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 Ensuring the robustness, security, and privacy of machine learning is a 

pivotal objective, crucial for unlocking the complete potential of the internet 

of things (IoT). Deep neural networks have proven to be vulnerable to 

adversarial perturbations imperceptible to humans. These perturbations can 

give rise to adversarial attacks, leading to erroneous predictions by deep 

neural networks, particularly in intrusion detection within the IoT 

environment. This paper introduces a federated adversarial learning 

framework designed to protect both data privacy and deep neural network 

models. This framework consists of federated learning for data privacy and 

adversarial training on IoT devices to enhance model robustness. The 

experiments show that adversarial training at the Fog node devices 

significantly improves the robustness of a federated learning model against 

adversarial attacks when compared to normal training. Furthermore, the 

proposed adversarial deep federated learning model is validated using the 

Edge-IIoTset dataset, achieving an accuracy rate of 91.23% in the detection 

of attacks. 
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1. INTRODUCTION 

The proliferation of IoT devices has transformed our world by interlinking a vast array of smart 

devices across various domains such as smart homes, transportation, industrial automation, and healthcare. 

However, this interconnectedness introduces numerous vulnerabilities, making the IoT landscape susceptible 

to a wide range of security threats [1]-[4] including network intrusions, which can be identified and mitigated 

using network intrusion detection systems (NIDS) [5]. Traditional NIDS solutions struggle with the sheer 

volume, heterogeneity, and dynamic nature of IoT data, necessitating advanced techniques rooted in machine 

learning (ML) [6] and deep learning (DL) to enhance IoT security [7]. While DL can identify intricate 

patterns in vast datasets, its application to IoT security faces challenges like data privacy concerns, resource 

limitations, and the decentralized nature of IoT networks. To address data privacy challenges, Federated 

Learning (FL) offers a promising solution. 

FL is a distributed approach to machine learning, wherein a central server gathers model updates 

computed locally by multiple decentralized devices on their private data and consolidates these updates to 

train a globally learned model [8], [9]. This approach offers several advantages: clients avoid sharing their 

data, while still benefiting from a model trained on the collective dataset of all participating clients, and 

distributing the computational workload across all contributing devices [8]. Despite these benefits, models 

trained through FL are susceptible to adversarial attacks [10], similar to centrally trained models. 

https://creativecommons.org/licenses/by-sa/4.0/
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Adversarial attacks refer to inputs given to machine learning models that have been subtly altered, 

leading to misclassification with strong confidence. Techniques to generate such adversarial samples include 

the fast gradient sign method (FGSM), Torres et al. [11], which perturbs input data by adjusting it in the 

direction that maximizes the model's loss, controlled by a small value (epsilon). The basic iterative method 

(BIM), Kurakin et al. [12], enhances FGSM by iteratively adjusting pixel values in small steps within the 

original image bounds, making the perturbations less noticeable. Projected gradient descent (PGD) [13] is an 

advanced iterative attack that improves upon FGSM by incorporating more iterations and randomness, 

resulting in more effective and subtle adversarial perturbations. PGD shares the underlying mechanism with 

BIM but enhances its effectiveness with additional iterations and careful pixel adjustments. 

To counter adversarial attacks, adversarial training (AT) provides a promising defense. Adversarial 

training is a technique used to enhance the robustness of models against adversarial attacks, where the model 

is deliberately exposed to perturbed or adversarial samples during training. These samples undergo label 

modification to align with their accurate values before input into the neural network. This process enables the 

trained model to acquire the capability to withstand adversarial samples. This technique was initially 

introduced by Rumelhart [14]. A machine learning model is deemed susceptible to adversarial samples if it 

reacts to minute alterations in a plausible input, leading to a change in the predicted label. Consequently, a 

deep neural model is considered robust against adversarial examples if it remains insensitive to small changes 

in potential inputs during the prediction phase [15]. In essence, adversarial robustness aims to ensure that 

minor alterations in the input of the deep learning model do not lead to significant variations in the predicted 

output. 

