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1. INTRODUCTION

With the rapid urbanization and expansion of transportation networks, vehicular congestion has be-
come a pressing challenge in modern cities. Increasing traffic density not only contributes to longer commute
times but also raises serious concerns about road safety. According to study from Liu and Shetty [1]], traffic
congestion leads to significant delays, increased fuel consumption, and higher emission levels, making it a
crucial area for research and policy intervention. More importantly, road accidents remain one of the leading
causes of fatalities worldwide, incurring substantial economic losses. The Association for Safe International
Road Travel (ASIRT) reports that traffic-related incidents account for a considerable percentage of premature
deaths globally. As such, effective traffic management and speed control measures are essential for ensuring
public safety and optimizing urban mobility. Traditional methods of speed estimation, such as radar-based and
inductive loop detection systems, have been widely used in traffic monitoring. However, these techniques often
suffer from high installation costs, limited coverage, and susceptibility to environmental interference. Jakus and
Coe [2] explored speed measurement through doppler effect analysis in vehicular noise, highlighting an alter-
native approach to speed detection. With advancements in artificial intelligence (AI) and smart city initiatives,
computer vision has emerged as a transformative tool for real-time traffic monitoring. Deep learning-based
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object detection and tracking algorithms now enable accurate and efficient vehicle identification across video
sequences.

In recent years, deep learning models such as convolutional neural networks (CNNs) have significantly
improved object detection and tracking capabilities in real-world applications. Zhao et al. [3]] reviewed deep
learning-based object detection techniques, emphasizing the effectiveness of CNN architectures like AlexNet,
VGG, and ResNet in recognizing and localizing objects. Among these advancements, the you only look once
(YOLO) algorithm, has gained widespread adoption due to its real-time processing capabilities and high detec-
tion accuracy. The integration of YOLO with other sensor technologies further enhances vehicle tracking and
speed estimation accuracy. Han et al. [4] proposed a fusion-based approach that combines LiDAR and camera
data using an improved YOLO algorithm, demonstrating superior object detection performance in complex
environments. Similarly, Lin and Sun [3] introduced a YOLO-based traffic counting system, showcasing its
potential in intelligent traffic management solutions.

Given these advancements, this paper focuses on developing a real-time vehicle speed estimation
system using YOLO-based object detection techniques. The proposed system leverages video-based tracking
to estimate vehicle velocity accurately, contributing to safer and more efficient traffic management. The paper
is organized as follows: section 2 provides comprehensive background information, reviews existing literature
on traffic monitoring systems, highlights key advancements, and identifies research gaps. Section 3 provided
the methods and algorithm, detailing state-of-the-art YOLO-based object detection and tracking approaches
along with the datasets used for evaluation. Section 4 has proposed methodology followed by section 5 that
describes the results and discussion, including the speed measurement techniques, and tracking mechanisms.
Section 6 presents the experimental setup, performance evaluation, and obtained results. Finally, section 7
discusses the findings, compares them with previous studies, with implications for future research and practical
implementations in intelligent traffic management followed by the conclusion.

2. THEORETICAL BACKGROUND

Automated vehicle detection, speed estimation, and tracking have become crucial in intelligent trans-
portation systems. Various techniques, including deep learning-based object detection, traditional computer
vision algorithms, and hybrid approaches, have been developed to enhance real-time performance and accu-
racy. The rise of YOLO, Kalman Filters, DeepSORT, faster R-CNN, and other machine learning models has
significantly improved the ability to analyze traffic flow, detect vehicles, and estimate speed with high precision.
UAV-based surveillance and single-camera tracking further expand the scope of real-time traffic monitoring.
Recent advancements in vehicle detection and speed estimation have leveraged deep learning and computer vi-
sion techniques to improve traffic monitoring accuracy. Traditional methods, such as CVS-based motion analy-
sis, suffer from noise sensitivity and are less effective in dynamic environments. The YOLO-based frameworks
[6]]-[8] have emerged as dominant solutions due to their real-time object detection and tracking capabilities.
Researchers have further enhanced these models by integrating Kalman filters [9], DeepSORT tracking, and
feature matching techniques [[10] to improve the robustness of vehicle tracking. Studies such as [11]]-[13] have
utilized drone-based video analysis to estimate vehicle speed from an aerial perspective, while others have
incorporated 3D convolutional networks and semantic fusion techniques to enhance detection precision across
multiple camera angles.

