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 The technology of processors has advanced significantly, resulting in smaller 

and more powerful devices with much processing capability. Particularly, 

camera technology has witnessed extensive research in utilizing images for 

various applications. Currently, surveillance cameras are widely used for 

security purposes when abnormal events occur. In this research, the benefits 

of utilizing data from surveillance cameras are explored to assist in 

determining the position of a moving robot using the perspective-n-point 

(PnP) technique. the scale factor, which varies, has been improved by 

integrating checks with the YOLOv5 algorithm. This algorithm employs a 

custom model to specifically detect the robot of interest, enabling the 

determination of its real-world position using multiple surveillance cameras. 

These cameras have different perspectives within the same area. Considering 

the deviation caused by determining the position from a single viewpoint, 

multiple cameras are employed to mitigate this issue. 
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1. INTRODUCTION 

Recent advancements in processor, sensor, and computer technologies have accelerated the use of 

automated robots across various industries, particularly in the transportation sector. These robots are 

designed to perform a wide range of tasks autonomously without human intervention. However, a significant 

challenge in the development of autonomous robots is maintaining system stability and enhancing positional 

accuracy, which are crucial for safe and efficient application. 

Although LiDAR-SLAM technology [1] has been used for precise indoor positioning, it faces 

limitations in detecting obstacles and navigating complex environments, including long-term mechanical 

errors during movement [2]. Additionally, the use of cameras in conjunction with Visual-SLAM techniques 

has gained popularity, but still faces challenges in environments with varying light conditions. If we compare 

the images from the camera at the pixel level to determine the location, [3] and [4] explain the principles of 

calculating and calibrating the position of an object using the camera. This is known as the perspective-n-

point (PnP) technique, which [5] developed to improve measurement and positioning accuracy by calculating 

pixel-level comparisons. This technique has been applied in various applications, such as traffic camera 

calibration and visual speed measurement [6]. Other approaches include the use of ArUco codes with a single 

camera positioned above the robot, typically mounted on the ceiling and parallel to the floor, to calculate 

object positions [7], or LED-based visual positioning for AGV navigation [8]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Researchers have also explored and developed multi-sensor fusion techniques, combining data from 

multiple sensors to enhance positioning, navigation, and mapping efficiency, as depicted in Figure 1, which 

shows the fusion sensor system used in hybrid SLAM [9]. 

By integrating such data, LiDAR odometry technology combined with IMU enhances the accuracy 

of predicting and processing vehicle positions and orientations [10]. The use of RGB-D techniques with ROS 

[11], along with the development of artificial intelligence techniques such as YOLOv5 and R-CNN for real-

time image interpretation and object detection in industrial environments [12]–[18] continues to advance. 

Research has also examined the installation of cameras in various positions, such as ceiling-mounted cameras 

in warehouses to detect multiple robot tags, and the use of surveillance cameras in industrial settings to detect 

AGVs [19], [20]. Key technical challenges include managing real-time data and computational complexity, 

which have been addressed through mobile edge computing combined with 5G technology [21], [22]. 

To address the aforementioned limitations and to promote the integration of sensor data and fusion 

sensor technology with artificial intelligence from existing work, this research introduces a novel approach 

that integrates the YOLOv5 artificial intelligence technique with PnP for real-time robot positioning using 

surveillance cameras. Testing in a 36-square-meter area with four cameras installed at different angles will 

help verify and assess positional accuracy. This study aims to generate precise positional data, reduce 

positioning errors, and offer a cost-effective solution for using commonly available surveillance cameras to 

solve these challenges. 

 

 

 
 

Figure 1. Fusion sensor for hybridized SLAM 

 

 

2. METHOD 

In this study, we utilized surveillance cameras installed within the building to monitor and track the 

position of the robot, along with calculating its real-time movement. This was achieved using the PnP 

technique and object detection through YOLOv5. Figure 2 illustrates the concept and experimental setup, 

which employed the building's surveillance cameras to collect data and accurately update the robot's position. 

