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 The different applications of medical images have contributed significantly 

to the growing amount of image data. As a result, compression techniques 

become essential to allow real-time transmission and storage within limited 

network bandwidth and storage space. Deep learning, particularly 

convolutional neural networks (CNN) have marked rapid advances in many 

computer vision tasks and have progressively drawn attention for being used 

in image compression. Therefore, we present a method for compressing 

retinal images based on deep CNN and discrete wavelet transform (DWT). 

To further enhance CNN capabilities, multi-scale convolutions are 

introduced into the network architecture. In this proposed method, multiscale 

CNNs are used to extract useful features to provide a compact representation 

at the encoding stage and guarantee a better reconstruction quality of the 

image at the decoding stage. Based on compression efficiency and 

reconstructed image quality, a wide range of experiments have been 

conducted to validate the proposed technique performance compared with 

popular image compression standards and existing deep learning-based 

methods. At a compression ratio (CR) of 80, the proposed method achieved 

an average peak signal-to-noise ratio (PSNR) value of 38.98 dB and 96.8% 

similarity in terms of multi-scale structural similarity (MS-SSIM), 

demonstrating its effectiveness. 
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1. INTRODUCTION 

As part of medical planning in health care systems, medical imaging plays a significant role in 

digital image processing. Medical imaging has made extensive use of retinal images. The diagnostic process 

for several eye diseases, including stroke, diabetic retinopathy, and glaucoma, depends heavily on the clarity 

of retinal images [1]. In addition, the difficulty of diagnosing some retinal diseases also requires advanced 

technologies that allow multiple specialized medical teams to effectively share, exchange, retrieve, and 

process data. Retinal images are further used for research purposes to help in the automatic labeling of 

diseased vessels i.e., automatic diagnostic [2], diabetic retinopathy [3], automatic retinal vessel segmentation [4]. 

The different applications of retinal images, whether for medical practice or research, have marked an 

increase in medical data acquired by the latest imaging technologies, in which the size of the images 

https://creativecommons.org/licenses/by-sa/4.0/
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increases as the resolution requirement increases. Thus, storage and transmission systems are affected. 

Because of the large size of the data and the need for storage capacity, it is essential to compress the data for 

preservation in Hospital Information Systems (HIS) or picture archiving and communication systems (PACS) 

for future reference. A variety of mechanisms for efficient data processing are important as storage has 

become one of the greatest challenges. Moreover, the primary goal of telemedicine is to enable efficient 

remote analysis of medical images. Systems transmitting large amounts of medical imaging data cause 

complicated transmission processes. Transmission is mainly managed by reducing bit rates in response to a 

limited channel bandwidth [5]. Hence, it is important to develop adequate compression techniques that 

reduce the size of image data while preserving a reasonable level of clinical fidelity in order to overcome the 

limited bandwidth and storage resources. 

At present, a variety of lossy compression techniques for medical images have been developed in 

the literature. These techniques are primarily divided into two categories: compression techniques based on 

conventional algorithms (non-deep-learning algorithms) and compression techniques based on deep learning [6]. 

Generally, conventional compression approaches (non-deep learning algorithms) are realized by combining 

different transforms jointly with a quantization step and entropy coding method [7], [8]. In addition, 

conventional approaches have been employed for medical image compression. Hänsgen et al. [9], 

investigated the effect of wavelet compression on automatic analysis tasks and the degradation of retinal 

image quality caused by different compression ratios (CR). Eikelboom et al. [10], the effect of JPEG and 

wavelet compression techniques on digital retinal images quality has been investigated. Krivenko et al. [11], 

proposed an image coder based on 32×32 pixels blocks discrete cosine transform (DCT) for retinal image 

compression. Mookiah et al. [12], they reported a quantitative assessment of the effects induced by the JPEG 

image compression algorithm on automatic vessel segmentation in digital retinal images. In the previous 

studies, as the compression ratio increases, conventional compression methods, such as JPEG, cause blocking 

artifacts or noise that degrades the quality of the decoded images. Some works proposed to overcome the 

problem by implementing post-processing or denoising based methods for retinal image processing. For 

example, Nazari and Pourghassem [13], suggested an approach based on pre-processing vessel extraction, 

and post-processing to enhance details in retinal images for the extraction of large and thin blood vessels 

using a 2D Gabor filter followed by linear Hough transformation. Javed et al. [14], a technique of edge-based 

enhancement of retinal images was presented. In this technique the images are processed and analyzed in the 

JPEG compressed domain to enhance the edges for disease diagnosis perspective. Salih et al. [15], presented 

an effective retinal image compression approach focused on the area of interest (ROI). This approach 

includes pre-processing with an adaptive median filter, segmentation with enhanced adaptive fuzzy c-means 

clustering, compression with integer multi wavelet transform, and set partitioning in hierarchical tree, to 

achieve better image quality. 

