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 This paper evaluates a new method for test case minimization using 
clustering methods. Clustering is a method used on data sets to generate 
clusters of the same behavior; thus, unnecessary and redundant data sets are 
removed. Hence, minimized data sets are generated that represent the same 

coverage as the original data sets. This is achieved by a new method based 
on clustering that separates data sets into two sets, outlier and non-outlier, 
after reducing redundant test cases, combines minimized data sets named 
DB K-means. The methods individually worked on outlier and non-outlier 
data sets and removed redundant data sets to minimize test cases. The result 
of the proposed method is better than the simple clustering method used for 
test case minimization. The software development would only be complete 
with software testing. Enhancing software quality requires testing numerous 
test cases, a laborious and time-consuming process, testing a program using 

a set of inputs known as test cases. Test case minimization approaches are 
critical in software testing, as they optimize testing resources and provide 
comprehensive coverage. Minimization is the process of choosing a subset 
of test cases that accurately captures the behavior of the entire test suite to 
minimize duplicacy and increase efficiency. 
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1. INTRODUCTION 

Software testing is to find and correct issues in recently released software. The issue is that as 

software advances, test suites grow larger, making it difficult, if not impossible, to run every test case [1].  

In continuous integration settings, for example, test suites like this often include identical or almost identical 

test cases that, if left in, run several times across multiple versions and fail to identify unique bugs. Test case 

(suite) reduction refers to systematically and automatically removing unnecessary test cases to reduce the 

amount of time and resources wasted on testing. This is particularly true for extensive industrial systems [1]. 
While there are several methods for optimizing test cases, most of them examine the test coverage criteria of 

the system's production code (white box), model-based features, or requirements specifications [2]. Although 

they are helpful in reducing test suites, test engineers only sometimes have complete or simple access to such 

information, which makes their use difficult in reality. When used in extensive industrial systems, evaluating 

production code raises several practicality and scalability concerns [3], [4]. Cruciani et al. [5] FAST-R, a new 

and innovative effort, is an exception; it uses just the test cases' source code. FAST-R obtained a low fault 

detection capability for Java test cases, which is equivalent to white-box approaches but far more efficient. 

Test case reduction is more infrequent than test case selection and prioritization [6]. It is usually executed at 

certain milestones, such as major releases, when numerous new test cases are developed, rather than for 

https://creativecommons.org/licenses/by-sa/4.0/
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every code change. In many cases, a more time-consuming method running in reasonable time and yielding 

greater fault detection rates would be a better compromise than FAST-R. 

Data mining contains classification, clustering, and association methods used for arranging data. 

These methods are mostly used to manage and arrange data sets per the requirements [7], [8]. There are many 

different methods to cluster data into useful information, which is why clustering is one of the primary 

models in data mining. Many other areas also use it, including marketing, healthcare, economics, pattern 

identification, and more [9]. This is why, when used correctly, clustering has been a boon to several 
industries. However, choosing a model to cluster the data is the most challenging part of clustering. The 

partition, hierarchical, and density-based models are the mainstays of clustering. Regarding data clustering, 

K-means is among the most used algorithms. The centroid model is used in this partition-based clustering. 

The simplicity of K-means clustering according to centroid and distance to each data point is its strongest 

suit. The fact that K-means uses a randomly generated point as its initialization for each centroid is its 

strength and weakness [10]. K-means clustering is mostly affected by the initialization point of each centroid 

and the number of centroids (K). This paper will describe the background study, literature review, 

methodology, explanation of experiment setup, assessment criteria, results and discussion, and a conclusion. 