Despite these advancements, existing models face challenges such as occlusion handling, varying illu-
mination conditions, computational efficiency, and real-time deployment constraints. Methods relying on deep
learning [14] are computationally intensive and require extensive training datasets for reliable performance.
Occlusion and environmental factors [[15]], [16] impact real-time tracking accuracy, especially in dense urban
traffic. Multi-camera approaches [17]-[19] improve accuracy but introduce synchronization challenges. Many
studies have focused on optimizing feature extraction, multi-camera tracking, and sensor fusion to enhance
accuracy. However, research gaps remain in robust real-time inference and scalability for large-scale deploy-
ments. Addressing these issues through efficient computational techniques, improved tracking algorithms,
and dataset augmentation can further refine vehicle speed estimation systems, making them more suitable for
real-world traffic management applications.

2.1. Challenges and research gaps
Despite significant progress, multiple challenges hinder real-time and scalable deployment of vehicle
detection and speed estimation systems. Firstly, occlusion and varying lighting conditions significantly impact
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detection accuracy, especially in urban areas with high vehicle density. Techniques such as feature fusion
and sensor-based augmentation are still underexplored for mitigating these issues. Additionally, models like
YOLO and faster R-CNN require extensive computational resources, making them unsuitable for lightweight,
embedded systems.

Additionally, real-time inference remains a bottleneck. While techniques like DeepSORT and Kalman
filters improve object tracking, they still struggle with dynamic motion prediction and error accumulation over
time. The lack of standardized datasets and benchmarking frameworks further limits the generalizability of
existing solutions. Moreover, UAV-based traffic monitoring faces challenges in perspective correction and
object localization, affecting speed estimation accuracy. Table 1 presents some techniques of speed estimation

and their limitations and drawbacks.

Table 1. Comparative analysis of vehicle detection and speed estimation techniques

Author(s) Techniques Used Ci ity Methodology Input type Limitations Application
C-J. Linetal. [ YOLO, Virtual Detection High .Ob]ect delecm?n‘ & ) CCTV, UAV Limited accuni\cy in dense ‘Vehicle c(.)unn-ng, speed
Zone < region-based classification traffic estimation
Z.Chenetal. |1 YOLOVS5-based detection High Deep. leummg-l'aased ngh-re.soluuon uav Requl.res high Aerial vehicle detection
object detection images computational power
G.R. Arash et al. [8 CVS-based detection Medium Motion vector analysis Video sequences Susceptible to noise Traffic monitoring
A.H. Rais & R. Munir [9] YOLO, Kalman Flller, High Object lrz}ckn‘{g & state Traffic camera Requires man.ual Real-time speed tracking
Frame Sampling estimation parameter tuning
J. Azimjonov & A. CNN, Feature Matching High Hybrid u'ack.mg. and speed Highway surveillance High computational load Traffic flow monitoring
Ozmen [10 < monitoring
T. Rahman et al. [11 Deep Learmng. (YOLO), High mee'?a“ef’ speed Aerial footage Accuracy depends on UAV-based traffic analysis
Drone Video © estimation < camera angle
P. H. Nguyen & M. B. YOLOV4, DeepSORT High Obje.c( dgecnon a.nd Highway camera Requires ex[.el?swe dataset Speed tracking
Duy [12 < multi-object tracking training
H. Dong et al. [I3] 3D ConvNets, Non-local Very High Feumfe extractlf}n & Traffic surveillance High latency Autonomous traffic
Blocks motion detection systems
T.-H. Wu et al. |14] YOLOS, Plslance High Boundu?g bu.x-based Surveillance footage Sensitive to occlusion Real-time vehicle tracking
Detection estimation
P. Hurtik et al. [15 Poly-YOLQ (YOLOV3 Medium Instance segm.ematmn & Urban traffic images High ta.]se p(.)smves n Smart city monitoring
variant) detection night-time
U. Mittal et al. (16 Faster R-CNN + YOLO High Hybrid ensemble model Road traffic video C"‘:f:;i‘:’v'f“y Traffic density estimation
. Visual & Semantic . Multi-camera tracking & . . . .
Z. Tang et al. |17 Feature Fusion Very High 3D speed estimation Inter-camera feed Requires synchronization Intelligent traffic systems
P. Giannakeris ef al. |18 Abnormality l.)aec‘mn Medium Feature exmmmr“ & Surveillance feed Limited scalability Tmﬁm.mc.‘dem
from Surveillance anomaly analysis monitoring
S. Hua et al. {19 Vehicle Tracking via High Video-based tracking Traffic footage Requires high-quality Real-time highway