Lately, deep learning methods have been successfully applied to image compression. Those methods 

have been proposed to benefit from an encoding and decoding module built of convolutional neural networks 

(CNN). Using CNNs the module enables dimensionality reduction and feature extraction during encoding, 

and enhanced reconstruction during decoding. Ballé et al. [16], presented a deep learning model for image 

compression by successively applying convolutional linear filters to nonlinear activation functions, while the 

rounding quantizer was replaced by a uniform quantizer to ensure an uninterrupted training process. Relying 

on model in [16], other deep learning architectures for image compression have been proposed, such as the 

one proposed by Cheng et al. [17]. In which, the authors introduced residual blocks into the architecture to 

increase the receptive field and improve compression performance of the model. Those deep learning-based 

models have outperformed conventional compression methods. Image compression technology based on 

deep learning was applied to medical images. Kar et al. [18], proposed a convolutional autoencoder 

architecture for medical lossy image compression to preserve diagnostically relevant features during 

compression. Sushmit et al. [19] suggested a convolutional recurrent neural network architecture to learn 

contextualized features for efficient X-ray image compression. A compression method for retina optical 

coherence tomography (OCT) images was developed in [20], which uses CNNs and skip connections with 

quantization to preserve fine structure features between the compression and reconstruction CNNs. 

The previously reviewed techniques have revealed some shortcomings that need to be addressed. 

Starting with conventional compression algorithms which suffered from poor performance at high CR, the 

image quality was drastically degraded [21]. Therefore, much effort has been focused on improving the 

performance of these compression approaches using pre-processing and post-processing methods. Despite 

these performance improvements, these methods involve computationally expensive and time-consuming 

processes for solving optimal solutions. On the other hand, deep learning-based image compression 

techniques have demonstrated superior performance. However, their architectures may require deeper CNN 

or large models, resulting in computations that make the learning process slow. In addition, most of their 

feature extraction architectures rely on convolutional layers with one convolution each, which may lose some 
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useful features in medical imaging terms. Deep learning models are incompatible with conventional codecs, 

hence their application is limited. 

In response to the above shortcomings, this paper proposes a medical image compression technique 

based on a low complexity deep learning model and a discrete wavelet transform (DWT) based codec. 

Motivated by the advantages of CNNs like the ability to automatically detect features and their 

computationally efficient characteristics [22]. A CNN architecture with a low parameter count is designed for 

both encoding and decoding, enhanced by multi-scale convolutional layers. The proposed deep learning 

architecture is integrated with the DWT-based codec for effective performance at high CR, owing to DWT’s 

computational efficiency and compact signal representation of the DWT, which is widely used in image 

coding [23]. The main contributions of this paper are summarized as follows. Initially, to improve the 

compression performance, the multi-scale CNN (MS-CNN) on the encoding side derives an optimal compact 

representation that holds important structural data from the original image. While on the decoding side, the 

second MS-CNN allows accurate reconstruction of the output image. Second, a DWT-based image codec 

residing between the encoding MS-CNN and decoding MS-CNN can be effectively utilized by taking a 

compact representation as input for further compression. Thirdly, we present a learning strategy for the  

MS-CNNs, which overcomes the problem of training interruption caused by non-differentiable quantization 

in the DWT codec. As demonstrated by the experimental results, the proposed technique outperforms 

existing techniques and standard compression techniques in terms of several metrics. Connecting the deep 

learning model with DWT codec using a compact intermediate representation allows the proposed 

compression technique to exhibit compatibility with other available image coding standards. To the best of 

our knowledge, this is the first study to use MS-CNNs to enhance the compression performance of 

conventional DWT-based codecs and achieve high CR with accurate medical image reconstruction.  

The succeeding part of the article is structured as follows: a description of the key components of the 

proposed approach is given in section 2. In section 3 provides a comparison and discussion of simulation 

results. Finally, conclusion is presented in section 4. 