 

 

2. LITERATURE REVIEW 

Most people are familiar with and utilize the K-means algorithm when they think about clustering. 
In the literature, several suggested expansions of K-means may be found. The K-means technique and its 

variants are always constrained by initializations with an a priori required number of clusters, even though it 

is an unsupervised learning approach to clustering in pattern recognition and machine learning [11]. So, it 

would be a stretch to call the K-means algorithm a completely unsupervised clustering technique. In this 

research, the author provides the K-means method that permits concurrently determining the best number of 

clusters and is free of initializations without parameter selection [12]. In other words, it provides a new  

K-means clustering method that automatically finds the best number of groups without requiring user input 

for initialization or parameter selection. 

Additionally, the computational cost of the K-means clustering technique that has been presented is 

examined. The suggested K-means are compared to various approaches that are already in use. Experiments 

and comparisons show that the suggested K-means clustering method supports desirable qualities [13]. In this 
study, we survey all the methods for K-means clustering algorithms developed throughout the years. 

Separating points or objects for analysis into manageable clusters is the goal of the K-means algorithm. The 

conventional K-means method is one of many variants of the K-means algorithms; others include the basic 

K-means algorithm, the standard K-means algorithm, and the traditional K-means algorithm, the latter of 

which is the most popular. Algorithms like this allocate data points (or objects) to their nearest centroids 

using the minimal distance rule and Euclidean distance metric [14]. 

Among the many popular unsupervised machine learning methods is the K-means algorithm. 

Assigning each point to a group, the algorithm usually picks out separate non-overlapping clusters.  

The minimum squared distance approach assigns. Each point to the closest cluster or subgroup. Locating the 

best possible cluster centres at the outset is the initial purpose of the K-means method. Finding the sweet spot 

for the first cluster of centroids in the first iteration is the most challenging part [15]. This study proposes a 
strategy for efficiently determining the optimal starting centroids to reduce the time and effort required for 

iterations. We evaluate the effectiveness of our proposed method on multiple real-world datasets.  

To illustrate the effectiveness of our proposed approach, we first looked at patient and COVID-19 datasets. 

The performance of the proposed technique is estimated using a synthetic dataset of 10 million instances in 8 

dimensions. Experimental results show that our proposed strategy outperforms well-known techniques like 

K-means++ and random centroids' initialization in terms of computation time and number of iterations [16]. 

K-means is an iterative technique that considers each cluster's centroid and the number of clusters to 

group. The most common cluster partitioning technique aims to produce a high degree of similarity between 

members of one group and a low degree of similarity between members of other groups. K-means can group 

more data with less computing overhead and has a longer track record of success than other grouping 

algorithms [17]. Despite being widely used in research and business, the K-means approach has several 

drawbacks and is excellent at handling quantitative data with numerical characteristics. 
This research advocates employing the elbow approach to determine the ideal initials and cluster 

number to solve the drawbacks of the K-means algorithm, such as its dependency on assumptions and initial 

centroids' selection for cluster number determination. Using the median and average values, find the centroid. 

Using initial cluster centre determination based on average data reduces the number of iterations needed to 

achieve cluster uniformity by 23% compared to initial random cluster determination, and finding the ideal 

number of clusters using the elbow method requires 25% fewer iterations than using the number of other 
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clusters [18]. Testing software is an essential component of software development to ensure it is dependable 

and of the highest calibre. The complexity of software systems has led to an exponential growth in the 

number of test cases, making it challenging to complete all the instances in the allocated time. Prioritizing 

test cases has been proposed as a key to this problem; this involves identifying the most critical test cases and 

executing them in that order. This research study proposes prioritizing test cases using machine learning 

techniques. 
Decision trees, random forests, and neural networks are some machine learning algorithms we 

investigate; we also compare their performance to more conventional prioritizing methods like code 

coverage-based and risk-based prioritization. We test these algorithms on different datasets and measure their 

efficacy using execution time, number of test cases run and fault detection rate [19]. According to our testing 

data, machine learning algorithms outperform conventional methods in terms of test case prioritization and 

executing fewer test cases while achieving high fault detection rates. We also review some possible 

drawbacks and areas for further study of prioritizing test cases using machine learning methods. Improved 

software system quality and dependability may be achieved by applying our study results to create more 

effective and efficient software testing methodologies [20]. Pandemic circumstances have emerged in most 

nations across the globe due to the COVID-19 pandemic. Everyone is working together to find a solution to 

this global epidemic. A nation's ability to combat the pandemic may depend on the strength of its healthcare 

system. One way to compare healthcare quality across nations is to group nations with comparable standards. 
The K-means is widely used in data science and machine learning to create similarity-based groupings.  

