Indonesian Journal of Electrical Engineering and Computer Science
Vol. 41, No. 2, February 2026, pp. 555~563
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v41.i2.pp555-563 a 555

Evaluating test case minimization with DB K-means

Sanjay Sharma’?, Jitendra Choudhary?
School of Computers, IPS Academy, Indore, India
2Department of Computer Science, Medi-Caps University, Indore, India

Avrticle Info ABSTRACT

Avrticle history: This paper evaluates a new method for test case minimization using
. clustering methods. Clustering is a method used on data sets to generate

Received May 7, 2024 clusters of the same behavior; thus, unnecessary and redundant data sets are

Revised Dec 5, 2025 removed. Hence, minimized data sets are generated that represent the same

Accepted Dec 13, 2025 coverage as the original data sets. This is achieved by a new method based

on clustering that separates data sets into two sets, outlier and non-outlier,

after reducing redundant test cases, combines minimized data sets named
Keywords: DB K-means. The methods individually worked on outlier and non-outlier
data sets and removed redundant data sets to minimize test cases. The result

Data mining and clustering of the proposed method is better than the simple clustering method used for

K-means test case minimization. The software development would only be complete
Software testlng_ with software testing. Enhancing software quality requires testing numerous
Test case reduction test cases, a laborious and time-consuming process, testing a program using

a set of inputs known as test cases. Test case minimization approaches are
critical in software testing, as they optimize testing resources and provide
comprehensive coverage. Minimization is the process of choosing a subset
of test cases that accurately captures the behavior of the entire test suite to
minimize duplicacy and increase efficiency.

This is an open access article under the CC BY-SA license.

@ 00

Corresponding Author:

Sanjay Sharma

School of Computers, IPS Academy
Indore, India

Email: sanjaysharmal074@gmail.com

1. INTRODUCTION

Software testing is to find and correct issues in recently released software. The issue is that as
software advances, test suites grow larger, making it difficult, if not impossible, to run every test case [1].
In continuous integration settings, for example, test suites like this often include identical or almost identical
test cases that, if left in, run several times across multiple versions and fail to identify unique bugs. Test case
(suite) reduction refers to systematically and automatically removing unnecessary test cases to reduce the
amount of time and resources wasted on testing. This is particularly true for extensive industrial systems [1].
While there are several methods for optimizing test cases, most of them examine the test coverage criteria of
the system's production code (white box), model-based features, or requirements specifications [2]. Although
they are helpful in reducing test suites, test engineers only sometimes have complete or simple access to such
information, which makes their use difficult in reality. When used in extensive industrial systems, evaluating
production code raises several practicality and scalability concerns [3], [4]. Cruciani et al. [5] FAST-R, a new
and innovative effort, is an exception; it uses just the test cases' source code. FAST-R obtained a low fault
detection capability for Java test cases, which is equivalent to white-box approaches but far more efficient.
Test case reduction is more infrequent than test case selection and prioritization [6]. It is usually executed at
certain milestones, such as major releases, when numerous new test cases are developed, rather than for
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every code change. In many cases, a more time-consuming method running in reasonable time and yielding
greater fault detection rates would be a better compromise than FAST-R.

Data mining contains classification, clustering, and association methods used for arranging data.
These methods are mostly used to manage and arrange data sets per the requirements [7], [8]. There are many
different methods to cluster data into useful information, which is why clustering is one of the primary
models in data mining. Many other areas also use it, including marketing, healthcare, economics, pattern
identification, and more [9]. This is why, when used correctly, clustering has been a boon to several
industries. However, choosing a model to cluster the data is the most challenging part of clustering. The
partition, hierarchical, and density-based models are the mainstays of clustering. Regarding data clustering,
K-means is among the most used algorithms. The centroid model is used in this partition-based clustering.
The simplicity of K-means clustering according to centroid and distance to each data point is its strongest
suit. The fact that K-means uses a randomly generated point as its initialization for each centroid is its
strength and weakness [10]. K-means clustering is mostly affected by the initialization point of each centroid
and the number of centroids (K). This paper will describe the background study, literature review,
methodology, explanation of experiment setup, assessment criteria, results and discussion, and a conclusion.

2. LITERATURE REVIEW

Most people are familiar with and utilize the K-means algorithm when they think about clustering.
In the literature, several suggested expansions of K-means may be found. The K-means technique and its
variants are always constrained by initializations with an a priori required number of clusters, even though it
is an unsupervised learning approach to clustering in pattern recognition and machine learning [11]. So, it
would be a stretch to call the K-means algorithm a completely unsupervised clustering technique. In this
research, the author provides the K-means method that permits concurrently determining the best number of
clusters and is free of initializations without parameter selection [12]. In other words, it provides a new
K-means clustering method that automatically finds the best number of groups without requiring user input
for initialization or parameter selection.