 

 

2. METHOD 

Data compression based on deep learning is a promising research area. These techniques specialize 

in many aspects, including training and learning abilities [24]. Lossy compression by reducing 

dimensionality is one of the major categories of compression based on deep learning techniques, in which 

performance is comparable to or even better than standard codecs [16], [20]. Dimensionality reduction is 

accomplished by learning an invertible mapping between the quantized compact representation and the 

original data. This process relies mainly on deep architectures of CNNs which allow efficient feature 

extraction and exhibit a good representative ability [25]. Usually, a CNN is cascaded at both the encoding 

and decoding ends when building these deep learning models. In view of this, our presented lossy 

compression technique involves two MS-CNNs and a DWT image codec, as shown in Figure 1. 

 

 

 
 

Figure 1. The proposed compression technique overall design 
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According to our proposed method, the input image will undergo the first MS-CNN residing at the 

encoding which generates a compact representation that preserves the structural information of the input.  

The generated compact representation is further encoded, since it allows the DWT based codec to achieve 

efficient compression with a high CR. On the decoding side, a second MS-CNN is applied in order to 

produce a more accurate and high-quality reconstructed image. The two networks cooperate to compress 

images at a very low bit rate while maintaining high quality. Unlike deep learning models with millions of 

parameters, our method incorporates a DWT-based codec, known for its ideal properties and low 

computational complexity in image compression tasks [23]. The following subsections provide more details 

about the key components of the proposed technique, such as the MS-CNN architecture, DWT based codec, 

the loss functions and training strategy. 

 

2.1.  Architecture of the MS-CNNs 

Our approach further leverages CNN’s robustness, by adding a multi-scale convolutional blocks, 

which have been previously employed for classification [22] and image super-resolution [23]. The 

convolutional layers automatically extract local features of input images through the learning process based 

on the given training dataset. In Figure 2, the main differences between multiscale convolution and basic 

convolution are illustrated in Figure 2(a) and Figure 2(b), respectively. In general, small size kernels tend to 

extract features with smaller scales, such as details, while coarse structures respond to kernels with large 

scales [26]. Therefore, employing multi-scale convolutions with small and large kernel sizes is favorable to 

guarantee an efficient extraction of the different scale features found in medical images. 

 

 

 

 
(a) (b) 

 

Figure 2. Difference between (a) basic convolutional layer of CNN and (b) multi-scale convolutional layer 

 

 

The encoding and decoding MS-CNNs architecture details are given in Table 1. The encoding side 

MS-CNN incorporates basic and multi-scale convolutions and a down-sampling operation to reduce input 

dimensionality. The multi-scale convolutional block (MSCB) consists of a multi-scale convolutional layer 

with three parallel convolutions of varying kernel sizes, producing feature maps concatenated along the 

spectral dimension, as shown in Figure 3. Moreover, a down-sampling operation occurs by using stride 

convolution in order to contract spatial dimension by a factor of 2. In general, the encoding MS-CNN 

consists of 2 MSCBs and convolutional layers followed each by a rectified linear unit (ReLU) nonlinear 

activation function, as shown in Table 1. The architecture involves also skip connections, which have been 

considered one of the most efficient solutions for training deep networks [24]. The skip connection is clearly 

shown in Figure 1. The MS-CNN at the decoding side is composed of 5 weight layers and one MSCB, as 

shown in Table 1. In detail, three types of layers are present in the architecture, notably, deconvolution 

layers, up-sampling layer and multi-scale deconvolution. The compact representation undergoes the reverse 

process at the decoding side to secure accurate restoration of the original image. 
 

 

Table 1. Architecture details of the MS-CNNs at the encoding and decoding sides 
MS-CNN at encoding MS-CNN at decoding 

Conv (3×3, 32, stride=1), ReLU Deconv (3×3, 32, stride=2), ReLU 
MSCB (32) MSCB (64) 

Conv (3×3, 32, stride=1), ReLU Deconv (3×3, 128, stride=1), ReLU 

MSCB (32) Deconv (3×3, 64, stride=1), ReLU 

Conv (3×3, 64, stride=2), ReLU Deconv (3×3, 64, stride=1), ReLU 

Conv (3×3, 96, stride=1), ReLU Deconv (3×3, 3, stride=1), ReLU 

Conv (3×3, 96, stride=1), ReLU  

Conv (3×3, 64, stride=1), ReLU  

Conv (3×3, 3, stride=1), ReLU  
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Figure 3. Proposed MSCB 
 

