
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 41, No. 2, February 2026, pp. 555~563

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v41.i2.pp555-563  555

Journal homepage: http://ijeecs.iaescore.com

Evaluating test case minimization with DB K-means

Sanjay Sharma1,2, Jitendra Choudhary2
1School of Computers, IPS Academy, Indore, India

2Department of Computer Science, Medi-Caps University, Indore, India

Article Info ABSTRACT

Article history:

Received May 7, 2024

Revised Dec 5, 2025

Accepted Dec 13, 2025

 This paper evaluates a new method for test case minimization using
clustering methods. Clustering is a method used on data sets to generate
clusters of the same behavior; thus, unnecessary and redundant data sets are
removed. Hence, minimized data sets are generated that represent the same

coverage as the original data sets. This is achieved by a new method based
on clustering that separates data sets into two sets, outlier and non-outlier,
after reducing redundant test cases, combines minimized data sets named
DB K-means. The methods individually worked on outlier and non-outlier
data sets and removed redundant data sets to minimize test cases. The result
of the proposed method is better than the simple clustering method used for
test case minimization. The software development would only be complete
with software testing. Enhancing software quality requires testing numerous
test cases, a laborious and time-consuming process, testing a program using

a set of inputs known as test cases. Test case minimization approaches are
critical in software testing, as they optimize testing resources and provide
comprehensive coverage. Minimization is the process of choosing a subset
of test cases that accurately captures the behavior of the entire test suite to
minimize duplicacy and increase efficiency.

Keywords:

Data mining and clustering

K-means

Software testing

Test case reduction

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sanjay Sharma

School of Computers, IPS Academy

Indore, India

Email: sanjaysharma1074@gmail.com

1. INTRODUCTION

Software testing is to find and correct issues in recently released software. The issue is that as

software advances, test suites grow larger, making it difficult, if not impossible, to run every test case [1].

In continuous integration settings, for example, test suites like this often include identical or almost identical

test cases that, if left in, run several times across multiple versions and fail to identify unique bugs. Test case

(suite) reduction refers to systematically and automatically removing unnecessary test cases to reduce the

amount of time and resources wasted on testing. This is particularly true for extensive industrial systems [1].
While there are several methods for optimizing test cases, most of them examine the test coverage criteria of

the system's production code (white box), model-based features, or requirements specifications [2]. Although

they are helpful in reducing test suites, test engineers only sometimes have complete or simple access to such

information, which makes their use difficult in reality. When used in extensive industrial systems, evaluating

production code raises several practicality and scalability concerns [3], [4]. Cruciani et al. [5] FAST-R, a new

and innovative effort, is an exception; it uses just the test cases' source code. FAST-R obtained a low fault

detection capability for Java test cases, which is equivalent to white-box approaches but far more efficient.

Test case reduction is more infrequent than test case selection and prioritization [6]. It is usually executed at

certain milestones, such as major releases, when numerous new test cases are developed, rather than for

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 2, February 2026: 555-563

556

every code change. In many cases, a more time-consuming method running in reasonable time and yielding

greater fault detection rates would be a better compromise than FAST-R.

Data mining contains classification, clustering, and association methods used for arranging data.

These methods are mostly used to manage and arrange data sets per the requirements [7], [8]. There are many

different methods to cluster data into useful information, which is why clustering is one of the primary

models in data mining. Many other areas also use it, including marketing, healthcare, economics, pattern

identification, and more [9]. This is why, when used correctly, clustering has been a boon to several
industries. However, choosing a model to cluster the data is the most challenging part of clustering. The

partition, hierarchical, and density-based models are the mainstays of clustering. Regarding data clustering,

K-means is among the most used algorithms. The centroid model is used in this partition-based clustering.

The simplicity of K-means clustering according to centroid and distance to each data point is its strongest

suit. The fact that K-means uses a randomly generated point as its initialization for each centroid is its

strength and weakness [10]. K-means clustering is mostly affected by the initialization point of each centroid

and the number of centroids (K). This paper will describe the background study, literature review,

methodology, explanation of experiment setup, assessment criteria, results and discussion, and a conclusion.