 

2.1.  Surveillance camera 

 In this study, the Xiaomi C200 surveillance camera, as shown in Figure 3, was selected due to its 

1920 x 1080 resolution, 360-degree rotation capability, and wireless data connection. These features make it 

well-suited for monitoring and tracking the robot's movements within the experimental setup. The camera 

was strategically positioned to ensure comprehensive coverage of the area under observation. The 

specifications of the camera are detailed in Table 1. 
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Figure 2. Concept for this research 

 

 

 
 

Figure 3. Smart camera C200 

 

 
Table 1. General information of smart camera C200 

Feature Value 

Resolution 1920 x 1080 (2MP) 

Power Supply 5V/2A 

Rotation 360 Degree 

Wi-Fi IEEE802.11 2.4 GHz 

Feature Value 

 

 

2.2.  Robot 

The Rosmaster X1 robot [23], as shown in Figure 4, was selected for this research due to its 

advanced control capabilities and a variety of sensors suitable for future exploratory missions. The robot is 

controlled by an Nvidia Jetson Nano board via the robot operating system (ROS) and is equipped with 

RPLidar and a stereo camera. These features make it highly adaptable and effective for the tasks required in 

this study. 

 

 

 
 

Figure 4. Robot Rosmaster X1 
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Upon receiving surveillance images, these are processed to localize the robot. The localization 

process utilizes YOLO object detection, which identifies the robot’s position within the image and extracts 

the relevant pixels for further analysis. 

 

2.3.  Perspective-n-point (PnP)  

The perspective-n-point (PnP) technique is crucial for determining the 3D location of an object 

based on 2D images captured by cameras. This technique is particularly important when the object and the 

camera are positioned at different distances. The pinhole camera model is used to represent the positional 

relationship between the object's real-world coordinates and its projection onto the camera's image plane, as 

illustrated in (1). 

 

[

𝑋𝑐
𝑌𝑐
𝑍𝑐

] = {𝑅} [
𝑋
𝑌
𝑍
] + {𝑇} (1) 

 

Here, 𝑅 and 𝑇 represent the rotation matrix and translation matrix, respectively. The coordinate 

system is expressed in a 3D format, where 𝑋𝑐, 𝑌𝑐, 𝑍𝑐 are the coordinates in the camera's coordinate system, 

and 𝑋, 𝑌, 𝑍 are the real-world coordinates. Meanwhile, the image data is typically in a 2D pixel format, 

defined by the image's width and height. Figure 5 demonstrates the transformation process. 

 

 

 
 

Figure 5. Transformation from 2D image coordinates to 3D world coordinates [4] 

 

 

To convert a 2D image into a 3D coordinate system, it's necessary to establish the relationship 

between the image coordinates and the real-world coordinates. This conversion is performed using (2). 

 

𝑠 [
𝑤
ℎ
1
] = {𝐴}{𝑅|𝑇} [

𝑋
𝑌
𝑍
1

]  (2) 

 

In this equation, w and h represent the horizontal and vertical pixel sequences, respectively, from the 

captured image. The scale factor, s, is crucial for converting the image coordinates into real-world positions 

based on the camera's perspective. The intrinsic matrix, A, is a key parameter used to identify the camera and 

compute the coordinates from both the original and undistorted images.  
Finally, the accuracy of the position is evaluated using the error calculation formula, which 

determines the distance between the actual and the ideal position coordinates, as shown in (3). 

 

𝐸𝑚 = √(X𝑟 − 𝑋𝑚)
2 + (Y𝑟 − 𝑌𝑚)

2 (3) 

 

Here, 𝐸𝑚 is the resulting positional error, X𝑟  and Y𝑟  are the actual positions in the X and Y 

coordinates, respectively, and 𝑋𝑚 and 𝑌𝑚 are the measured positions from the system in the X and Y 

coordinates, respectively. 
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2.4.  YOLO object detection  

Object detection is a critical component of our research, enabling the precise identification and 

localization of the robot within the captured images. YOLO, short for "You Only Look Once," [24] is a state-

of-the-art, real-time object detection algorithm that has been specifically chosen for this task due to its 

efficiency and accuracy. Pre-trained on the comprehensive COCO dataset, YOLO distinguishes itself by 

employing a single neural network to process an entire image at once. This method involves partitioning the 

image into distinct regions, where the algorithm predicts probabilities and bounding boxes for each region. 

For this research, YOLOv5 is utilized, which employs CSP-Darknet 53 in Figure 6 as its backbone 

architecture. CSP-Darknet 53 builds upon the convolutional network Darknet53, initially used in YOLOv3, 

and enhances it by integrating the cross-stage partial (CSP) network strategy. This improvement significantly 

boosts the model’s ability to detect objects quickly and accurately, making it ideal for real-time applications 

in dynamic environments. 

 
 

 
 

Figure 6. CSP-darknet 53 backbone architecture [25] 

 

 

2.5.  Our system 

To address the issue of robot localization, this research presents a method of using surveillance 

cameras combined with the YOLOv5 artificial intelligence technique for real-time localization. The system 

workflow is depicted in Figure 7, showing the process from data acquisition to real-time localization. 