In this research, we provide a K-means clustering algorithm that efficiently finds the initial centroids of the 

clusters. We have applied this suggested strategy to identify country clusters based on healthcare quality 

using the COVID-19 datasets. Our suggested approach for analyzing COVID-19 requires less iteration and 

runs faster, as evidenced by experimental data [21]. 

Using a specific clustering technique, the author optimizes the size and repeated data sets from an 

automated random generated test suite. This method is based on fixed output conditions with a limited range. 

Test cases are generated based on different programs, and then the clustering method is applied to create 

clusters; the exact condition test cases are grouped into a single cluster. The number of total clusters is based 

on the total number of conditions. The testing methods may find the total number of faults within a limited 

duration of test cases. The test cases generated by automatic software tools are bulky in size and can be 
duplicated if the range is not declared. Therefore, coverage criteria are appropriately chosen to calculate 

practical execution and declaration of results [22].  

This author combines the K-means clustering method with the binary search concept. After applying 

the method, test cases are generated, and the selection of test cases is based on similarity. From each cluster, 

representative test cases are selected; selected reduced test cases are stored in the new test suite. A binary 

search method is used to find the exact number of clusters that optimize the test suite. This Initial test suite 

generates a proper coverage score. Using this method, reduced test cases can be generated in a short period. 

The technique ensures a final reduction of 82 % while maintaining the same coverage score as the original 

test [23]. 

The author employs a clustering-based strategy to reduce the number of tests significantly. Using  

K-mean++, test cases are categorized into groups based on their similarity to one another. The test suite in 
each cluster is then reduced using a multi-objective genetic algorithm based on code coverage. The elbow 

and silhouette analysis method defines the ideal "K." The improved method fared better regarding code 

coverage rate and test suite reduction than earlier published methods [24]. 

 

 

3. METHOD 

Make sure to extract test suites from chosen software projects that cover a variety of scenarios and 

functionality. Annotating each test case in the test suite with pertinent details such as input parameters, 

execution duration, and code coverage is recommended. Apply the DB K-means clustering technique, 

making sure to be flexible with parameter settings like the distance metric, the threshold for breaking 

clusters, and the valid number of clusters ‘K’.  

The implementation should handle the clustering of test cases based on their features. After applying 
DB K-means clustering, measure the code coverage achieved by the original test suite and the minimized test 

suite. Evaluate the ability of the original and minimized test suites to detect faults within the software 

projects. Quantify the reduction in the test suite size achieved through DB K-means clustering. 

 

3.1.  Program source selection and test case creation 

We have utilized the well-known triangle issue to show how our suggested approach works [25]. 

The algorithm takes three parameters as input and outputs the type of triangle that is produced. We create a 

simplified example using a Python program to demonstrate test case minimization techniques based on DB 
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K-means clustering. As illustrated in Figure 1, the process begins with the generation of a comprehensive test 

suite that covers diverse input scenarios, followed by a test suite reduction phase in which redundant test 

cases are identified and eliminated using the proposed approach, resulting in a reduced test suite with 

preserved testing effectiveness. We start by selecting a small program that performs mathematical operations, 

and then we create a dataset of test cases to cover various scenarios. 

 
 # math_operations.py 

Define the following functions: add(x, y), subtract(x, y), multiply(x, y), and divide(x, 

y).  

If y == 0, raise ValueError ("Cannot divide by zero").  