 

2.2.  DWT based codec 

The Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) biorthogonal wavelet transform serves as the 

foundation of the our codec to allow efficient compression. For image decorrelation, Antonini and Barlaud [27], 

demonstrated the superiority of the biorthogonal wavelet transform 9/7. JPEG-2000 codec and other image 

coding methods [23], [28], have widely relied on this transform. The CDF family of symmetric biorthogonal 

wavelets are distinguished by their compact support, biorthogonality, symmetry, and simplicity. According to 

Table 2, the CDF 9/7 wavelet has 9 coefficients in the low pass filter and 7 coefficients in the high pass filter. 

 

 

Table 2. Filter coefficients of CDF 9/7 wavelet 
i Low-pass filter High-pass filter 

0 +0.6029490182363579 +1.11508705245700 

±1 +0.266864118442875 -0.59127176311425 

±2 −0.078223266528990 -0.05754352622850 

±3 –0.016864118442875 +0.09127176311425 

±4 +0.026748757410810  

 

 

The use of the wavelet for compression is dependent on the quantization step. A lossy compression 

approach uses quantization, which is adjusted to attain the desired CR. The quantized wavelet coefficients are 

subsequently entropy encoded via arithmetic coding [29]. By coding the most frequent symbols with fewer 

bits, it is more efficient than coding them all with the same bits number. Entropy encoding, specifically 

arithmetic encoding, provides lossless compression since the original data can be recovered in the decoder 

stage without affecting deep learning models. Therefore, we did not include the arithmetic coding in the 

training of networks in order to minimize unnecessary complexity. Our codec based on DWT can be 

summarized into the following steps: 

− Decomposition of the input compact representation using 2D wavelet transforms (CDF 9/7). 

− Quantization of the wavelet coefficients. 

− Lossless compression using arithmetic encoding. 

 

2.3.  Loss functions and optimization 

The objective is to optimize both MS-CNNs to achieve an efficient compression and a better image 

quality reconstruction. In order to optimize our model, a loss term needs to be minimized over the parameters 

of the proposed networks. The distortion between the input and reconstructed images represents the loss, and 

it can be expressed as: 

 

𝐿(𝜃𝑖 , 𝜃𝑗) =
1

𝑁
∑ ‖𝑅(𝜃𝑗 , 𝐷(𝐸(𝜃𝑖, 𝑥𝑘))) − 𝑥𝑘‖

2𝑁
𝑘=1 ) (1) 

 

in the (1), mean square error (MSE) is used in the loss function as a distortion term, with 𝑥𝑘 denoting the 

input image. 𝐸(. ) and 𝑅(. ) indicate of the MS-CNN at the encoding side and MS-CNN at the decoding side, 

with 𝜃𝑖 , 𝜃𝑗 as their variables, respectively, whereas 𝐷 denotes the DWT based codec. The input image 𝑥𝑘 

went through stages of compression, namely, MS-CNN for compact representation and DWT codec, then 

second MS-CNN for reconstructing the image. However, the rounding function incorporated in the DWT-

based codec cannot be differentiated when performing the backpropagation algorithm. To address this issue, 

the training will be performed in two phases. The first phase involves training both networks without the 
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DWT codec, whereas the second phase involves finetuning the network on the decoding side taking into 

consideration the codec. 

 

2.3.1. MS-CNNs training 

Assuming a collection of input images 𝑥𝑘 undergoes first an MS-CNN to learn an optimum compact 

representation and reserve the structural information. The reconstruction MS-CNN is then employed to 

recover the decoded image with high quality, hence the mean squared error loss function used for training 

can be defined as shown in (2): 

 

𝐿1(𝜃𝑖, 𝜃𝑗) =
1

𝑁
∑ ‖𝑅(𝜃𝑗 , 𝐸(𝜃𝑖 , 𝑥𝑘)) − 𝑥𝑘‖

2𝑁
𝑘=1  (2) 

 

where 𝜃𝑖 and 𝜃𝑗 denote the trainable variable, whereas N denotes the batch size. 

 

2.3.2. MS-CNN fine-tuning 

 During MS-CNN reconstruction, the output image is reconstructed in a way that closely replicates 

the input image. Therefore, the decoded compact representation derived from compression network E then 

DWT based codec D will be passed through encoding MS-CNN R to learn more accurate reconstruction.  