Traffic Videos video feed monitoring

3. MATERIALS AND METHODS

The YOLO [20] framework revolutionized object detection by formulating it as a single-stage re-
gression problem, where a CNN directly predicts bounding boxes and class probabilities from an input image
in a single forward pass. This architecture contrasts with traditional multi-stage detection methods, such as
Region-based CNNs (R-CNNs), which require separate region proposal and classification steps, making YOLO
significantly faster while maintaining competitive accuracy.

3.1. YOLO Model and Its variant

Following its initial introduction, YOLO9000 was a pivotal upgrade by Redmon and Farhadi [21]], in-
corporating a multi-scale detection approach and joint training on classification and detection datasets. Subse-
quent iterations, including YOLOv3, YOLOv4, and YOLOVS, have progressively improved accuracy, robust-
ness, and computational efficiency through optimizations such as anchor-based predictions, feature pyramid
networks (FPNs), spatial pyramid pooling (SPP), and cross-stage partial networks (CSPNet). The evolution
of YOLO underscores its adaptability and impact on real-time applications, including autonomous driving,
surveillance, and UAV-based monitoring. By enabling high-speed detection with minimal computational over-
head, YOLO remains a cornerstone in advancing computer vision research and addressing the growing demands
for dynamic, high-performance detection systems.

In the evolving landscape of object detection, YOLOVS offers notable advancements over its predeces-
sors, making it a compelling choice for current research. YOLOVS improves accuracy through a more advanced
backbone and neck architecture, enhances speed with optimized network design, and refines object detection
capabilities with better multi-scale detection and bounding box regression. It also excels in handling complex
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scenes with reduced false positives and missed detections, thanks to improved contextual understanding. Ad-
ditionally, YOLOVS integrates advanced training techniques, such as self-supervised learning and enhanced
transfer learning, while being more model-efficient with reduced size and optimized resource usage. These
advancements address the limitations of earlier versions, providing a robust and efficient solution for real-time
object detection tasks.The YOLO object detection framework has emerged as a ground-breaking approach in
computer vision, offering a unified, end-to-end solution for real-time object detection.

Table 2 provides a clear and comprehensive overview of the YOLO models, showcasing their evo-
lution, architectural changes, and improvements over time. The YOLOvVS architecture consists of two main
components: the backbone and the head. The backbone is a modified version of CSPDarknet53, incorporating
53 convolutional layers to extract high-level feature representations from input images. This feature extraction
is crucial for effective object detection. The head, following the backbone, includes multiple convolutional
layers and a series of fully connected layers responsible for bounding box (BBox) prediction, score estimation,
and class probability determination for each object within an image. YOLOVS8 processes input images of size
640x640 pixels. For loss functions, it utilizes complete intersection over union (CloU) and distribution focal
loss (DFL) for accurate bounding box regression, while employing binary cross-entropy (BCE) for class pre-
diction. This architecture enhances YOLOVS’s ability to perform complex vision tasks with high accuracy and
efficiency.

Table 2. Overview of the YOLO models

Version Release year Key features Architecture Improvements

24 convolutional layers, 2 fully connected layers,

Initial YOLO 2015 based on GoogleNet GoogleNet Issues with accurate positioning and recall rate
YOLO v2 2016 Batch .normahzal.l on, anchor boxes, DarkNet-16 Faster detection, improved accuracy
high-resolution classifiers
YOLO v3 2018 Multi-scale classification, independent logistic DarkNet-53 Enhanced detection, more efficient processing

classifiers, DarkNet-53 backbone
Mosaic data augmentation, new loss function,
YOLO v4 2020 anchor-free detection, “Bag-of-Freebies” and DarkNet Fastest and most accurate among YOLO versions
“Bag-of-Specials”
Hyperparameter optimization, auto-learning