Several studies have been conducted on federated training for IoT attack datasets to classify 

anomalies and threats. Shah et al. [16] investigated the integration of adversarial training in FL, particularly 

with non-IID data and a fixed communication budget. They found that adversarial training led to a decline in 

both natural and adversarial accuracies compared to centralized training, attributed to local adversarial 

training epochs. To address this, they proposed the FedDynAT algorithm, which improved accuracy and 

reduced model drift. Rashid et al. [17] studied the impact of adversarial machine learning (AML) attacks on 

IoT intrusion detection systems (IDSs), using the DS2OS dataset. They trained models like decision tree, 

multilayer perceptron, and random forest and evaluated AML attacks such as FGSM, JSMA, and C&W. The 

results showed significant performance declines, especially with JSMA and C&W, with MLP models 

demonstrating relatively higher robustness. Adversarial training using C&W attack samples was effective in 

maintaining classifier performance, with retrained models achieving accuracies close to the baseline.  

Ni et al. [18] introduced rFedFW, a Byzantine-robust FL framework for IoT, employing dual filtering and 

adaptive weight adjustments to mitigate malicious gradients. Ibitoye et al. [19] proposed DiPSeN, a 

differentially private self-normalizing neural network, to enhance adversarial robustness in FL without 

compromising privacy. Ferrag et al. [20] presented the Edge-IIoTset dataset, assessing machine learning 

techniques in both centralized and federated scenarios, achieving 93.04% accuracy for IID data and 77.04% 

for non-IID data in federated learning with five rounds. 

However, while these contributions have been crucial, they have not extensively addressed 

adversarial attacks in the context of IoT intrusion detection and federated learning. These Studies often 

encountered significant limitations, such as a notable decline in both natural and adversarial accuracies when 

incorporating adversarial training in federated learning frameworks. Additionally, adversarial training [21], [22] 

methods, while enhancing robustness, often compromised privacy guarantees and required a substantial 

portion of adversarial samples for effective training. Complex integration methods, such as dual filtering 

mechanisms and adaptive weight adjustments, added further implementation challenges, potentially 

impacting scalability and computational efficiency. Performance variations in non-IID data and the 

specificity of certain datasets also highlighted the need for broader validation and more extensive evaluations 

to ensure robustness and applicability across diverse IoT environments. 

This research paper proposes a federated learning approach for IoT-based intrusion detection that 

incorporates adversarial training to enhance the robustness of the FL model against adversarial attacks. Our 

method facilitates the adversarial training of deep learning models directly on IoT fog computing devices, 

thereby eliminating the need to transmit device data to a central server. Using the IIoTEdge dataset, we 

compare the robustness of baseline federated learning with federated learning that employs adversarial 

training against adversarial evasion attacks. Additionally, we focus on addressing the vulnerability of 

federated learning models to adversarial attacks. Our approach aims to enhance the robustness of these 

models by incorporating adversarial training. 

The main contributions of this research are outlined: 

− We proposed a federated learning model for intrusion detection in IoT environment: we enable deep 

learning model training directly on IoT fog computing devices to protect the fog data privacy and make 

the network more efficient. 
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− We implement the adversarial federated training on IoT fog computing devices to make our model more 

robust against adversarial attacks. 

− We test the robustness of the baseline federated learning and adversarial federated learning model against 

adversarial evasion attacks, particularly the projected gradient descent attack over a range of perturbation 

sizes. 

The rest of this paper is structured as follows: section 2 presents our proposed system model, 

outlining the architecture and components of the framework, and adopted methodology. we will demonstrate 

the practical implementation of our federated learning and adversarial training approach, explaining how it 

addresses privacy concerns and enhances model robustness. Section 3 is dedicated to showcasing the results 

of our comprehensive experiments and a detailed discussion of our findings. we will provide empirical 

evidence of the effectiveness of our approach, highlighting its relevance and the improvements achieved in 

terms of robustness against adversarial attacks. Finally, section 4 we offer a concluding summary of our 

contributions and delineate avenues for future research. 

 

 

2. METHOD 

This section describes the federated learning framework, the overall architecture of the FL model, 

the model architecture, the data description, the preprocessing techniques, the evaluation metrics used to 

assess the federated learning model, and the experimental setup. 

 

2.1.  Federated learning framework 

The proposed framework consists of federated learning for data privacy and adversarial training for 

the clients to ensure model robustness. We consider a deep neural network (DNN) as the model for each 

client in federated learning to analyze network traffic and detect attacks on the IoT device. We integrated an 

adversarial training technique to make our model robust against adversarial attacks, and conducted 

comprehensive experiments to adjust the model using various parameters in order to identify the most 

suitable values to utilize. 

