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 Potholes present a significant problem in many countries, leading to vehicle 

damage and traffic accidents. These road imperfections pose safety risks and 

impose economic burdens. Despite existing detection methods using sensors 

and computer vision deep learning processed on PCs, a gap remains in 

deploying cost-effective, widely accessible solutions. This study aims to 

bridge this gap by developing deep learning models optimized for 

smartphones, reducing costs and enhancing deployment feasibility.  

We developed multiple models for pothole detection, utilizing transfer 

learning and Bayesian hyperparameter tuning to optimize detection accuracy 

and resource efficiency. Our evaluations focused on computationally light 

models such as YOLOv8 small, YOLOv8-nano, YOLOv7 tiny, and faster  

R-CNN MobileNetV3. In terms of detection accuracy, YOLOv8 small and 

YOLOv8 nano stood out, achieving average precisions (AP) of 83.5% and 

82.5%, respectively. YOLOv8 nano proved the most efficient, offering high 

detection accuracy, a file size three times smaller than YOLOv8 small in 

TFLite format, and the fastest inference time of 0.72 seconds per image. 

This study highlights the potential of smartphones in urban pothole 

detection, contributing to improved road maintenance and urban policy. 

Keywords: 

Bayesian search 

Deep learning 

Hyperparameter tuning 

Pothole detection 

Smartphone resource usage 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Achyar Ulul Amri 

Department of Computer Science, BINUS Graduate Program-Master of Computer Science 

Bina Nusantara University 

Jakarta, Indonesia 

Email: achyar.amri@binus.ac.id 

 

 

1. INTRODUCTION 

Road infrastructure conditions are a key safety factor that needs to be specially designed to reduce 

risks for all road users. However, many roads in low- to middle-income countries have not yet met these [1]. 

The deterioration of urban infrastructure, including roads, can have significant social implications, affecting 

the quality of life, public safety, and access to services [2]. Road potholes are one of most issue that present a 

significant problem in many countries, leading to vehicle damage and traffic accidents [3]. The presence of 

potholes can sometimes be difficult to identify manually, especially while driving [4]. The existance  

of fast pothole detection methods is anticipated to aid drivers in avoiding pothole road and can provide 

valuable data to the government in prioritizing road repairs, ultimately helping to reduce the likelihood of 

accidents [5]. 

There are many methods have been developed to detect potholes, including manual inspection, 

sensor utilization  and computer vision [6], [7]. Early adoption of sensors such as accelerometers or GPS in 

vehicles to detect potholes based on vibrations or irregularities. LiDAR is a more advanced and accurate 

sensor technology that uses laser light to create high-resolution 3D maps of the road surface albeit at a higher 

https://creativecommons.org/licenses/by-sa/4.0/
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cost [8]. Computer vision deep learning-based computer vision became most popular method considering the 

accuracy of detection offered and cost efficiency [9].  

There are several pothole detection research studies that utilize deep learning using algorithms from 

the R-CNN family such as R-FCN, sparse R-CNN, faster R-CNN, and the YOLO family with various 

configuration variations. Most of the pothole detection models developed are still on PCs, with variations in 

the datasets used, including adding personal data [10], [11], noisetreatment, brightness variaety [12], and 

combining resources from multiple image datasets [13]. In previous research has been developed pothole 

detection model using fine tuning deep learning faster R-CNN ResNet101, which acieved accuracy AP of 

82% and inference speed 5-6 FPS (frame per second) when implemented on a computer Nvidia DrivePX2 

[14]. Besides, a pothole detection model, SPFPPN-YOLOv4 has been developed and achieved a precision 

score of 89% with FPS value of 38, implemented on a PC with CPU Intel i7-10700k CPU@3.80GHZ [15]. 

Pothole detection on mobile devices is relatively rare, with one example using YOLOv3 on an IoT 

device, achieving 40% AP and 0.83 second speed [16]. While recent research has explored mobile 

implementation, most studies focus on PC-based model comparisons with future mobile deployment plans 

[15], [17], [18]. Comparative studies have examined the performance of YOLO and faster R-CNN for 

pothole detection [19], [20]. Comparative studies show YOLOv7 outperforms YOLOv6 and v5 in detection 

task [21]. YOLOv7 can also be combined with smartphone sensors such as accelerometers to improve 

detection performance [22]. New architecture YOLOv8 could achieves 92% detection accuracy on PC. 