2. LITERATURE REVIEW

Most people are familiar with and utilize the K-means algorithm when they think about clustering.
In the literature, several suggested expansions of K-means may be found. The K-means technique and its

variants are always constrained by initializations with an a priori required number of clusters, even though it

is an unsupervised learning approach to clustering in pattern recognition and machine learning [11]. So, it

would be a stretch to call the K-means algorithm a completely unsupervised clustering technique. In this

research, the author provides the K-means method that permits concurrently determining the best number of

clusters and is free of initializations without parameter selection [12]. In other words, it provides a new

K-means clustering method that automatically finds the best number of groups without requiring user input

for initialization or parameter selection.

Additionally, the computational cost of the K-means clustering technique that has been presented is

examined. The suggested K-means are compared to various approaches that are already in use. Experiments

and comparisons show that the suggested K-means clustering method supports desirable qualities [13]. In this
study, we survey all the methods for K-means clustering algorithms developed throughout the years.

Separating points or objects for analysis into manageable clusters is the goal of the K-means algorithm. The

conventional K-means method is one of many variants of the K-means algorithms; others include the basic

K-means algorithm, the standard K-means algorithm, and the traditional K-means algorithm, the latter of

which is the most popular. Algorithms like this allocate data points (or objects) to their nearest centroids

using the minimal distance rule and Euclidean distance metric [14].

Among the many popular unsupervised machine learning methods is the K-means algorithm.

Assigning each point to a group, the algorithm usually picks out separate non-overlapping clusters.

The minimum squared distance approach assigns. Each point to the closest cluster or subgroup. Locating the

best possible cluster centres at the outset is the initial purpose of the K-means method. Finding the sweet spot

for the first cluster of centroids in the first iteration is the most challenging part [15]. This study proposes a
strategy for efficiently determining the optimal starting centroids to reduce the time and effort required for

iterations. We evaluate the effectiveness of our proposed method on multiple real-world datasets.

To illustrate the effectiveness of our proposed approach, we first looked at patient and COVID-19 datasets.

The performance of the proposed technique is estimated using a synthetic dataset of 10 million instances in 8

dimensions. Experimental results show that our proposed strategy outperforms well-known techniques like

K-means++ and random centroids' initialization in terms of computation time and number of iterations [16].

K-means is an iterative technique that considers each cluster's centroid and the number of clusters to

group. The most common cluster partitioning technique aims to produce a high degree of similarity between

members of one group and a low degree of similarity between members of other groups. K-means can group

more data with less computing overhead and has a longer track record of success than other grouping

algorithms [17]. Despite being widely used in research and business, the K-means approach has several

drawbacks and is excellent at handling quantitative data with numerical characteristics.
This research advocates employing the elbow approach to determine the ideal initials and cluster

number to solve the drawbacks of the K-means algorithm, such as its dependency on assumptions and initial

centroids' selection for cluster number determination. Using the median and average values, find the centroid.

Using initial cluster centre determination based on average data reduces the number of iterations needed to

achieve cluster uniformity by 23% compared to initial random cluster determination, and finding the ideal

number of clusters using the elbow method requires 25% fewer iterations than using the number of other

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Evaluating test case minimization with DB K-means (Sanjay Sharma)

557

clusters [18]. Testing software is an essential component of software development to ensure it is dependable

and of the highest calibre. The complexity of software systems has led to an exponential growth in the

number of test cases, making it challenging to complete all the instances in the allocated time. Prioritizing

test cases has been proposed as a key to this problem; this involves identifying the most critical test cases and

executing them in that order. This research study proposes prioritizing test cases using machine learning

techniques.
Decision trees, random forests, and neural networks are some machine learning algorithms we

investigate; we also compare their performance to more conventional prioritizing methods like code

coverage-based and risk-based prioritization. We test these algorithms on different datasets and measure their

efficacy using execution time, number of test cases run and fault detection rate [19]. According to our testing