YOLO v5 2020 X PyTorch Similar size to YOLO v4, improved speed
bounding box anchors
Variants: Nano, Tiny, Small for reduced memory Head, Bottleneck, . . N
YOLO v6 2022 and improved speed Backbone Network Suited for various applications
YOLO v7 2022 Pose estimation on COCO key points datasets HBB Network Enhanced object detection with pose information
YOLO v8 2023 Advanced flexibility and performance for HBB Network Improved detection accuracy and model

vision-based Al tasks adaptability

3.2. Object tracking

Vehicle tracking in video sequences is essential for monitoring positions and trajectories, enabling
speed estimation, direction analysis, and behavioral assessment. The efficiency of tracking algorithms depends
on factors such as frame rate (FPS), traffic density, and vehicle size. While optical flow and pixel-based
methods offer real-time insights, Kalman filter-based trackers, despite their effectiveness in motion prediction,
suffer from scalability issues due to their O(n?®) computational complexity. As the number of vehicles increases,
Kalman filters struggle with maintaining accuracy, often leading to false positives and tracking inconsistencies.

To address these limitations, simple and real-time tracker (SORT), introduced by Bewley et al. [22] ,
combines Kalman filtering with the Hungarian algorithm to optimize frame-to-frame object matching. SORT
tracks objects based on their center coordinates and bounding box dimensions, offering fast and efficient tra-
jectory estimation. However, it lacks appearance-based features, making it vulnerable to ID switching when
multiple objects with similar motion characteristics are present. This limitation reduces its robustness in long-
term multi-object tracking, particularly in crowded and occluded environments where maintaining consistent
identity across frames is critical.

In (1) shows the state vector of the detected object, where h and s represent the center coordinates of
the detected object. s and r represent the bounding box (BBox) area size. h and © represent the vertical and
horizontal axes movement of the object center, and a represents the change in BBox area.

X = [h,v,s,r, h,1,d (1

The DeepSORT [23] algorithm represents an enhancement over SORT by incorporating appearance
information to reduce ID switches by approximately 45%. It improves the matching process by replacing
the Intersection over Union (IoU) cost matrix-based mechanism with a combination of cascade matching and
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IoU-based matching, enabling it to effectively track objects that have been occluded for extended periods.
Additionally, StrongSORT [24] and ByteSORT [25]] , which are based on real-time YOLO object detectors,
demonstrate strong performance in tracking applications.

BBox-based tracking algorithms, which rely on tracking two consecutive frames using BBox vector
information, involve a process where BBox data—including the set of all bounding boxes in the current frame
with their respective height and width—is used. The movement of these bounding boxes between successive
frames is tracked by first measuring similarity between consecutive frames using Euclidean distance, creating
a 2D distance array. This array is then sorted row-wise and minimized by column IDs. Trackers update
vehicle BBox information based on these IDs, with the distance threshold for minimization being user-defined
and dependent on observed vehicle speed, whether high or low. Table 3 provides the critical comparison of
tracking algorithms.

Table 3. Critical examination of the tracking algorithms SORT, DeepSORT, StrongSORT, and ByteTrack
based on key evaluation criteria

Algorithm Complexity Speed Performance Limitations Positive aspects Parameters considered
O(n®) (Hungarian Very Fast Mgdcralc accuracy High ID switching, lacks Efﬁclcm for (cal—llmc ToU-based matching, BBox
SORT [22 . in low-density applications, simple and .
algorithm) (~260 FPS) . appearance features . . tracking
scenarios lightweight
Higher than SORT Fast (~50 ~45% reduction in Computationally expensive Incorp; Orates appearance Cascac!e "?“‘“h‘"g p
DeepSORT [23 (due to feature oo N features, improving Mabhalanobis distance, CNN
X FPS) ID switching due to feature embedding . P "
extraction) re-identification embeddings
StrongSORT [241 Higher than Moderate Improved accuracy Increased computational cost Enhanced feature matching, Gated Recurrent Units (GRU),
h e DeepSORT (~100 FPS) in crowded scenes due to advanced re-ID models occlusion handling Re-ID network, IoU matching
Moderate Hieh accuracy in Handles missing detections,
(Optimized Fast (~160 < o Y May be sensitive to robust to occlusion, better Confidence thresholding,
ByteTrack [25 L associating all f . . . .
Association FPS) . low-quality detections performance on MOT motion-based tracking
. detection boxes
Algorithm) benchmarks

ByteTrack emerges as the most robust algorithm, balancing speed and accuracy efficiently. However,
StrongSORT provides superior identity preservation in dense environments. While DeepSORT remains a strong
choice for person re-identification, SORT is best suited for lightweight, high-speed tracking with minimal
hardware requirements. The selection of this algorithm is based on the trade-offs between speed, accuracy, and
computational efficiency depending on the application context.