YOLOv8 can be further enhanced with CNNs for improved detection performance [23]. Additionally, 

YOLOv8 can be combined with smartphone sensors like GPS to track pothole locations [24]. Recently, 

research has focused on improving the lightweight YOLOv8n for mobile deployment, achieving an AP value 

of 53.1% on the RDD2022 dataset [25]. 

On the other hand, more researched have been developed for general object detection on mobile 

device including smartphone. Object detection models have been applied to the diverse COCO dataset using 

Android smartphones and Iphone using tflite format of fp16 and int8 optimization [26], [27]. In addition, 

there are several object detections on smaller objects, including food [28], as well as fly imaging datasets 

[29] and pests also using smartphones [30]. Furthermore, there are applications on mobile devices such as 

Raspberry TPU for peach cultivar detection [31], tomato variety detection [32] and Jetson TX2 for crop 

seedling detection [33]. Some recent research related to object detection model on smartphone or mobile 

device are Tuna-YOLO Object detection model which has been developed to detect tuna varieties on mobile 

devices, this algorithm based on YOLOv3 using MobileNet and transfer learning method. Based on the test 

result it was found that the highes mAP value of 85.74% with performance of 15.32 FPS [34]. One of the 

latest research is creating a corn seedling detection model with mobile device using variations of the 

YOLOv7 and YOLOv8 models, which successfully achieved accuracy of around 93% and FPS values of 90 

and 125 respectively on mobile device [35]. 

The literature review highlights a need for pothole detection systems that operate efficiently on 

devices with limited computational resources, such as smartphones. Although previous research shows that 

the YOLOv8 algorithm could outperforms other state of the art (SoTA) models like YOLOv7 and faster  

R-CNN, their application in mobile pothole detection remains underexplored. This research aims to conduct 

incremental innovation by retraining and evaluating YOLOv8, YOLOv7, and faster R-CNN models using 

transfer learning and Bayesian hyperparameter tuning [36], [37]. The focus will be on small, tiny, or nano 

variants with less than 20 million parameters to ensure efficient deployment on smartphones. The goal is to 

assess and compare these models in terms of both detection performance and computational resource 

efficiency, thereby advancing intelligent transportation systems. The research is expected to enable  

real-time pothole detection on mobile devices and provide valuable data for infrastructure maintenance  

and planning. 

 

 

2. METHOD 

2.1.  Proposed system 

Automatic pothole detection is intended to help prevent and minimize traffic accident risks.  

This study introduces advanced models that can be implemented on devices with limited computational 

capacity, like the widely-used smartphones. The research involved training these models through transfer 

learning and hyperparameter tuning procedure on SoTA algorithms, including faster R-CNN MobileNetV3, 

YOLOv7 tiny, and YOLOv8 small, using Google Colab T4 and python programming language. Additionally, 

the implementation procedure was tested on an Android smartphone, specifically the Redmi Note 12.  

The evaluation assessed both detection accuracy and the computational resource usage, aiming to identify the 

model that offered the best balance of detection accuracy and efficiency for real-world pothole detection on 

mobile devices [26]. 
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The steps involved in the proposed model, as illustrated in the Figure 1: 

- Data input: collect raw image data for analysis. 

- Data preprocessing: prepare images through cropping, resizing into 800×800, and normalization. 

- Label re-formatting: convert labels to YOLO and Pascal VOC formats suitable for different models.  

- Data splitting: divide the preprocessed data into training, validation, and testing subsets. 

- Training and fine tuning: train and fine-tune models like YOLOv7 tiny, YOLOv8 small, and faster  

R-CNN MobileNetV3 using a Bayesian search method, with 10 iterations conducted for each model. 

- Model conversion: convert each best tune models to TFLite formats (FP16, INT8) where applicable. 

- Detection accuracy testing: test accuracy on mobile-optimized models. 

- Model app deployment: deploy models within a android app which created using android studio. 

- Sampling for test simulation: create 10 test susets with 50 images each for real-world simulations. 