The parameter �̂�𝑖 was fixed while the encoding network parameter 𝜃𝑗 was optimized, the loss function used 

for fine-tuning the MS-CNN can be formulated as: 
 

𝐿2(𝜃𝑗) =
1

𝑁
∑ ‖𝑅(𝜃𝑗 , 𝐷(𝐸(�̂�𝑖 , 𝑥𝑘))) − 𝑥𝑘‖

2𝑁
𝑘=1  (3) 

 

2.4.  Evaluation metrics 

In order to carry out a quantitative assessment of our method’s performance, we adopted evaluation 

metrics based on image quality reconstruction and the efficiency of compression. The reconstructed image 

quality is evaluated using the peak signal-to-noise ratio (PSNR), MSE and multiscale structural similarity 

(MS-SSIM). The MSE and PSNR measure distortion between the original and reconstructed images to 

evaluate visual quality [30], as given in (4) and (5), 
 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ [𝑋(𝑖, 𝑗) − �̂�(𝑖, 𝑗)]

2𝑁−1
𝑗=0

𝑀−1
𝑖=0  (4) 

 

𝑃𝑆𝑁𝑅 = 10 log10(
𝑀𝐴𝑋2

𝑀𝑆𝐸
) (5) 

 

where 𝑋 and �̂� are the input and reconstructed images respectively. M, N are the number of rows and 

columns of the image, while 𝑀𝐴𝑋 is the maximum value of pixel in the image. 

Similarity is a resolution image quality assessment method which computes relative quality scores 

between a reference reconstructed image [30]. Measurements at different scales can be combined to obtain an 

overall MS-SSIM evaluation, as shown in (6), 
 

𝑀𝑆 − 𝑆𝑆𝐼𝑀 = 𝑙𝑀(𝑥, �̂�). ∏ 𝑐𝑗
𝑀
𝐽=1 (𝑥, �̂�)𝑠𝑗(𝑥, �̂�) (6) 

 

where 𝑥 and �̂� represent the original image and the reconstructed image respectively. 𝑀 denotes the highest 

scale, 𝑙𝑀(𝑥, �̂�),  𝑐𝑗(𝑥, �̂�), 𝑎𝑛𝑑 𝑠𝑗(𝑥, �̂�) refer to the luminance, contrast, and structure comparisons at the j-th 

scale, respectively. 

Image compression efficiency is evaluated by CR, bits per pixel (bpp), and space savings (SSs).  

The CR and bpp give a straight notion of compression degree associated with the amount of data [31], [32]. 

The SSs is another metric to evaluate the performance of compression technique, it indicates the gained 

amount of storage space from saving the compressed data [33]. The CR, bpp, and SSs are given in (7)-(9), 

respectively: 
 

𝐶𝑅 =
Size of uncompressed image

Size of compressed image
 (7) 

 

𝑏𝑝𝑝 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒
 (8) 

 

𝑆𝑆𝑠 = (1 −
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒

𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒
) × 100 (9) 
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3. RESULTS AND DISCUSSION 

In this section, the results of our experiments are presented and discussed, showcasing the efficacy 

of our method. The implementation of the experiments has been carried out on the NVIDIA Tesla K80 GPU 

provided by Google Colab. Keras with a TensorFlow backend are used to build our network architecture. 

Table 3 provides a summary of the main simulation parameters of the MS-CNNs that were used in the 

experiment. For optimization purposes and to minimize the loss functions we used the Adam optimizer [34]. 

The learning rate is initialized by 1.0E−3 value and reduced using a learning rate scheduler by a factor  

of 2 based on metric improvement. The networks were trained for 400 epochs and fine-tuned for another  

50 epochs. 

 

 

Table 3. The main simulation parameters of the experiment 
Parameter Value 

Learning rate  1.0E−3 to 1.0E−6 
Epochs 450 

Batch size 8 

Input size 128×128 

 

 

For experimental purposes, we utilized retinal images from two publicly available datasets.  

The first, the digital retinal images for vessel extraction (DRIVE) database [35], contains 40 color fundus 

images with a resolution of 565×584 pixels. We also randomly selected 40 images from the ORIGA-light 

database [36], which includes 650 high-resolution images from the Singapore Malay Eye Study (SiMES).  