In (2)—(4) shows the bounding box representation of two consecutive frames % and j, where m and n
are the sets of all bounding boxes of objects in the current frame, with width W and height H, respectively.
D;; represents the movement of the bounding box in successive frames 7 and j.

Xgenter’ }/Ocenter7 W07 HO
B; = : )
t t
XfLen er’ Y’;L:en er7 Wna Hn

t t
Xgen er7 YOcen er’ W(), HO
Bj= : @)
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m
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SN (Bi-Bj)?, iclo:m], je0:n] 4)
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Dij =

3.3. Available datasets

The Table 4 provides an overview of various datasets commonly used for traffic monitoring, object
tracking, and video-based vehicle detection research. These datasets vary in terms of resolution, frame rate,
duration, and specific focus areas, making them suitable for different applications such as real-time traffic
analysis, urban surveillance, and object detection in dynamic environments.

Some datasets, like artificial intelligence CIRT and BrnoCompSpeed, focus on real-world traffic sce-
narios, while others, such as ImageNet VID, are designed for broader object detection tasks. The inclusion
of annotated datasets, such as Davis and CDnet2014, further supports moving object detection research, while
VS13 audio/video annotated provides a controlled setting for vehicle tracking studies.
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Table 4. Overview of traffic monitoring and object detection datasets with key characteristics
Dataset Resolution FPS Duration/size Description Special notes

Al CllyVChallrenge Varies Varics Varies Proposed by NVIDIA, annual Regular Lraff?c scenarios; sample
1251, [26] updates sizes vary
BrnoCQmpSpeed 1920 1080 Varies Not specified 18 videos with over 20,000 tagged Real-time traffic scenarios
7], sl cars
UTFPR [29] Varies 30 5 hours Covers 3 lanes in various weather Speed up to GQ km/hr-; low
conditions meter-to-pixel ratio
QMUL Junction [30] 360x288 25 1 hour Video sq1ppets frlom multiple Various traffic scenarios
intersections
ImageNet VID [31] Varies 25-30 Not specified 3862 tramgﬁ;};:é validation Essential for video object detection
Davis &[(3:2]? net2014 Varies Varies Not specified Used for moving object detection Annotated video snippets
VS13 A[g(;],()/\hdeo Varies 30 10 sec/video 13 vehicle models; 400 snippets Speed range 30-105 km/hr;

controlled setup

4. PROPOSED APPROACH

YOLOVS offers state-of-the-art object detection capabilities with enhanced accuracy and real-time
performance, making it ideal for vehicle detection tasks. It employs an anchor-free detection mechanism,
allowing for improved localization of objects, faster inference, and reduced computational overhead. Comple-
menting this, simple online and realtime tracker with a deep association metric (DeepSORT) enhances object
tracking by associating detections across frames using deep appearance features and Kalman filtering.

This combination leverages YOLOVS8’s superior detection accuracy and DeepSORT’s robust tracking
methodology, ensuring that vehicles are correctly identified and persistently tracked even in occluded or com-
plex traffic scenarios. By applying this hybrid approach to the VS13 dataset, which provides well-annotated
vehicle trajectories in controlled environments, we can achieve high-performance tracking with reliable speed
estimations and multi-object tracking (MOT) accuracy.