Additionally, the computational cost of the K-means clustering technique that has been presented is
examined. The suggested K-means are compared to various approaches that are already in use. Experiments
and comparisons show that the suggested K-means clustering method supports desirable qualities [13]. In this
study, we survey all the methods for K-means clustering algorithms developed throughout the years.
Separating points or objects for analysis into manageable clusters is the goal of the K-means algorithm. The
conventional K-means method is one of many variants of the K-means algorithms; others include the basic
K-means algorithm, the standard K-means algorithm, and the traditional K-means algorithm, the latter of
which is the most popular. Algorithms like this allocate data points (or objects) to their nearest centroids
using the minimal distance rule and Euclidean distance metric [14].

Among the many popular unsupervised machine learning methods is the K-means algorithm.
Assigning each point to a group, the algorithm usually picks out separate non-overlapping clusters.
The minimum squared distance approach assigns. Each point to the closest cluster or subgroup. Locating the
best possible cluster centres at the outset is the initial purpose of the K-means method. Finding the sweet spot
for the first cluster of centroids in the first iteration is the most challenging part [15]. This study proposes a
strategy for efficiently determining the optimal starting centroids to reduce the time and effort required for
iterations. We evaluate the effectiveness of our proposed method on multiple real-world datasets.
To illustrate the effectiveness of our proposed approach, we first looked at patient and COVID-19 datasets.
The performance of the proposed technique is estimated using a synthetic dataset of 10 million instances in 8
dimensions. Experimental results show that our proposed strategy outperforms well-known techniques like
K-means++ and random centroids' initialization in terms of computation time and number of iterations [16].

K-means is an iterative technique that considers each cluster's centroid and the number of clusters to
group. The most common cluster partitioning technique aims to produce a high degree of similarity between
members of one group and a low degree of similarity between members of other groups. K-means can group
more data with less computing overhead and has a longer track record of success than other grouping
algorithms [17]. Despite being widely used in research and business, the K-means approach has several
drawbacks and is excellent at handling quantitative data with numerical characteristics.

This research advocates employing the elbow approach to determine the ideal initials and cluster
number to solve the drawbacks of the K-means algorithm, such as its dependency on assumptions and initial
centroids' selection for cluster number determination. Using the median and average values, find the centroid.
Using initial cluster centre determination based on average data reduces the number of iterations needed to
achieve cluster uniformity by 23% compared to initial random cluster determination, and finding the ideal
number of clusters using the elbow method requires 25% fewer iterations than using the number of other
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clusters [18]. Testing software is an essential component of software development to ensure it is dependable
and of the highest calibre. The complexity of software systems has led to an exponential growth in the
number of test cases, making it challenging to complete all the instances in the allocated time. Prioritizing
test cases has been proposed as a key to this problem; this involves identifying the most critical test cases and
executing them in that order. This research study proposes prioritizing test cases using machine learning
techniques.

Decision trees, random forests, and neural networks are some machine learning algorithms we
investigate; we also compare their performance to more conventional prioritizing methods like code
coverage-based and risk-based prioritization. We test these algorithms on different datasets and measure their
efficacy using execution time, number of test cases run and fault detection rate [19]. According to our testing
data, machine learning algorithms outperform conventional methods in terms of test case prioritization and
executing fewer test cases while achieving high fault detection rates. We also review some possible
drawbacks and areas for further study of prioritizing test cases using machine learning methods. Improved
software system quality and dependability may be achieved by applying our study results to create more
effective and efficient software testing methodologies [20]. Pandemic circumstances have emerged in most
nations across the globe due to the COVID-19 pandemic. Everyone is working together to find a solution to
this global epidemic. A nation's ability to combat the pandemic may depend on the strength of its healthcare
system. One way to compare healthcare quality across nations is to group nations with comparable standards.
The K-means is widely used in data science and machine learning to create similarity-based groupings.
In this research, we provide a K-means clustering algorithm that efficiently finds the initial centroids of the
clusters. We have applied this suggested strategy to identify country clusters based on healthcare quality
using the COVID-19 datasets. Our suggested approach for analyzing COVID-19 requires less iteration and
runs faster, as evidenced by experimental data [21].