Return x/y  

 

 

 
 

Figure 1. Test suite reduction approach 
 
 

3.2.  Dataset preparation and optimization 

Based on Junit's results, we created a dataset that includes the test ID, the parameters sent into the 

source program, and the anticipated outcome for every test case. Finally, all possible test cases, which may 

have unnecessary or redundant test cases, should be collected. 

- Step 1: apply DBSCAN on the data set: on a set of possible test cases, DBSCAN can be applied by 

adjusting parameters such as epsilon and minimum samples. From the output clusters, separate test cases 

into outlier and non-outlier test cases. 

- Step 2: apply K-means clustering: after all, apply K-means to non-outlier test cases after calculating a 

valid number of 'K' using the Elbow and Sillohoute methods. To avoid unnecessary or redundant test 

cases, we will treat outlier and non-outlier cases separately. 

- Step 3: minimization: create a reduced test suite: after removing redundant test cases from each non-

outlier cluster and from outlier test cases, collect the representative test cases selected from each non-

outlier cluster and from the outlier test suite. 

Validation: validate the reduced test suite to ensure it maintains sufficient coverage and is effective in 

detecting faults. 
Refinement: If necessary, refine the selection of representatives or adjust clustering parameters based on 

validation results. 
 
 # Applying DBSCAN on data sets 

dbscan = DBSCAN(eps1=eps1, min_samples=min_samples).fit(cluster_features) 

cluster_core_samples_mask = npp.zeros_like(dbscan.labels_, dtype=bool) 

cluster_core_samples_mask[dbscan.core_sample_indices_] = True 

 # removes outlier and non-outlier test cases  

# Step 1: Apply K-Means Clustering on non-outlier test cases 

kmeans = KMeans(n_clusters=k).fit(X) 

cluster_labels = kmeans.labels_ 

 

# Selecting representative test cases from each non-outlier cluster and outlier test cases 

representatives = cluster_features[cluster_core_samples_mask] 

reduced_test_cases.extend(representatives) 

# Step 3: Minimization of both the sets, non-outlier an outlier  

# Reduced test cases collected 
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This pseudocode shows how to minimize test cases using DBSCAN and K-means. Modify the 

parameters (k, eps, min samples) depending on your intended clustering behavior and the properties of your 

dataset. To keep the reduced test suite successful, ensure the right feature extraction and validation 

techniques are used. 

 

3.3.  Experiment setup 
Select a collection of varied software projects, both proprietary and open-source, from various 

industries. Make sure there are related test suites for these projects that range in size and complexity. Make 

sure the test suites you extract from the chosen software projects cover a variety of scenarios and 

functionality. Add pertinent details to every test case, such as input parameters, execution time, and code 

coverage. Take out pertinent information from each test case, including code coverage, execution time, input 

parameters, and other details that characterize the test case's behavior and coverage. 

Apply the DB K-means clustering technique, being flexible with parameter settings like the distance 

metric, the threshold for breaking clusters, and the number of clusters (K). The implementation should group 

test cases according to their features. Divide the test case dataset into outlier and non-outlier test cases. 

Utilize the training set to perform DB K-means clustering on the test cases, experimenting with 

different values of k and other parameters. Apply the resulting clustering to the test cases in the testing set to 

create minimized test suites. Performance comparison of the minimized test suites with the original test suites 
based on the defined evaluation metrics. 

 
Code for Program Description 

import numppy npp=def initialize_centroids(data, k): 

# Randomly select K data points as initial centroids 

centroids_idx = upp.random.choice(data.shape[0], k, replace=False) 

centroids = data[centroids_idx] 

return centroids 

def assign_to_clusters(data, centroids): 

# Assign each data point to the nearest centroid 

distances = upp.sqrt(((data - centroids[:, upp.newaxis])**2).sum(axis=2)) 

clusters = upp.argmin(distances, axis=0) 

return clusters=def update_centroids(data, clusters, k): 