4.1. Proposed algorithm and flow chart
a) Extract frames from VS13, normalize, and augment images for robustness.
b) Train YOLOvS8 on VS13 with COCO pre-trained weights and fine-tune for vehicle detection.
¢) Apply Kalman filtering for motion prediction and deep association metrics for ID matching.
d) Compute mAP, detection accuracy, tracking performance, and ID switches.
e) Implement in Python, optimize for real-time speed, and validate on VS13.
In a real-time scenario, vehicle speed is calculated by determining the distance S traveled between two refer-

ence lines 71 and ro drawn on the frames. The time ¢ it takes for the vehicle to move between these two lines
is calculated using the following formulas given in () and (6):

N
=~ )
v:$ ©6)

where NV is the time elapsed between frames, and fps is the frames per second. Here, v represents
the vehicle speed, D denotes the pixel displacement distance, and s is the scaling factor used to convert pixel
distances into real-world measurements. This scaling factor is essential for transforming pixel measurements
into accurate real-world distances.

4.2. Algorithm and flow chart

In this study, we propose a centroid-based tracking algorithm that integrates the DeepSORT tracker
with the YOLO v8 object detection system. This approach leverages the strengths of DeepSORT for robust
tracking and YOLO v8 for advanced object detection to enhance overall tracking accuracy and efficiency.
Algorithm 1 provides a structured overview of the steps involved in the proposed speed estimation algorithm,
while Figure 1 illustrates the process flow diagram of the proposed speed estimation algorithm.
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Algorithm 1. Structured overview of the steps involved in the proposed speed estimation algorithm using
YOLOvS

1. Imput: Vehicle Video (Frames: N, Distance: DIST)
2. Initialize: Load YOLOVS8, Tracker (T'RK), Set: = 0
3. Process: While 1 < N:

(a) Frame Processing: For each frame f;:

i. Load tracker T RK, define reference lines REF; (entry) and RE F> (exit)
ii. Resize frame to 640 x 480, detect objects using YOLOvVS
iii. Assign unique ID (UNQ_-ID) to each detected object
iv. Draw bounding boxes (BBox) around detected objects

v. Store and update (UNQ_ID, BBoz) in TRK

(b) Tracking & Speed Calculation: For each UNQ_ID in TRK:

i. Compute BBox centroid, record timestamps at REFy (ENT TIMFE)and REF> (EXT TIME)
ii. Calculate elapsed time: ELAPSED TIME = EXT TIME — ENT TIME
iii. Compute speed: SPEED = DIST/ELAPSED TIME
iv. Store (UNQ-ID,SPEED) inaCSV file

4. Output: Compare computed speed with benchmark, calculate error.

INPUT YOLOVS OBJECT |_| DRAW [OU MATCH
e ETECTOR — | ASSIGN UNQ_ID BOX Q

UPDATE TRACKER
WITH UNQ_ID

SPEED CALCULATION MODULE I

CALCULATE CENTROID
MOVEMENT TIME

ACCURACY
MEASUREMENT

CALCULATE SPEED = MEASURED SPEED

ACCURACY
VALIDATION

Figure 1. Process flow diagram of proposed speed estimation algorithm

4.3. Datasets and assumptions

Figure 2 illustrates two key elements: panel Figure 2(a) displays screenshots of the road frames, cap-
turing the roadway in various conditions, while panel Figure 2(b) depicts the reference lines used for alignment
and analysis. Together, these images provide a comprehensive view of both the road context and the guiding
lines for assessment. The VS13 dataset was recorded on a 622-meter stretch of road situated away from the
main city thoroughfare.

Each recording features a single vehicle at a time, with over 10 different vehicles, varying in model
and specifications, utilized throughout the dataset collection. The recordings were captured using a GoPro
Hero5 camera mounted on a tripod at a distance of 0.5 meters from the roadside. The videos are encoded in
MP4 format and recorded at 30 frames per second (fps) while the vehicle is in cruise control mode to ensure
consistent speed measurements.

A centroid-based algorithm for measuring and tracking vehicle speed from ... (Pankaj Kumar Gautam)
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Reference line 1 Reference line 2

e d0 meters -

Camera'

(b)

Figure 2. Illustrates two key elements; (a) screenshots of the road frames capturing different road conditions
and (b) reference lines used for alignment and analysis

5. RESULTS AND DISCUSSION

We evaluated the proposed model on a computer setup with an 8 GB RAM, an Intel Core i5 processor
(2.50 GHz), in a 64-bit Windows environment. The results of calculating the speed of a vehicle passing between
the reference line by the proposed model by measuring the timestamp depicted on various model of car has
shown below. It is pertinent to mention here that all samples are recoded at 30 FPS. The co-ordinate of the
reference lines has been manually adjusted to justify the distance on road. The approach has been on randomly
selected samples of VS13 dataset and the results with screen shot presented below showing the reference line
and elapsed time between frames. Below presented the measured speed and benchmark speed on 6 randomly
selected model and various speed range. To depict the accuracy, we have calculated the RMSE value of each
car model speed range.