The schematic representation of our proposed intrusion detection system (IDS) based on deep neural 

network federated learning (DNN-FL) is depicted in Figure 1. Initially, the central server disseminates the 

global DNN-FL model to participating clients. Each client then trains its local model using its local data on 

the fog node device. Subsequently, the fog node device transmits its local model parameters and 

corresponding weights to the central server. Following this, the central server aggregates local models from 

all clients by applying the FedAvg algorithm [8]. This aggregation step, executed by the central server, 

averages the parameters of the client models, effectively combining them into an updated global model. 

Finally, the aggregated global model is returned to the Fog Node devices for the subsequent training round. 

The algorithm of federated learning is shown in Algorithm 1. 

To assess our model's performance comprehensively, we will conduct evaluations with and without 

adversarial training in federated learning. This comparative study aims to analyze the impact of adversarial 

training on our model's effectiveness.  

Normal training scenario: the normal training process typically involves fog node devices training 

their models locally on their respective local datasets, before sending model updates to the server for 

aggregation, preprocessing techniques are applied to the local dataset. These preprocessing steps involve 

techniques such as data normalization, feature scaling, transformation, and balancing to enhance data quality 

and privacy. Once preprocessed, the fog nodes train on it and send their model updates to the server, which 

aggregates these updates using federated averaging (FedAvg) algorithm to create a global model.  

Adversarial training scenario: The purpose of adversarial training [11] is to improve the robustness 

of the classifier by including adversarial samples in the training set. These adversarial samples are then 

combined with normal samples. In our case, we take 50% for adversarial simple and 50% for normal simple 

and the local model is trained on the combined dataset to enhance robustness against adversarial attacks. The 

adversarial samples are generated using PGD [23] attacks with perturbation strengths (ε=0.3). The choice of 

perturbation strength ε=0.3 is based on findings from Madry et al. [13], who suggests that this level of 

perturbation is strong enough to create challenging adversarial examples that can significantly enhance the 

robustness of the model without rendering the input unrecognizable. It strikes a balance between making the 

model robust and maintaining the fidelity of the input data. The rationale for including PGD attacks during 

training is that PGD is considered a strong adversarial example generator that can produce perturbations that 

are likely to fool the model. By training with these examples, the model can learn to resist them. 
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Figure 1. Scheme of our framework 

 

 

Algorithm 1. DNN-FL based IDS 
Require: General DNN-FL Model, Set of Clients {C1, C2, …, Cn}, Fog Node 

Device {F1, F2, …, Fn}, Averaging Algorithm for Model Aggregation 

Ensure: Global DNN-FL Model 

1: Server Distribution: 

2: GlobalMOdel<-InitializeGeneralDNNFLModel() 

3: Distribute (GlobalModel, Client) 

4: Federated Learning Iterations: 

5: for each iteration do 

6: Local Computation on Fog Nodes: 

7: for 

8: LocalModel<-RunLocalDNNFL(Fi, GlobalModel) 

9: SendModelToServer(Fi, LocalModel) 

10: end for 

11: Model Aggregation at Server: 

12: AggregatedModel<- AggregatedModels(Clients) 

13: Global Model Update: 

14: GlobalModel<-UpdateGlobalModel(AggregatedModel) 

15: Model Distribution to Fog Nodes: 

16: Distribute (GlobalModel, Fog Nodes) 

17: end for 

18: return GlobalModel 

 

We implement adversarial training using IBM's publicly available adversarial robustness toolbox 

(ART) framework [6]. Figure 2 illustrates the federated learning for normal training and adversarial training 

schema in the fog node device. 

Our implementation of federated learning utilizes the Python-based flower framework [24]. The 

simulation environment consists of five clients and one central cloud server. The dataset is distributed 

independently and identically (IID) across the clients, divided into 5 unique subsets to ensure each client 

receives a distinct portion of the data. For local training at the client level, each client runs for 25 epochs. 