To prevent memory overflow and optimize the image compression model, each image was cropped to 

patches of 128×128 pixels and normalized before compression. The dataset was then divided into training, 

validation, and testing sets, with 80% for training and 20% for validation and testing. 

Test dataset images were utilized to evaluate the proposed compression method by comparing it 

with JPEG, JPEG2000, and existing deep learning-based methods. JPEG and JPEG2000 were selected 

because of their transform reliance, with JPEG2000 using the CDF 9/7 wavelet also employed in our codec. 

Among the deep learning methods, Ballé et al. [16] was chosen for its state-of-the-art status and lower 

complexity compared to models such in [17]. To further evaluate the effectiveness of the integrated multi-

scale convolution layers in our MS-CNN architecture, we conducted a comparison experiment in which we 

trained another architecture based on CNN without the multi-scale convolutions that were replaced by 

sequentially stacked simple convolutions in the architecture based on CNN. 

Under high CR, the proposed method’s reconstruction was evaluated, with results shown in Table 4. 

The average MSE, PSNR, CR, and SSs values of the image patches were 6.51, 40.86 dB, 53.03, and 97.95%, 

respectively. Despite high compression, our method achieved a high PSNR, indicating good retinal image 

reconstruction quality. Additionally, a space-saving percentage near 100% demonstrates the compression 

efficiency for systems requiring medical data storage. 

 

 

Table 4. The performance evaluation of the proposed compression method on retina image patches 
Image patches Measure 

MSE PSNR (db) CR SSs (%) 

Patche 1 2.05 45.02 63.8 98.44 

Patche 2 9.3 38.45 56.12 98.22 
Patche 3 8.38 38.9 52.13 98.08 

Patche 4 10.17 38.06 29.37 96.59 

Patche 5 2.67 43.87 63.72 98.43 
Mean 6.51 40.86 53.03 97.95 

 

 

We conducted experimental comparisons to assess the proposed method’s performance against other 

compression techniques as detailed in tables below. Tables 5 and 6 demonstrate that our proposed method of 

compressing medical images is more efficient than the other methods, as evidenced by its achieved maximum 

PSNR (dB) and MS-SSIM, and the low distortion in MSE. At CR=50, the proposed method outperformed 

standard methods (JPEG, JPEG 2000) and the deep learning-based approach Ballé et al. [16]. Table 5 shows 

our method achieved superior results, with a 6.89 MSE, 2.32 dB higher PSNR, and 0.8% higher MS-SSIM 

compared to Ballé et al. [16], which itself surpassed JPEG. Compared to JPEG2000, our method showed 

gains of 2.11 dB in PSNR and 0.7% in MS-SSIM. Additionally, the MS-CNN approach slightly 

outperformed our method (without MSCB), 1.45 dB PSNR gain, and 0.7% MS-SSIM gain. At CR=80, our 

method maintained robust performance compared to others. Table 6 reports a 2.6 dB PSNR and 0.79%  
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MS-SSIM gain over Ballé et al. [16], and 3.03 dB PSNR and 1.6% MS-SSIM improvement over JPEG2000. 

The MS-CNN method also outperformed our method (without MSCB), with 1.89 dB PSNR gain, and 1.09% 

MS-SSIM gain. This analysis confirms the proposed method’s effectiveness in preserving image quality in 

terms of PSNR and MS-SSIM metrics, especially at high CR (CR=50, CR=80). 
 

 

Table 5. Performance evaluation of different methods in terms of reconstructed image quality at CR ≈50 
Method Averaged measures 

MSE PSNR (dB) MS-SSIM (%) 

Our method 6.89 39.75 97.42 

Ballé et al. [16] 11.74 37.43 96.63 
JPEG2000 11.23 37.64 96.72 

JPEG 39.66 32.15 88.27 

Our method (without MSCB) 10.08 38.3 96.68 

 
 

Table 6. Performance evaluation of different methods in terms of reconstructed image quality at CR ≈80 
Method Averaged measures 

MSE PSNR (dB) MS-SSIM (%) 

Our method 8.25 38.97 96.75 

Ballé et al. [16] 15.02 36.37 95.8 

JPEG2000 16.72 35.94 95.15 
JPEG 218.57 24.77 76 

Our method (without MSCB) 12.9 37.08 95.66 

 
 

The visual quality comparisons at 0.16 bpp are provided in Figure 4. It can be observed that our 

proposed method attained better subjective quality of reconstructed images in Figures 4(a)-4(b), compared to  

Ballé et al. [16], JPEG200, and JPEG shown in Figure 4(c), Figure 4(d), and Figure 4(e), respectively.  