Our system is developed using Python, where the surveillance cameras send data through an online 

server to an application called Xiaomi Camera Viewer. The system we created then extracts images from all 

four cameras using the real-time Snapshot method and combines the images using the OpenCV library. These 

combined images are then processed through the YOLOv5 model built with the PyTorch library. If a robot is 

detected within the field of view of any camera, the system extracts the pixel from the center of the bounding 

box and calculates the position using the PnP technique. The result is displayed as 2D coordinates using the 

Pygame library. The current position is identified based on which camera detected the robot, and this data 

can be utilized in future applications. The work presented in this study is divided into four parts 

 

2.5.1. Training the object detection model 

Our system is developed to detect and localize robots accurately using the YOLOv5 object detection 

technique. We created a dataset consisting of 49 images, as shown in Figure 8, which was expanded through 

a brightness generation process [26], increasing and decreasing the brightness by 5% to make the image data 

more flexible. This augmentation process increased the dataset to 147 images. Each image was meticulously 

labeled using the labeling algorithm [27], a popular algorithm for interpreting image content. The model’s 

performance was evaluated using mean average precision (mAP) and loss values to ensure accuracy and 

robustness. 
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Figure 7. Workflow of our system 

 

 

 
 

Figure 8. Sample dataset labeled using the labeling algorithm 

 

 

2.5.2. Camera verification 

To enable the cameras to accurately determine positions, it is necessary to calibrate them using 

chessboard calibration [28] to obtain the distortion factor and to align the camera's perspective with the test 

area (perspective calibration). Since the viewable area of each camera may differ, we performed a sub-view 

calibration for a 3x3 square meter area to ensure that each camera covers an equal area. The calibration used 

16 reference points marked in orange and green. This process helps to derive the area coefficient for each 

camera by comparing parameters with the PnP equation to determine the scale factor at various points. 

 

 

  
(a) (b) 

 

Figure 9. Scale factor consideration (a) center point and (b) axis of scale factor calculation 
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When calculating these values, it was found that the scale factor changes according to the distance 

from the camera, as will be shown in the experimental results section. As the camera moves further into 

distant areas, the scale factor increases. The calculation of the Scale Factor for each axis, x and y, is shown in 

Figure 9, with the resulting equation presented as (4).  
 

𝑠 = S𝑐𝑒𝑛𝑡𝑒𝑟 + S𝑥−𝑎𝑥𝑖𝑠 + S𝑦−𝑎𝑥𝑖𝑠 (4) 

 

Here, from the three equations above, S𝑐𝑒𝑛𝑡𝑒𝑟  represents the scale factor from the center of the area 

as shown in Figure 9(a), while S𝑥−𝑎𝑥𝑖𝑠 and S𝑦−𝑎𝑥𝑖𝑠 are functions of the scale factor along the X and Y axes of 

the area, respectively, as shown in Figure 9(b). 

The additional equations for each axis of the scale factor are determined using a hybrid solution that 

combines polynomial and logarithmic equations to reduce errors at longer distances [29]. This method is 

beneficial for adjusting pixels both horizontally and vertically for position determination within the area. 

After calibrating all four cameras, separate localization tests were conducted for each camera to assess their 

performance in determining positions. 

 

2.5.3. Static test 

In the practical test for robot position detection, we used four surveillance cameras to cover an area 

of 6x6 square meters to test the detection and localization of stationary objects. The results will show the 

robot's positions at various locations, as depicted in Figure 10. The accuracy of each camera will be evaluated 

based on the detection and localization of the robot within the area, using the root mean square (RMS) Error 

to measure deviations. Single and overlapping positions detected by more than one camera as shown in 

Figure 11. Figures 11(a) and 11(b) respectively, will also be considered, and the results will be presented in 

the dynamic test. 

 

2.5.4. Dynamic test 

The dynamic test involved the robot moving along two predefined paths, as shown in Figure 12. The 

first path in Figure 12(a) moves from the reference point X=0, Y=0 to the opposite edge at position X=6, 

Y=6, while the second path in Figure 12(b) moves from X=0, Y=6 to the opposite edge at position X=6, 

Y=0. The performance evaluation was based on the position detection by the cameras, conducted separately 

for each camera and then combining the results from all camera positions. 