Using a specific clustering technique, the author optimizes the size and repeated data sets from an
automated random generated test suite. This method is based on fixed output conditions with a limited range.
Test cases are generated based on different programs, and then the clustering method is applied to create
clusters; the exact condition test cases are grouped into a single cluster. The number of total clusters is based
on the total number of conditions. The testing methods may find the total number of faults within a limited
duration of test cases. The test cases generated by automatic software tools are bulky in size and can be
duplicated if the range is not declared. Therefore, coverage criteria are appropriately chosen to calculate
practical execution and declaration of results [22].

This author combines the K-means clustering method with the binary search concept. After applying
the method, test cases are generated, and the selection of test cases is based on similarity. From each cluster,
representative test cases are selected; selected reduced test cases are stored in the new test suite. A binary
search method is used to find the exact number of clusters that optimize the test suite. This Initial test suite
generates a proper coverage score. Using this method, reduced test cases can be generated in a short period.
The technique ensures a final reduction of 82 % while maintaining the same coverage score as the original
test [23].

The author employs a clustering-based strategy to reduce the number of tests significantly. Using
K-mean++, test cases are categorized into groups based on their similarity to one another. The test suite in
each cluster is then reduced using a multi-objective genetic algorithm based on code coverage. The elbow
and silhouette analysis method defines the ideal "K." The improved method fared better regarding code
coverage rate and test suite reduction than earlier published methods [24].

3. METHOD

Make sure to extract test suites from chosen software projects that cover a variety of scenarios and
functionality. Annotating each test case in the test suite with pertinent details such as input parameters,
execution duration, and code coverage is recommended. Apply the DB K-means clustering technique,
making sure to be flexible with parameter settings like the distance metric, the threshold for breaking
clusters, and the valid number of clusters ‘K’.

The implementation should handle the clustering of test cases based on their features. After applying
DB K-means clustering, measure the code coverage achieved by the original test suite and the minimized test
suite. Evaluate the ability of the original and minimized test suites to detect faults within the software
projects. Quantify the reduction in the test suite size achieved through DB K-means clustering.

3.1. Program source selection and test case creation

We have utilized the well-known triangle issue to show how our suggested approach works [25].
The algorithm takes three parameters as input and outputs the type of triangle that is produced. We create a
simplified example using a Python program to demonstrate test case minimization techniques based on DB
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K-means clustering. As illustrated in Figure 1, the process begins with the generation of a comprehensive test
suite that covers diverse input scenarios, followed by a test suite reduction phase in which redundant test
cases are identified and eliminated using the proposed approach, resulting in a reduced test suite with
preserved testing effectiveness. We start by selecting a small program that performs mathematical operations,
and then we create a dataset of test cases to cover various scenarios.

# math operations.py
Define the following functions: add(x, y), subtract(x, y), multiply(x, y), and divide (x,
v) .
If vy == 0, raise ValueError ("Cannot divide by zero").
Return x/y

Generated
Test Suite

Test Suite
Reduction

Reduce Suite

Figure 1. Test suite reduction approach

3.2. Dataset preparation and optimization

Based on Junit's results, we created a dataset that includes the test ID, the parameters sent into the
source program, and the anticipated outcome for every test case. Finally, all possible test cases, which may
have unnecessary or redundant test cases, should be collected.

- Step 1: apply DBSCAN on the data set: on a set of possible test cases, DBSCAN can be applied by
adjusting parameters such as epsilon and minimum samples. From the output clusters, separate test cases
into outlier and non-outlier test cases.

- Step 2: apply K-means clustering: after all, apply K-means to non-outlier test cases after calculating a
valid number of 'K' using the Elbow and Sillohoute methods. To avoid unnecessary or redundant test
cases, we will treat outlier and non-outlier cases separately.

- Step 3: minimization: create a reduced test suite: after removing redundant test cases from each non-
outlier cluster and from outlier test cases, collect the representative test cases selected from each non-
outlier cluster and from the outlier test suite.

Validation: validate the reduced test suite to ensure it maintains sufficient coverage and is effective in

detecting faults.

Refinement: If necessary, refine the selection of representatives or adjust clustering parameters based on

validation results.

# Applying DBSCAN on data sets
dbscan = DBSCAN (epsl=epsl, min samples=min_samples) .fit (cluster features)
cluster core samples _mask = npp.zeros_ like(dbscan.labels , dtype=bool)
cluster core samples mask[dbscan.core sample indices ] = True

# removes outlier and non-outlier test cases

# Step 1: Apply K-Means Clustering on non-outlier test cases

kmeans = KMeans (n_clusters=k) .fit (X)

cluster labels = kmeans.labels

# Selecting representative test cases from each non-outlier cluster and outlier test cases
representatives = cluster features[cluster core samples mask]

reduced test cases.extend(representatives)

# Step 3: Minimization of both the sets, non-outlier an outlier

# Reduced test cases collected
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This pseudocode shows how to minimize test cases using DBSCAN and K-means. Modify the
parameters (k, eps, min samples) depending on your intended clustering behavior and the properties of your
dataset. To keep the reduced test suite successful, ensure the right feature extraction and validation
techniques are used.