This epoch count was selected based on observations of model convergence, ensuring that the training 

process is both efficient and effective. At the central server, we have configured 2 aggregation rounds. This 

configuration allows us to evaluate the effectiveness of adversarial training in FL as a defense against 

adversarial evasion attacks. 
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(a) (b) 

 

Figure 2. Fog node architecture (a) with normal training and (b) with adversarial training 

 

 

2.2.  Model architecture 

The proposed DNN-FL model has two hidden layers with 90 nodes, utilizing L2 regularization, 

ReLU activation function, and Softmax for classification. The training process employs the cross-entropy 

loss function, the Adam optimizer set at a learning rate of 0.01, and involves 25 local epochs with a batch 

size of 800 for each participant. Local epochs are set at 25 to ensure sufficient learning while avoiding 

excessive computation, considering that it multiplies with the number of participants and training rounds, 

which are limited to 2 to mitigate communication overhead. The overall training is conducted over two 

rounds. The choice of hyperparameters is geared towards optimizing the learning capabilities of our model 

across multiple participants, and taking into account the resource constraints of IoT devices. Table 1 shows 

the different parameters used to implemente the federated deep neural classifier. 

 

 

Table 1. Federated learning setup 
Parameters Value 

Number of participants  ‘5’ 

Hidden layer ‘2’ 
Hidden node ‘90’ 

Regulation ‘L2’ 

Activation function ‘Relu’ 
Classification function ‘softmax’ 

Loss function ‘Cross-entropy’ 

Optimizer ‘Adam’ 
learning rate ‘0.01’ 

Local epochs ‘25’ 

Batch size ‘800’ 
Training rounds ‘2’ 

 

 

2.3.  Dataset description 

Introduced by Beutel et al. [24], the Edge-IoTset presents a robust dataset specifically designed for 

IoT environments, enhancing cybersecurity measures across various applications. The dataset supports 

advanced machine learning techniques for intrusion detection and can be utilized in both centralized and 

federated learning settings. Developed within a dedicated IoT/IoT laboratory, the dataset incorporates a 

diverse array of IoT devices and sensors, including but not limited to, cost-effective digital temperature and 

humidity sensors, water level and pH meters, ultrasonic sensors, heart rate sensors, soil moisture sensors, and 

flame sensors, covering over ten distinct types. 

The dataset addresses multiple types of cybersecurity threats classified into five major categories: 

denial of service, distributed denial of service [25], intelligence gathering, man in the middle (MITM) [26], 

injection, and malware attacks [27]. This comprehensive dataset is instrumental for refining the efficacy of 

intrusion detection systems within IoT frameworks, providing detailed insights into attack vectors and 

vulnerabilities. Details on the dataset's statistics and classifications are provided in Table 2. 
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Table 2. Edge-IIoTset statistics and taxonomies 
IoT traffic Class Records Total 

Normal Normal 11223940 11223940 

Attack 

Backdoor 24862 

9728708 

HTTP DDoS 229022 

ICMP DDoS 2914354 
TCP DDoS 2020120 

UDP DDoS 3201626 

Fingerprinting 1001 
Man in the Middle 1229 

Password 1053385 

Port Scanning 22564 
Ransomware 10925 

SQL injection 51203 

Uploading 37634 
Vulnerability Scanner 145869 

Cross-Site Scripting 15915 

Total   20952648 

 

 

2.4.  Data preprocessing 

The initial steps involve examining and preparing the Edge-IioTset dataset through a series of 

preprocessing operations. Step 1: involves dividing the dataset among five different clients to simulate a 

federated learning scenario. All the subsequent steps are applied on the client side. Step 2: focuses on 

cleaning the data by removing NaN values and duplicates. Step 3: involves deleting unnecessary data 

elements such as ports, IP addresses, timestamps, and payload information. In step 4, we transform 

categorical variables into binary or dummy variables. Step 5: employs a splitting method to randomly divide 

the dataset into training and testing subsets. In step 6, categorical variables are encoded to numerical. Step 7: 

applies features normalization [28], ensuring each has zero mean and unit variance. Finally, step 8: integrates 

the synthetic minority over-sampling technique (SMOTE) [29] to address class imbalance issues. 

 

2.5.  Evaluation metrics 

This section describes the evaluation metrics used to assess the federated deep learning model.  

