and compiled in Table 3, with the top results emphasized in bold. Table 3 compares the settling times of our
proposed control system with those of the HFSMAC and ABHSMC controllers. The results show that our
approach achieves shorter settling times, confirming its exceptional ability to ensure fast convergence in finite
time. Additionally, Table 3 presents a comparison of the RMSE and ISE indices, where our control system
consistently achieves lower values than the HFSMAC and ABHSMC controllers, reaffirming the superiority
of our approach in terms of tracking accuracy. To further aid in interpreting these results, the RMSE and ISE
values are visualized in a bar chart, as shown in Figure 7.
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Table 3. Analysis of performance indices for scenario 1

Control strategy
Settling time RMSE ISE

x y θ x y θ x y θ

HFSMAC 1.984 1.857 1.635 0.296 0.154 0.139 1.752 0.474 0.386

ABHSMC 3.435 3.586 0.912 0.419 0.219 0.114 3.511 0.959 0.259

AHFTSMC (proposed) 0.692 0.645 0.548 0.151 0.095 0.059 0.456 0.180 0.109

Figure 7(a) presents the RMSE values for the three control approaches: HFSMAC, ABHSMC and
the proposed control. It can be seen that the RMSE values of the proposed approach are lower compared to
the other control approaches. In particular, the RMSE values of the proposed controller are 0.151 in x, 0.095
in y, and 0.059 in θ. Figure 7(b) shows the ISE values for the same controllers and state variables. As in
Figure 7(a), the proposed control approach exhibits the lowest ISE values, with 0.456 in x, 0.180 in y and
0.109 in θ.

(a) (b)

Figure 7. Performance indices (a) RMSE and (b) ISE

3.2. Trajectory tracking of a sine curve
The reference trajectory is set as follows:

qd = [1 + 0.2t, 1 + 0.25sin(0.2πt), atan(0.25πcos(0.2πt))]T (47)

In this case, we consider both external and internal disturbances during the motion of the mobile robot. These
lumped disturbances are defined as:
a) External disturbances: assume the mobile robot arrives a challenging environment at time t = 8 seconds

with the presence of the following external disturbances:

d(t) = [dx, dy] = [0.5sin(3t) + 0.8cos(2t),−1.2cos(3t) + 0.2sin(5t)− 0.5cos(2t)]T (48)

b) Internal disturbances: represents the variation of the physical characteristics of the mobile robot; for this,
we consider parametric uncertainties of 30% in the mass and moment of inertia of the mobile robot.

The findings are displayed in Figures 8-10. Figure 8(a) illustrates the 3D simulation of the 3WMR
following the reference trajectory with the different controllers, while Figure 8(b) provides a 2D view of the
trajectory tracking of the 3WMR under the presence of both external and internal disturbances. From these
figures, it is evident that, similar to the previous scenario, our suggested control approach achieves superior
performance compared to HFSMAC and ABHSMC controllers in trajectory tracking even in the presence of
large lumped disturbances.

The temporal response of the Cartesian position and orientation are plotted in Figure 9(a). As in
the previous case, our proposed control system demonstrates fast convergence in all three states of the mo-
bile robot to the reference signal, while also exhibiting accurate tracking and remarkable disturbance rejection
compared to the HFSMAC and ABHSMC controllers. This superiority is clearly evident in Figure 9(b), where
the tracking errors converge to zero and remain consistently near the origin despite large external and internal
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disturbances. In contrast, the HFSMAC and ABHSMC controllers are significantly affected by lumped distur-
bances, as shown in the zoomed-in regions of tracking errors in Figure 9(b). The control inputs are presented in
Figure 10(a). Finally, Figure 10(b) displays the response of the FTDO, where it is observed that the designed
observer accurately identifies the lumped disturbances affecting the mobile robot at t = 8 seconds. These dis-
turbances are effectively compensated by the control system, significantly enhancing the system’s disturbance
rejection capability. As a result, the mobile robot follows the reference trajectory smoothly despite the lumped
disturbances, as illustrated in Figure 8.

HFSMAC ABHSMC ReferenceAHFTSMC (Proposed)

(a)
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Figure 8. Trajectory tracking response under different controllers, (a) viewed in 3D and (b) viewed in 2D
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Figure 9. Temporal response of (a) position and (b) tracking errors of scenario 2
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Figure 10. Temporal response of (a) control inputs and (b) FTDO estimation of scenario 2

Indonesian J Elec Eng & Comp Sci, Vol. 37, No. 3, March 2025: 1515–1531



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1529

For a more precise comparative analysis, the performance indices described above were calculated.
The calculations are presented in Table 4. From this table, it is clear that our proposed control approach
offers superior performance in tracking the trajectory of a 3WMR, even in the presence of large disturbances.
The settling times, as well as the RMSE and ISE values, are lower compared to those of the HFSMAC and
ABHSMC controllers. These results highlight the excellent characteristics of the proposed control system,
which is noted for its rapid convergence, high tracking accuracy, and remarkable ability to reject disturbances.
To facilitate the interpretation of these results, the RMSE and ISE values are presented in a bar chart, as
illustrated in Figure 11.

Figure 11(a) presents the RMSE values for the three control approaches under the presence of both
external and internal disturbances. It is evident that the RMSE values of the proposed approach are lower
compared to the other control approaches. In particular, the RMSE values of the proposed controller are 0.266
in x, 0.189 in y, and 0.124 in θ. Figure 11(b) shows the ISE values for the same controllers and state variables.
As in Figure 11(a), the proposed control approach exhibits the lowest ISE values, with 0.471 in x, 0.265 in y
and 0.214 in θ.

Table 4. Analysis of performance indices for scenario 2

Control strategy
Settling time RMSE ISE

x y θ x y θ x y θ

HFSMAC 2.184 2.432 2.182 0.623 0.312 0.284 2.914 1.284 0.649

ABHSMC 3.692 3.927 1.712 1.145 0.824 0.187 3.792 1.855 0.584

AHFTSMC (proposed) 0.814 0.914 0.711 0.266 0.189 0.124 0.471 0.265 0.214

(a) (b)

Figure 11. Performance indices (a) RMSE and (b) ISE

4. CONCLUSION
This research presented the design of a novel neuro-adaptive HSMC system for trajectory tracking

of a 3WMR subjected to large lumped disturbances. The validation of the proposed system was carried out
by numerical simulations in MATLAB/Simulink, comparing its performance with the HSMC, HFSMAC, and
ABHSMC. The obtained results, supported by a quantitative comparative analysis, have confirmed the supe-
riority of our proposed control approach in terms of fast convergence, higher tracking accuracy and better
disturbance rejection capability compared to HFSMAC and ABHSMC controllers. Future work will focus on
the experimental validation of the control system and the integration of potential field algorithms for obstacle
avoidance.
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