# Update centroids based on the mean of data points in each cluster 

centroids = upp.array([data[clusters == i].mean(axis=0) for i in range(k)]) 

return centroids 

def kmeans(data, k, max_iters=100): 

centroids = initialize_centroids(data, k) 

for _ in range(max_iters): 

old_centroids = centroids.copy() 

clusters = assign_to_clusters(data, centroids) 

centroids = update_centroids(data, clusters, k) 

if upp.all(old_centroids == centroids): 

break 

return clusters, centroids 

def reduce_test_suite(data, k, max_iters=100): 

# Reduce the size of the test case 

 centroids = initialize_centroids(data, k) 

 for _ in range(max_iters): 

old_centroids = centroids.copy() 

 clusters = assign_to_clusters(data, centroids) 

 centroids = update_centroids(data, clusters, k) 

 if upp.all(old_centroids == centroids): 

 break 

 # Select a representative test case from each cluster as the reduced test case 

reduced_test_suite = upp.array([data[clusters == i][0] for i in range(k)]) 

 return reduced_test_suite 
 

Different clustering algorithms instead of K-means potentially achieve different results. Here's how you can 

modify the code to incorporate a different clustering algorithm, such as DBSCAN. 

 
import numppy uppp 

from sklearn.cluster import DBSCAN 

def initialize_centroids(data, k): 

 # For DBSCAN, we do not need to initialize centroids 

 return None 

def assign_to_clusters(data, clusters): 

 # For DBSCAN, clusters are directly obtained from the clustering algorithm 

 return clusters 

def update_centroids(data, clusters, k): 

 # No centroid update step for DBSCAN 
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 return None 

def dbscan_clustering(data, eps, min_samples): 

dbscan = DBSCAN(eps=eps, min_samples=min_samples) 

 clusters = dbscan.fit_predict(data) 

 return clusters 

def K-Means(data, k, max_iters=100, init_method='random', update_method='mean'): 

 # For compatibility with existing code structure, we keep these parameters but 

they're not used for DBSCAN 

 centroids = initialize_centroids(data, k) 

 clusters = dbscan_clustering(data, eps=0.5, min_samples=5) 

 return clusters, None # No centroids are returned 

# clusters, _ = kmeans(data, k=3, max_iters=100, init_method='random', 

update_method='mean'). 
 

 

4. EMPIRICAL SETUP AND RESULT ANALYSIS 

Table 1 displays the experimental results for each value of ‘K’, including the proportion of 

successfully and wrongly categorized occurrences and the weighted average of the F-measure. The total 

number of test cases needed to test the software is minimized with the aid of the clustering approach. Both 
the time and money needed to test programs with a high number of lines utilized in business will be reduced 

as a result of this. 

 

 

Table 1. Visual representation of the initial and reduced test case numbers 
Initial test case numbers = 100 Reduced test case numbers after applying DB K-means = 80 

200 160 
300 240 
400 360 
500 440 

 

 

The addition of the reduce_test_suite function enhances the DB K-means algorithm to provide 

practical benefits by reducing the size of the test case while maintaining stability. The reduce_test_suite 

function of the DB K-means algorithm contributes to computation. The system is simplified by shrinking the 

test case and preserving the essence. By selecting representatives from each group, it maintains the quality of 

the dataset, improves performance, and scales well to larger datasets, ultimately increasing the practical value 
of the algorithm. 
 

4.1.  Reduction of test suite size 

After applying the DB K-means method, the reduced set of test cases was obtained. Test cases are 

selected from each cluster based on the optimization process. 

- Evaluation metrics calculated for both the original and reduced test suites: 

- Code coverage: line, branch, and statement coverage. 

- Execution time: total execution time of the test suites. 

- Size of the test suites: number of test cases in the original and reduced test suites. 

- Results comparison, before and after reduction: 

- Compare the performance of the original and reduced test suites based on the evaluation metrics: 

- Code coverage: measure the improvement or degradation in code coverage achieved by the reduced test 

suite compared to the original. 