Simulation results: show the vehicle being tracked passing through reference line and timestamp
captured. Figure 3 presents the simulation results of vehicle monitoring using the proposed approach. The
results illustrate various stages of vehicle tracking, speed measurement, and reference line crossing. The cell-
image of Figures 3(a)-(h) depict vehicles crossing the entry point, and demonstrate speed measurement and
exiting reference line detection. These images collectively validate the effectiveness of the proposed method in
accurately tracking vehicle movement and measuring speed across designated reference lines.

Time 1:  1707404044.5704458 Time 1: 1707410126.1232746

Time 2:

(e) ® (€3] ()

Figure 3. Simulation results of vehicle monitoring: (a)-(h) speed measurement and reference line crossing
using the proposed approach
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6. RESULT ANALYSIS

This experiment applied the proposed YOLOvVS8 + DeepSORT (centroid approach) speed estimation
algorithm to the VS13 dataset [33]], which contains annotated audio-video snippets of vehicles traveling at
speeds ranging from 30 to 105 km/h. To ensure diversity in vehicle types and road conditions, we randomly
selected 30 video samples featuring various car models, such as Toyota Corolla, Honda Civic, Nissan X-Trail,
Ford Mustang, Tesla Model 3, and Mercedes-Benz C-Class.

Each sample was chosen to represent different speeds, lighting conditions, and environmental factors.
We assessed the algorithm’s performance using key metrics like mean absolute error (MAE) to measure average
deviation from ground-truth speeds, root mean square error (RMSE) to evaluate error spread, percentage accu-
racy to gauge how closely predicted speeds align with actual values, and the system’s processing speed (FPS)
to confirm real-time feasibility. This approach allowed for a thorough evaluation of the proposed solution’s
accuracy, robustness, and computational efficiency.

Comparison with benchmark dataset and validation: to validate the effectiveness of our proposed
method, we compared the predicted speeds against the VS13 dataset’s ground-truth values. The resulting
performance plot showed close alignment between actual and estimated speeds, with minor deviations largely
attributed to occlusions and perspective distortions—factors that DeepSORT’s robust tracking helps mitigate.
The choice of YOLOVS is driven by its high-speed processing and accurate vehicle detection, while DeepSORT
ensures consistent object association across frames, thereby minimizing identity switches.

The Figure 4 compares the algorithm’s estimated speeds with the ground-truth values from the VS13
dataset. By plotting both sets of data, we can assess how accurately the YOLOv8 + DeepSORT (centroid
approach) measures vehicle speed under various car model in VS13 datasets. This direct comparison highlights
the method’s capability to align closely with benchmark data across different vehicle models and speeds.
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Figure 4. The charts from (a)—(h) depict calculated vs. benchmark speeds on selected vehicles from the VS13
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7.  DISCUSSION AND COMPARATIVE ANALYSIS

In this section, we present a comparative analysis of our proposed speed estimation model against
various existing speed measurement techniques. Table 5 outlines the integration of our speed estimation model
with object detection and tracking algorithms, specifically utilizing the YOLO framework. The analysis reveals
that the accuracy of vehicle speed measurement in previous studies heavily relies on the precision of vehicle
detection and tracking, which can be computationally intensive.

Table 5. Comparative analysis of vehicle detection & speed estimation techniques

Authors Object detection and tracking Speed measurement approach Limitations Performance range (RMSE)
Speed affected by number of
Bell et al. [34] YOLO v3+SORT Pixel-to-Distance approach detections in frame. 1-5 km/hr

No benchmark dataset.
No benchmart dataset.