- Resource usage testing: measure each model’s inference time and resource usage on smartphones using 

Android studio profiler. 

 

 

 
 

Figure 1. Flow diagram of the pothole detection system from development to smartphone deployment 

 

 

2.2.  Dataset 

WHO notes that low- to middle-income countries often often failing to meet safety standards [1].  

To reflect these conditions, this study uses South Africa as a representative country, drawing on a dataset 

from Nianaber et al. focused on pothole detection [6]. The data was collected using a GoPro Hero 3+ camera 

mounted as a dashcam, capturing images at a resolution of 3680×2760 pixels in JPG format. The dataset 

consists of 13.4K images, but only 3.8K images containing labeled potholes were used, supplemented by 400 

negative class images. This results in a total of 4.1K images analyzed for this study, with each image labeled 

by experts to identify potholes, ranging from 0 to more than 1 per image, as illustrated in Figure 2. 

 

 

   
Negative (0) Positive (1) Positive (>1) 

 

Figure 2. Sample dataset of pothole road 
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2.3.  Data preparation 

The original dataset images are taken from relatively fixed position dashcam it is not only captured 

the raod but also car dashboard and sky. The previous research suggest to downscale and crop the image and 

focus on the road section [38]. Then it was transformed using a Python program. This process included  

re-labeling data into Pascal VOC and YOLO formats, cropping images to focus on the road, resizing to 

800×800 [14], normalizing images, and splitting the data into 1,672 train, 1,254 validation, and 1,254 test 

images. 

 

2.4.  Faster R-CNN 

Faster R-CNN is a two-step object detection method that first proposes object regions from an image 

before performing classification [39]. In the context of pothole detection, the model is trained using a dataset 

of images containing potholes, where each image is annotated to indicate the location of the potholes. 

MobileNetV3, a variation of faster R-CNN, has a relatively small number of parameters, around 20 million, 

and offers good detection accuracy, making it suitable for use on mobile devices [40]. 

 

2.5.  YOLOv7 

YOLOv7 is a single-step object detection method that includes a backbone, head, and neck, and 

utilizes extended efficient layer aggregation network (E-ELAN) blocks and scalable bag of freebies (BoF) 

techniques [41]. When developing a pothole detection model, YOLOv7 is trained on an annotated image 

dataset that marks the locations of potholes. The model efficiently learns to detect and localize potholes in 

one pass through the image. YOLOv7 tiny, with 6.2 million parameters, could offer good detection accuracy, 

and suitable for implementation on smartphones. 

 

2.6.  YOLOv8 

YOLOv8 is a single-step object detection method comprising a backbone, head, and neck, utilizing 

ConvModule blocks, CSPLayer 2conv (c2f), and SPPF. This model is also anchor-free, enhancing its 

detection capabilities [42]. For developing a pothole detection model, YOLOv8 is trained on a dataset with 

annotated pothole locations, enabling the model to efficiently detect and localize potholes in a single pass. 

YOLOv8 small, with 11.2 million parameters, and YOLOv8 nano, with 3.2 million parameters, offer 

relatively good detection accuracy and well-suited for mobile devices implementation. 

 

2.7.  Transfer learning and hyperparameter tuning 

In this study, transfer learning was employed by fine-tuning pre-trained models on the target dataset. 

This approach leverages the knowledge from models trained on large datasets, allowing for quicker 

convergence and improved performance on the specific task [43]. To further enhance the models, Bayesian 

optimization was used for hyperparameter tuning, chosen for its efficiency in identifying optimal 

configurations. The Wandb library facilitated monitoring and analyzing the impact of each hyperparameter 

[44]. In this study, hyperparameter tuning was performed for 10 iterations on each model with search space 

include optimizers tested being AdamW and SGD. The training ran for 150 epochs, with a patience of 20 for 

early stopping. Batch sizes of 8, 16, and 32, alongside a learning rate sampled uniformly between 0.001 and 

0.01. Momentum within a uniform range of 0.8 to 0.98. 

 

2.8.  TensorFlow lite 

To deploy object detection models like those built with PyTorch or YOLO on an Android app, the 

models need to be converted to TensorFlow lite format. The conversion process typically involves exporting 

the PyTorch or YOLO model to open neural network exchange (ONNX) format first, which serves as an 

intermediate representation. Then the model being converted to TensorFlow format, followed by a final 

conversion to TensorFlow lite using TensorFlow lite converter. During this process, quantization techniques 

like FP16 or INT8 are applied to reduce the model size and computation requirements, optimizing it for 

efficient on-device inference [26], [27]. 