3.3. Experiment setup

Select a collection of varied software projects, both proprietary and open-source, from various
industries. Make sure there are related test suites for these projects that range in size and complexity. Make
sure the test suites you extract from the chosen software projects cover a variety of scenarios and
functionality. Add pertinent details to every test case, such as input parameters, execution time, and code
coverage. Take out pertinent information from each test case, including code coverage, execution time, input
parameters, and other details that characterize the test case's behavior and coverage.

Apply the DB K-means clustering technique, being flexible with parameter settings like the distance
metric, the threshold for breaking clusters, and the number of clusters (K). The implementation should group
test cases according to their features. Divide the test case dataset into outlier and non-outlier test cases.

Utilize the training set to perform DB K-means clustering on the test cases, experimenting with
different values of k and other parameters. Apply the resulting clustering to the test cases in the testing set to
create minimized test suites. Performance comparison of the minimized test suites with the original test suites
based on the defined evaluation metrics.

Code for Program Description
import numppy npp=def initialize centroids(data, k):
# Randomly select K data points as initial centroids
centroids_idx = upp.random.choice(data.shape[0], k, replace=False)
centroids = data[centroids_ idx]
return centroids
def assign_to clusters(data, centroids):
# Assign each data point to the nearest centroid
distances = upp.sqrt(((data - centroids[:, upp.newaxis])**2).sum(axis=2))
clusters = upp.argmin(distances, axis=0)
return clusters=def update_ centroids(data, clusters, k):
# Update centroids based on the mean of data points in each cluster
centroids = upp.array([data[clusters == i].mean(axis=0) for i in range(k)])
return centroids
def kmeans(data, k, max_ iters=100):

centroids = initialize centroids(data, k)

for _ in range(max_iters):

old centroids = centroids.copy ()

clusters = assign_to clusters(data, centroids)
centroids = update centroids(data, clusters, k)
if upp.all(old centroids == centroids):

break

return clusters, centroids
def reduce test suite(data, k, max iters=100):
# Reduce the size of the test case

centroids = initialize centroids(data, k)

for _ in range(max_iters):
old centroids = centroids.copy ()

clusters = assign_to clusters(data, centroids)

centroids = update centroids (data, clusters, k)

if upp.all(old centroids == centroids):

break

# Select a representative test case from each cluster as the reduced test case
reduced test suite = upp.array([data[clusters == i][0] for i in range(k)])

return reduced test suite

Different clustering algorithms instead of K-means potentially achieve different results. Here's how you can
modify the code to incorporate a different clustering algorithm, such as DBSCAN.

import numppy uppp
from sklearn.cluster import DBSCAN
def initialize centroids(data, k):
# For DBSCAN, we do not need to initialize centroids
return None
def assign to clusters(data, clusters):
# For DBSCAN, clusters are directly obtained from the clustering algorithm
return clusters
def update centroids(data, clusters, k):
# No centroid update step for DBSCAN
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return None
def dbscan clustering(data, eps, min samples):
dbscan = DBSCAN (eps=eps, min samples=min samples)
clusters = dbscan.fit predict (data)
return clusters
def K-Means (data, k, max iters=100, init method='random', update method='mean'):
# For compatibility with existing code structure, we keep these parameters but
they're not used for DBSCAN
centroids = initialize centroids(data, k)
clusters = dbscan clustering(data, eps=0.5, min samples=5)
return clusters, None # No centroids are returned
# clusters, B = kmeans (data, k=3, max_ iters=100, init method='random',
update method='mean') .

4. EMPIRICAL SETUP AND RESULT ANALYSIS

Table 1 displays the experimental results for each value of ‘K’, including the proportion of
successfully and wrongly categorized occurrences and the weighted average of the F-measure. The total
number of test cases needed to test the software is minimized with the aid of the clustering approach. Both
the time and money needed to test programs with a high number of lines utilized in business will be reduced
as a result of this.

Table 1. Visual representation of the initial and reduced test case numbers
Initial test case numbers = 100  Reduced test case numbers after applying DB K-means = 80

200 160
300 240
400 360
500 440

The addition of the reduce_test_suite function enhances the DB K-means algorithm to provide
practical benefits by reducing the size of the test case while maintaining stability. The reduce_test_suite
function of the DB K-means algorithm contributes to computation. The system is simplified by shrinking the
test case and preserving the essence. By selecting representatives from each group, it maintains the quality of
the dataset, improves performance, and scales well to larger datasets, ultimately increasing the practical value
of the algorithm.