In comparison, JPEG marked a low performance with obvious blocking artifacts in the reconstructed retinal 

images shown in Figure 4(e). 
 

 

  
(a) (b) 

 

  

(c) (d) 
 

 
(e) 

 

Figure 4. Visual quality comparison between the original and reconstructed images using different methods 

at 0.16 bpp: (a) original retinal images and their zoomed-in patches, (b) our method, (c) Ballé et al. [16],  

(d) JPEG200, and (e) JPEG 
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We proposed an efficient compression technique utilizing two MS-CNNs and DWT code.  

The compression performance was evaluated using various quality metrics. For example, at CR=80 our 

method achieved the highest PSNR and MS-SSIM values of 38.98 dB and 96.86%, respectively, 

outperforming even standard compression methods. Particularly, the JPEG2000 which is based on the same 

CDF 9/7 wavelet transform used in our DWT based codec. Although in our technique deep learning model 

MS-CNN allowed an enhanced compression performance of DWT codec, it is important to note that our 

codec is based on a basic compression scheme with a straightforward entropy coding technique, compared to 

the JPEG2000’s sophisticated scheme and entropy coding technique [7], [37]. In contrast, the low 

performance of JPEG is basically due to the DCT, which is less effective than the wavelet transforms.  

In comparison to deep learning-based methods, we present in Table 7, a brief and averaged experimental 

results comparison that includes only learning based compression models. Table 7 compares our method with 

other learning-based compression models, showing that our method achieved the highest PSNR with the 

fewest parameters allowing low computational complexity. Although Cheng et al. [17] achieved a 0.002 

higher MS-SSIM, it required 11.6 million parameters in the architecture. Our method is also 5.2 and 12.1 

times faster than Ballé et al. [16] and Cheng et al. [17], respectively. Thus, it can be said that our proposed 

method achieves better coding performance and reconstruction quality with low deep learning model 

complexity and computation time 

 

 

Table 7. The comparative results of existing learning based methods in terms PSNR, MS-SSIM,  

number of trainable parameters and computation time at CR=80 
Method PSNR (dB) MS-SSIM (%) Numbers of parameters Execution time (s) 

Our method 38.98 96.86 782 694 0.25 

Ballé et al. [16] 36.38 95.8 2 582 531 1.3 
Cheng et al. [17] 38.90 97 11 627 916 3.03 

 

 

The proposed method has demonstrated exceptional performance with promising results, even when 

compared to complex deep learning-based methods that have a greater number of trainable parameters.  

The implication of these results is that it offers a superior solution for image data reduction, particularly in 

scenarios requiring high CR. This advancement could significantly impact various fields that rely on efficient 

image storage and transmission, such as medical imaging, satellite communications, and digital archiving. 

The method’s ability to maintain good image quality even at high compression levels suggests potential 

applications in bandwidth-constrained environments or systems with limited storage capacity. Furthermore, 

this development may lead to improved performance in real-time image processing applications, where data 

size, quality and computational efficiency are critical factors. In the future, the performance of the proposed 

method can be enhanced. First, by designing better deep learning architectures and optimization strategies  

for image compression tasks. Furthermore, the technique’s compatibility with conventional codecs, due to  

its use of a DWT-based codec, opens up possibilities for other conventional codecs to be used in  

conjunction with it. 

 

 

4. CONCLUSION 

In this paper, we have introduced a retinal image compression method based on MS-CNNs and 

DWT. To achieve better image quality at a high CR, two MS-CNNs were connected together, the encoding 

MS-CNN is employed to generate intermediate compact representation, which maintains the structural 

information of the original image that will be coded by DWT. Next, the MS-CNN enables high-quality 

reconstruction and retrieval of the original image at the decoding side. The obtained experimental results 

confirmed the superiority of the proposed compression method based on different performance metrics.  

The proposed method attained higher CR (CR=80) while maintaining an acceptable retinal image quality 

with an average PSNR value of 38.98 dB and MS-SSIM of 96.8%. Hence, contribution to minimizing the 

data size and saving storage and transmission resources while maintaining visual quality of medical images. 

Furthermore, our proposed technique exhibits computational efficiency, making it applicable in real-time 

medical image applications. 
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