 

2.9.  Android studio 

Android studio, the official integrated development environment (IDE) for Android app 

development, provides robust tools for coding, debugging, testing, and optimizing applications. The pothole 

detection app was developed using the Giraffe version of Android studio. Additionally, Android studio 

includes a feature called Android studio profiler, which allows developers to measure app performance in 

terms of CPU, RAM, and battery usage, ensuring efficient, and optimized app behavior [45]. 
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2.10.  Evaluation 

Process to identify the most effective deep learning model for pothole detection on smartphone 

requires evaluating both detection performance and resource efficiency. Each model is analyzed based on 

these criteria, and results are compared. This process identifies most suitable model for deployment [26]. 

Detection accuracy is measured using the average precision (AP) metric, which is based on the 

concepts of IoU, precision, and recall [24]. Intersection over union (IoU) quantifies the overlap between the 

predicted bounding box and the ground truth, considering only predictions that exceed a set confidence 

threshold, typically 0.5, to identify true positives (TP), as seen in 1. False positives (FP) occur when the 

model incorrectly identifies a pothole where none exists, while false negatives (FN) arise when the model 

misses an actual pothole. With TP, FP, and FN defined, precision and recall are calculated-precision indicates 

the percentage of correct predictions, as seen in 2, and recall measures the percentage of actual positives that 

are accurately detected, as seen in 3. Finally, AP is calculated as the AP across all recall levels, represented 

by the area under the precision-recall curve, as seen in 4. This detection accuracy evaluation is performed on 

the test data to objectively assess the model’s performance. 

 

 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑟) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐴𝑃) = ∫ 𝑝(𝑟) 𝑑𝑟
1

𝑟=0
 (4) 

 

Smartphone resource usage for each model is evaluated by measuring inference speed, battery 

usage, and CPU/RAM consumption using Android profiler [45]. Inference speed, measured in seconds, 

reflects the time required for the model to generate predictions from each image as seen in 5. Battery usage is 

estimated by Android energy profiler, categorizing energy consumption into light, medium, and heavy 

intensity levels. The energy usage percentage within the light or less resource-intensive tasks category seen in 

6. CPU usage is recorded by CPU profiler as a percentage of total available CPU time as seen in 7, while 

RAM usage is tracked by monitoring the private memory pages allocated to the app as seen in 8.  

The evaluation is conducted on 10 subsets of 50 images each, focusing on average inference time, average 

battery usage, and maximum CPU and RAM usage. These metrics determine overall performance, helping to 

identify the model with the best inference speed and lowest resource consumption [26]. 

 

𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑇𝑖𝑚𝑒 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠) =  𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑡𝑖𝑛𝑝𝑢𝑡 (5) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑎𝑔𝑒 (%) =  
𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑖𝑛 𝑙𝑖𝑔ℎ𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑙𝑖𝑔ℎ𝑡 𝑢𝑠𝑒
× 100 (6) 

 

𝐶𝑃𝑈 𝑈𝑠𝑎𝑔𝑒 (%) =  
𝐶𝑃𝑈 𝑐𝑦𝑐𝑙𝑒𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑝𝑝

𝑇𝑜𝑡𝑎𝑙 𝐶𝑃𝑈 𝑐𝑦𝑐𝑙𝑒𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑜𝑛 𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒
× 100 (7) 

 

𝑅𝐴𝑀 𝑈𝑠𝑎𝑔𝑒 (𝑀𝐵) = 𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑣𝑎𝑡𝑒 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑝𝑝 (8) 

 

 

3. RESULTS 

Pothole detection model has been developed on PC using several pretrained model of algorithm 

which are YOLOv8-small,  YOLOv8-nano, YOLOv7-tiny and faster R-CNN MobileNetV3. Each model has 

experience 10 iteration of hyperparameter tuning such as batch size, learning rate, and momentum.  

Best hyperparameters for each model based on tuning result shown in Table 1. 