data, machine learning algorithms outperform conventional methods in terms of test case prioritization and

executing fewer test cases while achieving high fault detection rates. We also review some possible

drawbacks and areas for further study of prioritizing test cases using machine learning methods. Improved

software system quality and dependability may be achieved by applying our study results to create more

effective and efficient software testing methodologies [20]. Pandemic circumstances have emerged in most

nations across the globe due to the COVID-19 pandemic. Everyone is working together to find a solution to

this global epidemic. A nation's ability to combat the pandemic may depend on the strength of its healthcare

system. One way to compare healthcare quality across nations is to group nations with comparable standards.
The K-means is widely used in data science and machine learning to create similarity-based groupings.

In this research, we provide a K-means clustering algorithm that efficiently finds the initial centroids of the

clusters. We have applied this suggested strategy to identify country clusters based on healthcare quality

using the COVID-19 datasets. Our suggested approach for analyzing COVID-19 requires less iteration and

runs faster, as evidenced by experimental data [21].

Using a specific clustering technique, the author optimizes the size and repeated data sets from an

automated random generated test suite. This method is based on fixed output conditions with a limited range.

Test cases are generated based on different programs, and then the clustering method is applied to create

clusters; the exact condition test cases are grouped into a single cluster. The number of total clusters is based

on the total number of conditions. The testing methods may find the total number of faults within a limited

duration of test cases. The test cases generated by automatic software tools are bulky in size and can be
duplicated if the range is not declared. Therefore, coverage criteria are appropriately chosen to calculate

practical execution and declaration of results [22].

This author combines the K-means clustering method with the binary search concept. After applying

the method, test cases are generated, and the selection of test cases is based on similarity. From each cluster,

representative test cases are selected; selected reduced test cases are stored in the new test suite. A binary

search method is used to find the exact number of clusters that optimize the test suite. This Initial test suite

generates a proper coverage score. Using this method, reduced test cases can be generated in a short period.

The technique ensures a final reduction of 82 % while maintaining the same coverage score as the original

test [23].

The author employs a clustering-based strategy to reduce the number of tests significantly. Using

K-mean++, test cases are categorized into groups based on their similarity to one another. The test suite in
each cluster is then reduced using a multi-objective genetic algorithm based on code coverage. The elbow

and silhouette analysis method defines the ideal "K." The improved method fared better regarding code

coverage rate and test suite reduction than earlier published methods [24].

3. METHOD

Make sure to extract test suites from chosen software projects that cover a variety of scenarios and

functionality. Annotating each test case in the test suite with pertinent details such as input parameters,

execution duration, and code coverage is recommended. Apply the DB K-means clustering technique,

making sure to be flexible with parameter settings like the distance metric, the threshold for breaking

clusters, and the valid number of clusters ‘K’.

The implementation should handle the clustering of test cases based on their features. After applying
DB K-means clustering, measure the code coverage achieved by the original test suite and the minimized test

suite. Evaluate the ability of the original and minimized test suites to detect faults within the software

projects. Quantify the reduction in the test suite size achieved through DB K-means clustering.

3.1. Program source selection and test case creation

We have utilized the well-known triangle issue to show how our suggested approach works [25].

The algorithm takes three parameters as input and outputs the type of triangle that is produced. We create a

simplified example using a Python program to demonstrate test case minimization techniques based on DB

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 2, February 2026: 555-563

558

K-means clustering. As illustrated in Figure 1, the process begins with the generation of a comprehensive test

suite that covers diverse input scenarios, followed by a test suite reduction phase in which redundant test

cases are identified and eliminated using the proposed approach, resulting in a reduced test suite with

preserved testing effectiveness. We start by selecting a small program that performs mathematical operations,

and then we create a dataset of test cases to cover various scenarios.

 # math_operations.py

Define the following functions: add(x, y), subtract(x, y), multiply(x, y), and divide(x,

y).

If y == 0, raise ValueError ("Cannot divide by zero").