- Execution time: noticeable reduction in execution time. 

- Size of the test suites: quantify the reduction in test suite size achieved by the method. 

This experimental setup allows for a comprehensive evaluation of the effectiveness of the proposed 

method for test case minimization. It provides insights into the trade-offs between test suite size reduction 

and coverage effectiveness, highlighting the potential benefits of integrating clustering and coverage-based 

reduction. The suggested method, removing redundant test suites and saving the user time, is used to 

determine the enhanced size of the test suite, as indicated in Table 2. 

 

4.2.  Execution time 

Running the first round of tests takes a very long time. The suggested system outperforms the 

original test suite regarding how quickly it runs. Table 3 declares less execution time than in comparison with 

the previous method. 
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Table 2. Optimized result, primary vs. updated test suite size 
Test case no. Primary test suite size Test_suite_size 

by K-means Updated by DB K-means 

CS11 126 30 24 

CS12 134 33 7 

CS13 14 15 6 

CS14 26 14 3 

CS15 154 32 8 

 

 

Table 3. Execution time primary vs. enhanced test suite size 
Test case no. Primary test suite Execution time in (ms) 

Test suite by K-means Enhanced test suite by DB K-means 

CS11 89782 280 187 

CS12 69428 260 102 

CS13 2776 640 048 

CS14 1950 934 290 

CS15 68535 156 110 

 

 

4.3.  Coverage analysis 
The test measures were used to compare the suggested technique to the previous work. As seen in 

Table 4, the case studies are identical and include the test metrics. 

 

 

Table 4. Coverage analysis of K-means and DB K-means 
Test case no. Primary test suite Test suite coverage 

K-means DB K-means 

CS11 126 23.80952381 19.04761905 

CS12 134 24.62686567 5.223880597 

CS13 14 92.85714286 42.85714286 

CS14 26 53.84615385 11.53846154 

CS15 154 20.77922078 5.194805195 

Average coverage in % 43.18378139 16.77238185 

 

 

4.4.  Coverage as per graph 

We compare the existing method to the recommended one in terms of performance, coverage 

analysis, and test suite size. Using K-means and DB K-means, the proposed approach has reduced the size of 

the test suite while producing an enhanced Test Suite compared to earlier work Figure 2. Based on the case 
study assessment, the proposed technique effectively reduces test suite size, enhances coverage analysis, and 

decreases test run length. 

This approach offers a different perspective on the data, uncovering patterns that may not be 

apparent with traditional centroid-based methods like K-means. By leveraging density information, 

DBSCAN can effectively handle irregularly shaped clusters and is robust to noise, making it suitable for a 

wide range of clustering tasks. 

 

 

 
 

Figure 2. Test suite reduction coverage for new and previous approach 
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5. CONCLUSION 

Provide minimizing test cases is a viable method for maximizing software testing resources while 

preserving efficient coverage and fault detection ability. DB K-means employs this method. Test cases are 

categorized into clusters according to their similarities, making finding redundant and overlapping test 

instances easier. By finding clusters of related test cases, DB K-means clustering facilitates effective test case 

grouping and optimizes the test suite's size. For given capabilities and scenarios, the reduced test suite retains 

adequate coverage by keeping representative test cases from each cluster. 
Certain adjustments, like the number of clusters (K) and distance metrics, may impact how well DB 

K-means clustering performs in test case minimization. Achieving the best outcomes requires fine-tuning 

these factors. To further improve test case minimization efficiency, DB K-means clustering can be combined 

with additional methods, like coverage-based reduction or optimization algorithms. DB K-means clustering 

can achieve test case minimization, but its actual application necessitates careful consideration of elements 

including the software project's nature, the test suite's features, and the resources available. However, 

rigorous testing, parameter tweaking, and validation are needed to get the best outcomes in practical 

situations. 
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