The key metrics include: 

− Accuracy represents the proportion of correct predictions and is computed as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦= 
Number of correct predictions

Total number of predictions
 

 

− Precision determines the ratio of correctly predicted positive instances relative to the total predicted 

positives: 

 

Precision= 
TP

TP+FP
 

 

− Recall computes the ratio of correctly predicted positive outcomes to all outcomes in a specific class: 

 

Recall= 
TP

TP+FN
 

 

− F1 Score is a combined metric of recall and precision, ranging from 0 to 1, defined as: 

 

F1 score= 
2×(recall×precision)

recall+precision
 

 

− Confusion matrix records the number of accurate and inaccurate predictions generated by a classification 

model. 

 

2.6.  Experimental setup 

The experiments were carried out using a system powered by an 11th-generation Intel Core i7 

processor, an NVIDIA Quadro M2000M GPU, and 32 GB of RAM. Flower is a flexible and user-friendly 

framework for federated learning, supporting various machine learning libraries like PyTorch and 

TensorFlow. It facilitates collaborative model training among edge devices while preserving local data. 
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3. RESULTS AND DISCUSSION 

This section delves into the comprehensive analysis of our findings. Through rigorous evaluation 

and comparison, we shed light on the effectiveness of deep neural adversarial training in federated learning 

setting. Our discussion encompasses insights gleaned from the results, highlighting key observations and 

implications. 
 

3.1.  Performance of deep neural federated learning model 

The evaluation of the federated model in various scenarios, normal training, and adversarial training 

for an IoT intrusion detection dataset is detailed in Tables 3 and 4. Table 3 represents normal training, the 

model exhibited commendable performance with an accuracy of 89.89%, indicating the percentage of 

correctly classified instances. The precision, measuring the accuracy of positive predictions, stood at 95.19%, 

while recall, gauging the model's ability to identify all relevant instances, reached 89.89%. The F1 score, 

balancing precision and recall, registered at 89.20%. 

Table 4 represents the results of adversarial training, the federated model demonstrated further 

improvement. The accuracy increased to 91.23%, showcasing the model's enhanced overall correctness. 

Precision, reflecting the accuracy of positive predictions, achieved a value of 91.32%, while recall, 

measuring the model's capacity to identify relevant instances, reached 91.23%, and an F1 score reached 

89.79%. %, these results indicate that adversarial training contributed positively to the model's robustness 

and performance across various metrics. 

From these findings, we can notice that adversarial training enhances the model's ability to correctly 

classify instances and make accurate positive predictions. The increase in accuracy and precision suggests 

that the model becomes more reliable in identifying true positives and reducing false positives. Additionally, 

the improved recall indicates that the model is better at detecting all relevant instances, which is crucial for 

effective intrusion detection in an IoT environment. 
 

 

Table 3. Performance of model in normal training Table 4. Performance of model with adversarial training 
Accuracy Precision Recall F1 

89.89 % 95.19% 89.89% 89.20% 
 

Accuracy Precision Recall F1 

91.23% 91.32% 91.23% 89.79% 
 

 

 

Figure 4 represents the confusion matrices of federated learning classification model, with normal 

training and with adversarial training. FL model in normal training performs exceptionally well, with high 

true positive rates for most classes, the model demonstrates a strong diagonal concentration, particularly for 

classes 0 and 14, indicating accurate predictions. In contrast, the adversarial training matrix demonstrated 

further improvement for some classes, and a decrease for other classes, likely due to the trade-off introduced 

by AT. Despite these variations, the true positives remain consistently high. 

These results demonstrate that while normal training provides a solid baseline with high accuracy 

for most classes, adversarial training introduces a balance between robustness and accuracy. The 

improvements in some classes suggest that the model is better equipped to handle adversarial attacks, making 

it more resilient in challenging scenarios. However, the trade-offs seen in other classes underscore the 

complexity of optimizing model performance across all categories simultaneously. 
 

 

  
(a) (b) 

 

Figure 4. Confusion matrix of the model with (a) normal training and (b) adversarial training  
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3.2.  The performance of the original and the robust FL model against evasion adversarial attacks 