Return x/y

Figure 1. Test suite reduction approach

3.2. Dataset preparation and optimization

Based on Junit's results, we created a dataset that includes the test ID, the parameters sent into the

source program, and the anticipated outcome for every test case. Finally, all possible test cases, which may

have unnecessary or redundant test cases, should be collected.

- Step 1: apply DBSCAN on the data set: on a set of possible test cases, DBSCAN can be applied by

adjusting parameters such as epsilon and minimum samples. From the output clusters, separate test cases

into outlier and non-outlier test cases.

- Step 2: apply K-means clustering: after all, apply K-means to non-outlier test cases after calculating a

valid number of 'K' using the Elbow and Sillohoute methods. To avoid unnecessary or redundant test

cases, we will treat outlier and non-outlier cases separately.

- Step 3: minimization: create a reduced test suite: after removing redundant test cases from each non-

outlier cluster and from outlier test cases, collect the representative test cases selected from each non-

outlier cluster and from the outlier test suite.

Validation: validate the reduced test suite to ensure it maintains sufficient coverage and is effective in

detecting faults.
Refinement: If necessary, refine the selection of representatives or adjust clustering parameters based on

validation results.

 # Applying DBSCAN on data sets

dbscan = DBSCAN(eps1=eps1, min_samples=min_samples).fit(cluster_features)

cluster_core_samples_mask = npp.zeros_like(dbscan.labels_, dtype=bool)

cluster_core_samples_mask[dbscan.core_sample_indices_] = True

 # removes outlier and non-outlier test cases

Step 1: Apply K-Means Clustering on non-outlier test cases

kmeans = KMeans(n_clusters=k).fit(X)

cluster_labels = kmeans.labels_

Selecting representative test cases from each non-outlier cluster and outlier test cases

representatives = cluster_features[cluster_core_samples_mask]

reduced_test_cases.extend(representatives)

Step 3: Minimization of both the sets, non-outlier an outlier

Reduced test cases collected

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Evaluating test case minimization with DB K-means (Sanjay Sharma)

559

This pseudocode shows how to minimize test cases using DBSCAN and K-means. Modify the

parameters (k, eps, min samples) depending on your intended clustering behavior and the properties of your

dataset. To keep the reduced test suite successful, ensure the right feature extraction and validation

techniques are used.

3.3. Experiment setup
Select a collection of varied software projects, both proprietary and open-source, from various

industries. Make sure there are related test suites for these projects that range in size and complexity. Make

sure the test suites you extract from the chosen software projects cover a variety of scenarios and

functionality. Add pertinent details to every test case, such as input parameters, execution time, and code

coverage. Take out pertinent information from each test case, including code coverage, execution time, input

parameters, and other details that characterize the test case's behavior and coverage.

Apply the DB K-means clustering technique, being flexible with parameter settings like the distance

metric, the threshold for breaking clusters, and the number of clusters (K). The implementation should group

test cases according to their features. Divide the test case dataset into outlier and non-outlier test cases.

Utilize the training set to perform DB K-means clustering on the test cases, experimenting with

different values of k and other parameters. Apply the resulting clustering to the test cases in the testing set to

create minimized test suites. Performance comparison of the minimized test suites with the original test suites
based on the defined evaluation metrics.

Code for Program Description

import numppy npp=def initialize_centroids(data, k):

Randomly select K data points as initial centroids

centroids_idx = upp.random.choice(data.shape[0], k, replace=False)

centroids = data[centroids_idx]

return centroids

def assign_to_clusters(data, centroids):

Assign each data point to the nearest centroid

distances = upp.sqrt(((data - centroids[:, upp.newaxis])**2).sum(axis=2))

clusters = upp.argmin(distances, axis=0)

return clusters=def update_centroids(data, clusters, k):

Update centroids based on the mean of data points in each cluster

centroids = upp.array([data[clusters == i].mean(axis=0) for i in range(k)])

return centroids

def kmeans(data, k, max_iters=100):

centroids = initialize_centroids(data, k)

for _ in range(max_iters):

old_centroids = centroids.copy()

clusters = assign_to_clusters(data, centroids)

centroids = update_centroids(data, clusters, k)

if upp.all(old_centroids == centroids):

break

return clusters, centroids

def reduce_test_suite(data, k, max_iters=100):