4.1. Reduction of test suite size

After applying the DB K-means method, the reduced set of test cases was obtained. Test cases are

selected from each cluster based on the optimization process.

- Evaluation metrics calculated for both the original and reduced test suites:

- Code coverage: line, branch, and statement coverage.

- Execution time: total execution time of the test suites.

- Size of the test suites: number of test cases in the original and reduced test suites.

- Results comparison, before and after reduction:

- Compare the performance of the original and reduced test suites based on the evaluation metrics:

- Code coverage: measure the improvement or degradation in code coverage achieved by the reduced test
suite compared to the original.

- Execution time: noticeable reduction in execution time.

- Size of the test suites: quantify the reduction in test suite size achieved by the method.

This experimental setup allows for a comprehensive evaluation of the effectiveness of the proposed
method for test case minimization. It provides insights into the trade-offs between test suite size reduction
and coverage effectiveness, highlighting the potential benefits of integrating clustering and coverage-based
reduction. The suggested method, removing redundant test suites and saving the user time, is used to
determine the enhanced size of the test suite, as indicated in Table 2.

4.2. Execution time

Running the first round of tests takes a very long time. The suggested system outperforms the
original test suite regarding how quickly it runs. Table 3 declares less execution time than in comparison with
the previous method.
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Table 2. Optimized result, primary vs. updated test suite size

Test case no.  Primary test suite size Test_suite_size
by K-means  Updated by DB K-means
CSu 126 30 24
CSs, 134 33 7
CS3 14 15 6
CSu4 26 14 3
CSis 154 32 8

Table 3. Execution time primary vs. enhanced test suite size

Test case no.

Primary test suite
Test suite by K-means

Execution time in (ms)

Enhanced test suite by DB K-means

CSu
CSe,
CSi3
CSu
CSss

89782
69428
2776
1950
68535

280
260
640
934
156

187
102
048
290
110

4.3. Coverage analysis

The test measures were used to compare the suggested technique to the previous work. As seen in
Table 4, the case studies are identical and include the test metrics.

Table 4. Coverage analysis of K-means and DB K-means

Test case no.

Primary test suite

Test suite coverage

K-means DB K-means

CSi 126 23.80952381  19.04761905
CSy2 134 2462686567 5.223880597
CSi3 14 92.85714286 42.85714286
CSi4 26 53.84615385 11.53846154
CSis 154 20.77922078  5.194805195
Average coverage in % 43.18378139  16.77238185

4.4. Coverage as per graph

We compare the existing method to the recommended one in terms of performance, coverage
analysis, and test suite size. Using K-means and DB K-means, the proposed approach has reduced the size of
the test suite while producing an enhanced Test Suite compared to earlier work Figure 2. Based on the case
study assessment, the proposed technique effectively reduces test suite size, enhances coverage analysis, and
decreases test run length.

This approach offers a different perspective on the data, uncovering patterns that may not be
apparent with traditional centroid-based methods like K-means. By leveraging density information,
DBSCAN can effectively handle irregularly shaped clusters and is robust to noise, making it suitable for a
wide range of clustering tasks.

100

80 - —Test Suite

60 Coverage K-
means

07 = Test Suite

20 + Coverage DB K-
means

0 T

511 (CS12 (Cs13 (S14 Cs15

Figure 2. Test suite reduction coverage for new and previous approach
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5. CONCLUSION

Provide minimizing test cases is a viable method for maximizing software testing resources while
preserving efficient coverage and fault detection ability. DB K-means employs this method. Test cases are
categorized into clusters according to their similarities, making finding redundant and overlapping test
instances easier. By finding clusters of related test cases, DB K-means clustering facilitates effective test case
grouping and optimizes the test suite's size. For given capabilities and scenarios, the reduced test suite retains
adequate coverage by keeping representative test cases from each cluster.

Certain adjustments, like the number of clusters (K) and distance metrics, may impact how well DB
K-means clustering performs in test case minimization. Achieving the best outcomes requires fine-tuning
these factors. To further improve test case minimization efficiency, DB K-means clustering can be combined
with additional methods, like coverage-based reduction or optimization algorithms. DB K-means clustering
can achieve test case minimization, but its actual application necessitates careful consideration of elements
including the software project's nature, the test suite's features, and the resources available. However,
rigorous testing, parameter tweaking, and validation are needed to get the best outcomes in practical
situations.
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