The Table 1 indicates that on the validation dataset, YOLOv8 Small achieved the highest AP at IoU 

0.5 (AP@0.5) score of 87.8%. YOLOv8 nano followed with a strong 84.9%, both benefiting from the 

AdamW optimizer. In contrast, YOLOv7 tiny and faster R-CNN MobileNetV3 showed lower validation 

performance, with AP@0.5 scores of 78.8% and 66.1% respectively, with the latter using the less effective 

SGD optimizer. This highlights the effectiveness of YOLOv8 models and the AdamW optimizer in achieving 
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better validation results. Next, each of the models were try to be converted to TFLite format (float16 and 

int8) and evaluated on test dataset. The models detection performance on PC in Figure 3 its original format 

and after conversion to TFLite is shown in Figure 3(a), while the models file size comparison is illustrated in 

Figure 3(b).  

 

 

Table 1. Best hyperparameter tuning result for each model 
Model Img size Batch Epochs lr0 Momentum Optimizer AP@0.5 validation 

YOLOv8 small 800×800 8 150 0.0014 0.908 AdamW 87.8% 
YOLOv8 nano 800×800 32 150 0.0010 0.883 AdamW 84.9% 

YOLOv7 tiny 800×800 16 150 0.0076 0.957 AdamW 78.8% 

Faster R-CNN Mv3 800×800 16 150 0.0082 0.894 SGD 66.1% 

 

 

 
(a) 

 

 

 
 (b) 

 

Figure 3. Comparison of models detection performance on (a) test dataset and (b) file size  

 

 

As shown in Figure 3, the YOLOv8 small and nano models achieved the highest detection accuracy 

on the test dataset and maintained performance after conversion which higher than previous research [25].  

In contrast, YOLOv7 tiny model have a significant accuracy drop after FP16 conversion, so INT8 conversion 

was not pursued. The faster R-CNN MobileNetV3 model was excluded from TFLite conversion due to its or 

low accuracy and large file size. Notably, YOLOv8 TFLite-INT8 reduced its original file size by 50%. 

Figure 4 showcases a sample comparison of detection results across different models under varying 

lighting conditions. In bright light, both YOLOv8 small and nano models accurately detect all potholes, while 

YOLOv7 misses one. However, in low-light conditions with shadows, YOLOv8 small remains precise, 

identifying all potholes, whereas YOLOv8 nano detects only four, and YOLOv7 captures just three.  
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This comparison highlights the models’ strengths and limitations, particularly in detecting smaller or distant 

potholes under poor lighting conditions [4]. 

 

 

 
 

Figure 4. Sample comparison of pothole detection under varying lighting conditions 

 

 

According to Figure 5 shows the sample of Figure 5(a) showcases the pothole detection models 

implementation on a smartphone. The models were tested across ten datasets to assess inference speed and 

detection accuracy. While Figure 5(b) provides insights into resource usage monitored via the Android 

Profiler, highlighting key metrics such as maximum CPU and RAM usage along with energy consumption 

over time. It was found that most of the energy usage fell into light energy consumption category. Therefore, 

the energy usage is shown as a percentage rate within the light energy category for more precise comparison. 

The monitoring results of inference speed and resource usage are shown in Table 2. 

 

 

  
(a) (b) 

 

Figure 5. Sample of (a) smartphone implementation result and (b) monitoring using android profiler 

 

 

Table 2. Comparison of inference time and resource usage for each model 
Metrices YOLOv8 YOLOv8 YOLOv7 

Model TFLite type Small INT8 Nano INT8 Tiny FP16 

Average inference time 1.33 seconds 0.72 seconds 1.04 seconds 

Average baterai usage 48% 48% 54% 
Maximum of CPU usage 39% 35% 44% 

Maximum of RAM usage 166 MB 133 MB 263 MB 
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According to Table 2, it compares inference time and resource usage across models. YOLOv8 nano 

INT8 is the fastest and most efficient, with a 0.72 seconds inference time and the lowest CPU and RAM 

usage. YOLOv8 small INT8 is slightly slower but also resource-efficient. In contrast, YOLOv7 tiny FP16, 

though quicker than YOLOv8 small, has the highest battery and RAM usage, making it less efficient overall. 