We evaluate our classifiers against adversarial attacks generated by the PGD method [30]. The PGD 

attacker is a common adversarial attack that aims to mislead classifiers by applying small perturbations to the 

input data. The `eps` parameter controls the size of these perturbations. The evaluation is conducted over a 

range of increasing `eps` values to assess how the classifier accuracies deteriorate as the perturbation size 

increases. Figure 5 shows that the robust classifier's accuracy degrades much slower than the original 

classifier's as the perturbation size increases, indicating that the robust classifier is more resistant to 

adversarial attacks. The original classifier's accuracy drops sharply even with small perturbations and 

approaches zero as the perturbation size increases, highlighting its vulnerability to such attacks. The robust 

classifier, while also experiencing a decrease in accuracy, maintains a higher level of accuracy across all 

tested perturbation sizes, affirming its effectiveness in mitigating the impact of adversarial noise. These 

results demonstrate that adversarial training significantly enhances the classifier's resilience against 

adversarial perturbations. The original classifier's rapid decline in accuracy underscores the necessity for 

robust training methods to protect against adversarial attacks. The robust classifier's ability to maintain higher 

accuracy despite increasing perturbation sizes demonstrates its enhanced reliability and effectiveness against 

adversarial attacks. 

 

 

 
 

Figure 5. Performance of the original and the robust classifier over a range of `eps` 

 

 

3.3.  Comparison with literature review 

We compare our work to the literature review. Table 5 illustrates the comparison between our work 

and previous studies. This comparison reveals a gap in existing research, as no prior study has assessed the 

efficacy of adversarial training utilizing PGD attacks in federated learning for intrusion detection in IoT. Our 

study goes further by comparing the robustness of the baseline federated learning and federated learning 

model with adversarial training against adversarial evasion attacks, in particular the PGD attacks with a range 

of perturbation sizes. 

 

 

Table 5. Literature review of federated IDS in IoT  
Paper author Federated learning IoT dataset IDS Adversarial attack Defense approach 

Shah et al. [16] Yes No No No Yes 

Rashid et al. [17] No Yes Yes Yes Yes 

Ni et al. [18] Yes No No No No 
Ibitoye et al. [19] Yes No Yes No Yes 

Ferrag et al. [20] Yes Yes Yes No No 

Our work Yes Yes Yes Yes Yes 
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Shah et al. [16] implemented adversarial training in federated learning but did not assess IoT 

datasets or the impact of PGD attacks, observing a decline in accuracies compared to centralized training. 

Rashid et al. [17] examined the effects of AML attacks on IoT intrusion detection systems, reporting 

performance drops of 36% to 78% due to attacks like JSMA and C&W, but their study was limited to 

centralized models and did not include federated learning. Ni et al. [18] introduced a Byzantine-robust 

federated learning framework without addressing adversarial attacks, while Ibitoye et al. [19] developed 

DiPSeN to enhance adversarial robustness in federated learning without targeting IoT datasets or PGD 

attacks, focusing instead on privacy preservation. Ferrag et al. [20] achieved 93.04% accuracy for IID data 

and 77.04% for Non-IID data using federated learning in IoT contexts but did not incorporate adversarial 

attacks or defense strategies. In contrast, our study addresses the gap by applying federated learning to IoT 

intrusion detection and evaluating PGD attacks with varying perturbation sizes, demonstrating that 

adversarial training significantly enhances the resilience and robustness of federated learning models against 

such attacks, confirming its efficacy in securing IoT systems. 

However, it is important to address the limitations inherent in our study. The computational 

overhead associated with adversarial training and the potential impact on model convergence and 

communication efficiency in federated learning setups are areas that warrant further investigation. 

Additionally, our results showed that adversarial training improved overall performance but did not 

uniformly enhance performance across all classes. The confusion matrix indicated a decline in performance 

for some classes. In summary, our framework demonstrates the efficacy of adversarial training in mitigating 

adversarial attacks within federated learning environments, particularly for intrusion detection in IoT 

systems. 

 

 

4. CONCLUSION 

This study assessed the impact of adversarial training on the robustness of federated learning models 

for intrusion detection, using the Edge-IIoTset dataset. By comparing models under normal training 

conditions and adversarial training, and evaluating their performance against adversarial attacks, particularly 

PGD attacks with varying perturbation sizes. We demonstrated that adversarial training significantly 

enhances the model's resilience to such attacks. Our findings underscore the importance of incorporating 

adversarial training in federated learning frameworks to improve security and reliability in IoT environments. 

For future research, we will explore additional strategies to safeguard federated learning models from 

potential poisoning attacks and other emerging threats. We will investigate diverse defense mechanisms and 

their integration into federated learning systems to improve the robustness and efficacy of models in real-

world applications. 
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