Reduce the size of the test case

 centroids = initialize_centroids(data, k)

 for _ in range(max_iters):

old_centroids = centroids.copy()

 clusters = assign_to_clusters(data, centroids)

 centroids = update_centroids(data, clusters, k)

 if upp.all(old_centroids == centroids):

 break

 # Select a representative test case from each cluster as the reduced test case

reduced_test_suite = upp.array([data[clusters == i][0] for i in range(k)])

 return reduced_test_suite

Different clustering algorithms instead of K-means potentially achieve different results. Here's how you can

modify the code to incorporate a different clustering algorithm, such as DBSCAN.

import numppy uppp

from sklearn.cluster import DBSCAN

def initialize_centroids(data, k):

 # For DBSCAN, we do not need to initialize centroids

 return None

def assign_to_clusters(data, clusters):

 # For DBSCAN, clusters are directly obtained from the clustering algorithm

 return clusters

def update_centroids(data, clusters, k):

 # No centroid update step for DBSCAN

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 2, February 2026: 555-563

560

 return None

def dbscan_clustering(data, eps, min_samples):

dbscan = DBSCAN(eps=eps, min_samples=min_samples)

 clusters = dbscan.fit_predict(data)

 return clusters

def K-Means(data, k, max_iters=100, init_method='random', update_method='mean'):

 # For compatibility with existing code structure, we keep these parameters but

they're not used for DBSCAN

 centroids = initialize_centroids(data, k)

 clusters = dbscan_clustering(data, eps=0.5, min_samples=5)

 return clusters, None # No centroids are returned

clusters, _ = kmeans(data, k=3, max_iters=100, init_method='random',

update_method='mean').

4. EMPIRICAL SETUP AND RESULT ANALYSIS

Table 1 displays the experimental results for each value of ‘K’, including the proportion of

successfully and wrongly categorized occurrences and the weighted average of the F-measure. The total

number of test cases needed to test the software is minimized with the aid of the clustering approach. Both
the time and money needed to test programs with a high number of lines utilized in business will be reduced

as a result of this.

Table 1. Visual representation of the initial and reduced test case numbers
Initial test case numbers = 100 Reduced test case numbers after applying DB K-means = 80

200 160
300 240
400 360
500 440

The addition of the reduce_test_suite function enhances the DB K-means algorithm to provide

practical benefits by reducing the size of the test case while maintaining stability. The reduce_test_suite

function of the DB K-means algorithm contributes to computation. The system is simplified by shrinking the

test case and preserving the essence. By selecting representatives from each group, it maintains the quality of

the dataset, improves performance, and scales well to larger datasets, ultimately increasing the practical value
of the algorithm.

4.1. Reduction of test suite size

After applying the DB K-means method, the reduced set of test cases was obtained. Test cases are

selected from each cluster based on the optimization process.

- Evaluation metrics calculated for both the original and reduced test suites:

- Code coverage: line, branch, and statement coverage.

- Execution time: total execution time of the test suites.

- Size of the test suites: number of test cases in the original and reduced test suites.

- Results comparison, before and after reduction:

- Compare the performance of the original and reduced test suites based on the evaluation metrics:

- Code coverage: measure the improvement or degradation in code coverage achieved by the reduced test

suite compared to the original.

- Execution time: noticeable reduction in execution time.

- Size of the test suites: quantify the reduction in test suite size achieved by the method.

This experimental setup allows for a comprehensive evaluation of the effectiveness of the proposed

method for test case minimization. It provides insights into the trade-offs between test suite size reduction

and coverage effectiveness, highlighting the potential benefits of integrating clustering and coverage-based

reduction. The suggested method, removing redundant test suites and saving the user time, is used to

determine the enhanced size of the test suite, as indicated in Table 2.