This suggests YOLOv8 nano-INT8 is the best choice for balancing speed and resource efficiency. 

 

 

4. DISCUSSION 

This study investigated the effectiveness of deploying pothole detection models on devices with 

limited computational resources, such as smartphones. While earlier studies have explored the impact of deep 

learning models like faster R-CNN and YOLOv7 for pothole detection, they have not explicitly addressed the 

optimization and deployment of these models on mobile platforms with constrained resources, such as 

smartphones [21]. Although previous research shows that the YOLOv8 algorithm could outperforms other 

SoTA models like YOLOv7 and faster R-CNN, their application in mobile pothole detection remains 

underexplored [23]. This study aims to achieve incremental innovation by retraining and evaluating 

lightweight models (less than 20 million parameters) of YOLOv8, YOLOv7, and faster R-CNN using 

transfer learning and Bayesian hyperparameter tuning [37]. 

This study’s key findings demonstrate that the YOLOv8-based algorithm is the most effective 

model for pothole detection, outperforming other state-of-the-art models such as YOLOv7 and faster  

R-CNN. With an AP@0.5 score of 80.2% and an inference time of just 0.72 seconds, YOLOv8 nano INT8 

stands out for both its precision and speed, along with minimal resource consumption. The proposed method 

demonstrated a significantly higher proportion of accurate detections while maintaining low  

computational demands, indicating its potential for real-time applications on resource-constrained devices 

like smartphones. 

Our study suggest that the YOLOv8 nano INT8 outperforms previous models used in pothole 

detection. For instance, Zeng and Zhong [25] which reported an AP@0.5 score of 53.1% on the RDD2022 

dataset. Additionally, in terms of inference time, YOLOv8 nano INT8 is faster than the YOLOv3 model 

developed by Gajjar et al. [16], which had an AP@0.5 of 34.7% with a 0.84 seconds inference time.  

The proposed method benefits from higher accuracy and faster inference without adversely  

impacting computational efficiency, making it more suitable for deployment on devices with limited 

processing power. 

This study explored the optimization of pothole detection models for deployment on smartphones 

under standard conditions. However, further and in-depth studies may be needed to confirm its effectiveness 

in varied environmental conditions, especially regarding performance on wet roads, extreme lighting, or 

different road textures. Such factors could potentially impact the model’s detection accuracy and 

generalizability across diverse real-world scenarios. 

Our study demonstrates that models optimized for mobile devices, like YOLOv8 nano INT8,  

are more efficient and practical for real-world applications than heavier models. Future studies may explore 

expanding the dataset to include diverse environmental scenarios and investigate feasible ways of enhancing 

model robustness. Additionally, exploring advanced optimization techniques and adaptive algorithms could 

further improve detection accuracy without compromising resource efficiency. 

Recent observations suggest that deploying optimized pothole detection models on smartphones is 

both feasible and effective. Our findings provide conclusive evidence that the YOLOv8 nano INT8 model 

significantly improves detection accuracy and speed without requiring elevated computational resources. 

This advancement contributes to road safety and infrastructure maintenance by enabling real-time, accessible 

pothole detection through widely available mobile technology like smartphone. 

 

 

5. CONCLUSION 

This study has shown that YOLOv8 nano INT8 is the most effective model for pothole detection on 

smartphones, outperforming other models like YOLOv7 and faster R-CNN in both detection performance 

and resource efficiency. It has successfully demonstrates the feasibility of deploying pothole detection using 

deep learning on resource-constrained devices like smartphone, making it more accessible and practical. 

Despite these achievements, the study has limitations, including performance variability under 

different environmental conditions and a primary focus on pothole detection. There is room for further 

improvement in smartphone processing, particularly in model optimization for faster inference speeds. 

The implications of this research are significant for enhancing road safety and urban transportation 

systems. By integrating smartphone-based detection systems into existing infrastructure, cities can develop 

more intelligent transportation policies, helping to prevent accidents and protect both drivers and pedestrians. 
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Future work should focus on improving model robustness under diverse conditions and exploring additional 

applications such as smart and dashcam, and hazard detection. To further advance intelligent transportation 

systems and safer urban environments. 
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