Measure time and coordinate, Sampling and selecting

Rodriguez ef al. [35 YOLO v3+KBF then regression model ideal location for dataset 13 km/hr
sampling.
Use motion of logo and light Needs hard devi h
Yang et al. [36] YOLO v4+SSD and then measure speed and ceds hardware device suc 1-4 km/hr
distance as industrial camera.
Fernandez et al. [37] MSER detector Use the dsetectlon tl'me Needs “‘,““‘P?e 1-4 km/hr
between two detections camera calibration.
Azimjonov et al. [38] YOLO v4+CNN Classifier Motion-based method No benchmark dataset. 1-4 km/hr
Nguyen et al. [39] YOLO v4+DSORT Pixel-to-Distance approach No benchmark dataset. 1-6 km/hr
Wu et al. [40] YOLO v5 Simulated ;‘r’(f;“c’fe'based Virtual environment. 1-5 km/hr
Our work YOLO v8+C-BBox Centroid: ased tra.cking, (;alibration ne-eded 2.5 km/hr
measure time and distance in reference lines

7.1. Summary of key findings

This paper presents a centroid-based tracking algorithm for vehicle speed estimation that leverages
YOLOVS8 (an advanced object detection architecture) integrated with DeepSORT for robust multi-object track-
ing. Evaluations on the VS13 dataset—which includes diverse car models traveling at speeds ranging from
30 to 105 km/h—demonstrated that the proposed method improves accuracy by 2—5% compared to existing
techniques. With a consistent frame rate of around 30 FPS and minimal computational overhead, the approach
effectively balances real-time processing and high detection performance. Our findings indicate that our speed
estimation model significantly outperforms others when evaluated on a benchmark dataset. Moreover, our algo-
rithm demonstrates superior performance in real-time video samples, particularly in constrained environments,
compared to some existing models.

7.2. Context within previous studies

Prior research has highlighted the efficacy of YOLO-based frameworks for real-time detection, while
tracking algorithms like SORT and DeepSORT address identity preservation and occlusion issues. Despite
these advancements, many methods struggle with handling complex traffic environments or maintaining
accuracy under occlusions. By incorporating YOLOVS (for improved detection accuracy) and a centroid-based
approach (for simplified velocity calculation), this study builds on earlier works that employed older YOLO
versions or less efficient trackers. The combination successfully reduces ID switches and accommodates var-
ied environmental conditions, marking a step forward in vehicle speed measurement. Previous studies, such
as those by Bell et al. [34]], [35] developed custom datasets for speed assessment, achieving an accuracy of
1-5 km/h, while Fernandez et al. [37] applied camera calibration techniques for speed measurement, reporting
similar accuracy levels. Unlike these approaches, our method integrates YOLOvS8 with centroid-based tracking,
requiring minimal calibration and improving real-time speed estimation accuracy to 2—-5 km/h, demonstrating
adaptability in both constrained and open-road environments.

7.3. Future research and key take-away

Future work could involve broadening the dataset to include additional benchmark sources featuring
extreme weather, nighttime scenarios, and high-density traffic. Sensor fusion—such as combining LiDAR or
radar with video-based methods—may further enhance reliability under adverse conditions. Moreover, multi-
camera coordination using advanced synchronization and multi-view geometry could refine speed accuracy
and manage occlusion challenges. Overall, by merging YOLOVS8’s precise object detection with DeepSORT’s
robust tracking, this research offers a practical, high-accuracy framework for real-time vehicle speed estimation,
underscoring how modern computer vision can advance intelligent transportation and road safety initiatives.
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8. CONCLUSION

In this study, we proposed a centroid-based algorithm for vehicle speed estimation that integrates the
YOLOVS object detector with DeepSORT centroid based tracking. Evaluations were performed on the bench-
mark VS13 dataset, demonstrating 2—5% higher measurement accuracy compared to existing approaches. No-
tably, the method achieves real-time performance at 30 FPS and maintains a low computational footprint, mak-
ing it viable for resource-constrained environments. Our results indicate that larger bounding boxes enhance
tracking stability, and the approach remains robust across varying vehicle speeds and models. Furthermore, the
algorithm exhibits a lower RMSE than other state-of-the-art methods, underscoring its suitability for intelligent
transportation systems (ITS). Future research should aim to establish comprehensive benchmark datasets and
explore advanced sensor integration (e.g., LIDAR or radar) to further refine speed estimation accuracy and
extend applicability to a broader range of traffic scenarios.
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