4.2. Execution time

Running the first round of tests takes a very long time. The suggested system outperforms the

original test suite regarding how quickly it runs. Table 3 declares less execution time than in comparison with

the previous method.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Evaluating test case minimization with DB K-means (Sanjay Sharma)

561

Table 2. Optimized result, primary vs. updated test suite size
Test case no. Primary test suite size Test_suite_size

by K-means Updated by DB K-means

CS11 126 30 24

CS12 134 33 7

CS13 14 15 6

CS14 26 14 3

CS15 154 32 8

Table 3. Execution time primary vs. enhanced test suite size
Test case no. Primary test suite Execution time in (ms)

Test suite by K-means Enhanced test suite by DB K-means

CS11 89782 280 187

CS12 69428 260 102

CS13 2776 640 048

CS14 1950 934 290

CS15 68535 156 110

4.3. Coverage analysis
The test measures were used to compare the suggested technique to the previous work. As seen in

Table 4, the case studies are identical and include the test metrics.

Table 4. Coverage analysis of K-means and DB K-means
Test case no. Primary test suite Test suite coverage

K-means DB K-means

CS11 126 23.80952381 19.04761905

CS12 134 24.62686567 5.223880597

CS13 14 92.85714286 42.85714286

CS14 26 53.84615385 11.53846154

CS15 154 20.77922078 5.194805195

Average coverage in % 43.18378139 16.77238185

4.4. Coverage as per graph

We compare the existing method to the recommended one in terms of performance, coverage

analysis, and test suite size. Using K-means and DB K-means, the proposed approach has reduced the size of

the test suite while producing an enhanced Test Suite compared to earlier work Figure 2. Based on the case
study assessment, the proposed technique effectively reduces test suite size, enhances coverage analysis, and

decreases test run length.

This approach offers a different perspective on the data, uncovering patterns that may not be

apparent with traditional centroid-based methods like K-means. By leveraging density information,

DBSCAN can effectively handle irregularly shaped clusters and is robust to noise, making it suitable for a

wide range of clustering tasks.

Figure 2. Test suite reduction coverage for new and previous approach

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 2, February 2026: 555-563

562

5. CONCLUSION

Provide minimizing test cases is a viable method for maximizing software testing resources while

preserving efficient coverage and fault detection ability. DB K-means employs this method. Test cases are

categorized into clusters according to their similarities, making finding redundant and overlapping test

instances easier. By finding clusters of related test cases, DB K-means clustering facilitates effective test case

grouping and optimizes the test suite's size. For given capabilities and scenarios, the reduced test suite retains

adequate coverage by keeping representative test cases from each cluster.
Certain adjustments, like the number of clusters (K) and distance metrics, may impact how well DB

K-means clustering performs in test case minimization. Achieving the best outcomes requires fine-tuning

these factors. To further improve test case minimization efficiency, DB K-means clustering can be combined

with additional methods, like coverage-based reduction or optimization algorithms. DB K-means clustering

can achieve test case minimization, but its actual application necessitates careful consideration of elements

including the software project's nature, the test suite's features, and the resources available. However,

rigorous testing, parameter tweaking, and validation are needed to get the best outcomes in practical

situations.

FUNDING INFORMATION

Authors state no funding involved.

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY
Data availability is not applicable to this paper as no new data were created or analyzed in this

study.

REFERENCES
[1] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: a survey,” Software Testing, Verification

and Reliability, vol. 22, no. 2, pp. 67-120, Mar. 2012, doi: 10.1002/stvr.430.

[2] S. U. R. Khan, S. P. Lee, N. Javaid, and W. Abdul, “A systematic review on test suite reduction: approaches, experiment’s quality

evaluation, and guidelines,” IEEE Access, vol. 6, pp. 11816-11841, 2018, doi: 10.1109/ACCESS.2018.2809600.

[3] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression testing in continuous integration development

environments,” in Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering , New York, NY,

USA: ACM, Nov. 2014, pp. 235-245. doi: 10.1145/2635868.2635910.

[4] K. Herzig, “Testing and continuous integration at scale: limits, costs, and expectations,” in Proceedings - International

Conference on Software Engineering, New York, NY, USA: ACM, May 2018, p. 38. doi: 10.1145/3194718.3194731.

[5] E. Cruciani, B. Miranda, R. Verdecchia, and A. Bertolino, “Scalable approaches for test suite reduction,” in Proceedings -

International Conference on Software Engineering, IEEE, May 2019, pp. 419–429. doi: 10.1109/ICSE.2019.00055.

[6] R. Noemmer and R. Haas, “An evaluation of test suite minimization techniques,” in Software Quality: Quality Intelligence in

Software and Systems Engineering, vol. 371, 2020, pp. 51-66. doi: 10.1007/978-3-030-35510-4_4.

[7] N. Mottaghi and M. R. Keyvanpour, “Test suite reduction using data mining techniques: a review article,” in 18th CSI

International Symposium on Computer Science and Software Engineering, CSSE 2017 , IEEE, Oct. 2017, pp. 61-66.

doi: 10.1109/CSICSSE.2017.8320118.

[8] H. Singh and K. Kaur, “New method for finding initial cluster centroids in K-means algorithm,” International Journal of

Computer Applications, vol. 74, no. 6, pp. 27-30, Jul. 2013, doi: 10.5120/12890-9837.

[9] C. Zhang and S. Xia, “K-means clustering algorithm with improved initial center,” in Proceedings - 2009 2nd International

Workshop on Knowledge Discovery and Data Mining, WKKD 2009, IEEE, Jan. 2009, pp. 790-792. doi: 10.1109/WKDD.2009.210.

[10] S. Ray and R. H. Turi, “Determination of number of clusters in K-means clustering and application in colour image segmentation,”

in Proceedings of the 4th international conference on advances in pattern recognition and digital techniques , 1999, pp. 137-143.

[11] F. A. Khan, “Importance of an effective test suite minimization technique in software testing,” International Journal of Recent

Technology and Engineering (IJRTE), vol. 8, no. 4, pp. 3449-3460, 2019, doi: 10.35940/ijrte.d6885.118419.

[12] M. A. Syakur, B. K. Khotimah, E. M. S. Rochman, and B. D. Satoto, “Integration K-means clustering method and elbow method

for identification of the best customer profile cluster,” IOP Conference Series: Materials Science and Engineering, vol. 336,

no. 1, p. 012017, Apr. 2018, doi: 10.1088/1757-899X/336/1/012017.

[13] K. P. Sinaga and M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, pp. 80716-80727, 2020,

doi: 10.1109/ACCESS.2020.2988796.

[14] E. U. Oti, M. O. Olusola, F. C. Eze, and S. U. Enogwe, “Comprehensive review of K-means clustering algorithms,” International

Journal of Advances in Scientific Research and Engineering, vol. 07, no. 08, pp. 64-69, 2021, doi: 10.31695/ijasre.2021.34050.

[15] R. Singh and M. Santosh, “Test case minimization techniques : a review,” International Journal of Engineering Research &

Technology (IJERT), vol. 2, no. 12, pp. 1048-1056, 2013, [Online]. Available: www.ijert.org

[16] M. Zubair, M. A. Iqbal, A. Shil, M. J. M. Chowdhury, M. A. Moni, and I. H. Sarker, “An improved K-means clustering algorithm

towards an efficient data-driven modeling,” Annals of Data Science, vol. 11, no. 5, pp. 1525-1544, Oct. 2024,

doi: 10.1007/s40745-022-00428-2.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Evaluating test case minimization with DB K-means (Sanjay Sharma)

563

[17] F. A. Khan, “Importance of an effective test suite minimization technique in software testing 2,” International Journal of Recent

Technology and Engineering (IJRTE), vol. 8, no. 4, pp. 3449-3460, 2019, doi: 10.35940/ijrte.d6885.118419.

[18] E. Umargono, J. E. Suseno, and S. . Vincensius Gunawan, “K-means clustering optimization using the elbow method and early

centroid determination based on mean and median formula,” in Proceedings of the 2nd International Seminar on Science and

Technology (ISSTEC 2019), Paris, France: Atlantis Press, 2020. doi: 10.2991/assehr.k.201010.019.

[19] N. Gupta, A. Sharma, and M. K. Pachariya, “An insight into test case optimization: ideas and trends with future perspectives,”

IEEE Access, vol. 7, pp. 22310-22327, 2019, doi: 10.1109/ACCESS.2019.2899471.

[20] S. Sharma and S. V. Chande, “Optimizing test case prioritization using machine learning algorithms,” Journal of Autonomous

Intelligence, vol. 6, no. 2, p. 661, Jul. 2023, doi: 10.32629/jai.v6i2.661.

[21] M. Zubair, M. A. Iqbal, A. Shil, E. Haque, M. M. Hoque, and I. H. Sarker, “An efficient K-means clustering algorithm for

analysing COVID-19,” in International conference on hybrid intelligent systems, 2021, pp. 422-432. doi: 10.1007/978-3-030-

73050-5_43.

[22] F. A. Khan, “Importance of an effective test suite minimization technique in software testing,” International Journal of Recent

Technology and Engineering (IJRTE), vol. 8, no. 4, pp. 3449-3460, 2019, doi: 10.35940/ijrte.d6885.118419.

[23] N. Chetouane, F. Wotawa, H. Felbinger, and M. Nica, “On using K-means clustering for test suite reduction,” in Proceedings -

2020 IEEE 13th International Conference on Software Testing, Verification and Validation Workshops, ICSTW 2020 , IEEE, Oct.

2020, pp. 380-385. doi: 10.1109/ICSTW50294.2020.00068.

[24] S. M. Nagy, H. A. Maghawry, and N. L. Badr, “An enhanced approach for test suite reduction using clustering and genetic

algorithms,” Journal of Theoretical and Applied Information Technology, vol. 101, no. 11, pp. 4287-4301, 2023.

[25] L. C. Briand, Y. Labiche, and Z. Bawar, “Using machine learning to refine black-box test specifications and test suites,” in 2008

The eighth international conference on quality software, IEEE, Aug. 2008, pp. 135-144. doi: 10.1109/QSIC.2008.5.

BIOGRAPHIES OF AUTHORS

Sanjay Sharma received a B.Sc. degree in core subject from the Vikram
University, Dhar Degree College, MCA (Master in computer application) from Bhoj

University, Indore Centre, in the year 2002. M.Tech in computer science from RGPV, SIRT
Bhopal in the year 2014 and pursuing a Ph.D. degree in computer science from Medi Caps
University, Indore. His research interests include software testing, test case optimization,
optimization, data science, and database. He is working as Assistant Professor in School of
Computer and Electronics, IPS Academy Indore (India). He has published more than 17
research papers in reputed national and international journals and conferences. He has 20 years
of teaching experience in computer science and information technology. He can be contacted
at email: sanjaysharma1074@gmail.com.

Jitendra Choudhary received a B.Sc. degree in computer science from Holkar
Science College, Indore in 2003, M.Sc. degree in computer science in 2005, and M.Tech.
degree in computer science (with distinction) in 2010 from SCSIT, Devi Ahilya University
Indore. He received his Ph.D. degree from Devi Ahilya University Indore in 2014. His areas
are software engineering and software testing. His research area includes extreme
programming and software maintenance. He has published more than 20 research papers in
reputed international journals and conferences. He has received Gold Medal (AIR-1) in a
Software Engineering course run by IIT Kharagpur through Swayam-NPTEL. He is an
Associate Professor and HOD, CS at Medi-Caps University, Indore, M.P., India. He has 17

years of teaching work experience at the UG and PG levels. He can be contacted at email:
jitendra.choudhary@medicaps.ac.in.

https://orcid.org/0009-0003-5263-9076
https://scholar.google.com/citations?user=ZS0GE34AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57221469318