 

 

 
 

Figure 10. Points used to assess the position from all 4 surveillance cameras 
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(a) (b) 

 

Figure 11. Determining the robot position from the camera (a) separate area with single camera and  

(b) combine method with multiple cameras 

 

 

 
(a) 

 
(b) 

 

Figure 12. Robot movement paths (a) path 1 and (b) path 2 

 

 

3. RESULTS AND DISCUSSION 

3.1. Accuracy model 

In training this model, we divided the dataset into 75% for training and 25% for validation, 

configuring the model to detect only a single class (Class 1) and setting the number of epochs at 300. The 

training results, shown in Figure 13, indicate a mean average precision (mAP) of 81.3% in Figure 13(a) and a 

decreasing loss throughout the training process Figure 13(b). This model is designed to be used with 

surveillance cameras to locate and identify the robot in the area, as will be demonstrated in the experimental 

section. The use of YOLOv5 for single-class detection, as discussed in this case, demonstrates a relatively 

high level of accuracy, with a mAP of 81.3% and a consistent reduction in loss during training. These results 

suggest that the model is effective in identifying and locating the target object within the dataset, making it a 

reliable tool for this specific application. 

However, these results should be considered in the context of real-world application. While an mAP 

of 81.3% is good, there is still room for improvement, particularly if the operational environment is highly 

variable or if detection errors could have significant consequences. When using this model in conjunction 

with surveillance cameras to monitor and locate the robot in confined spaces, it is crucial to consider various 

challenges, such as lighting conditions, object occlusion, and the physical state of the robot, which could 

impact detection accuracy. 

To improve the model's performance in the future, the dataset could be expanded to cover a wider 

range of scenarios, the model's parameters could be fine-tuned, or more advanced versions of the YOLO 

family, such as YOLOv8, could be tested for potentially better accuracy or speed. Additionally, post-

processing techniques, such as adjusting the non-maximum suppression (NMS) thresholds, could help reduce 

detection errors or missed detections. 
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(a) 

 
(b) 

 

Figure 13. The result of learning (a) the mAP of the custom model and (b) loss value 

 

 

3.2. Camera verification 

During the process of perspective calibration, it was observed that the scale factor changes relative 

to the distance from the camera, as shown in Figure 14 from all four cameras Figures 14(a)-14(d) 

respectively. As the distance from the camera increases, the scale factor correspondingly increases. The 

inconsistency in the scale factor, while generally increasing, is significant and therefore justifies the approach 

of calculating the scale factor separately for each axis in this position verification task. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 14. Scale factor value from back calculation: (a) scale factor from camera 1, (b) scale factor from 

camera 2, (c) scale factor from camera 3, and (d) scale factor from camera 4 
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The observed variation in the scale factor during perspective calibration is critical for ensuring 

accurate position verification. The scale factor’s dependence on distance highlights a key aspect of how 

perspective distortion affects measurements in a real-world setting. As the distance from the camera 

increases, objects appear smaller, and the corresponding scale factor must be adjusted to maintain accuracy in 

position detection. 

The non-uniform increase in the scale factor across different distances is not merely a minor 

fluctuation; it has a significant impact on the accuracy of the calibration. This observation underlines the 

importance of considering the scale factor on a per-axis basis rather than assuming uniformity across the 

entire field of view. By tailoring the scale factor calculation to each axis, the model can account for these 

variations more precisely, thereby improving the overall accuracy of position verification. 

This approach also mitigates potential errors that could arise from using a single, averaged scale 

factor across all axes. Such errors could lead to inaccurate position detection, especially in areas where the 

distance from the camera varies significantly. Therefore, the decision to compute the scale factor separately 

for each axis is not only justified but also crucial for enhancing the reliability and precision of the verification 

process. 

 

3.3. Static test  

The static test results reveal critical insights into the effectiveness of the surveillance camera setup 

for accurate robot position detection in Figure 15. The test demonstrated that minimal deviations occurred 

when the robot was positioned near the corners of the area for each camera in Figures 15(a)-15(d) 

respectively, which were closer to the cameras. This finding suggests that proximity to the camera is a 

significant factor in reducing localization errors, as cameras positioned at these vantage points provided more 

precise data, resulting in the smallest observed error, approximately 100 millimeters. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 15. Positioning evaluation after calibration 

 

 

However, as the distance between the robot and the cameras increased, particularly along the X-axis 

at 4 meters and the Y-axis at 3 meters, the localization errors became more pronounced, with the highest 

error recorded at 420 millimeters in Figure 16. This increase in error with distance indicates a limitation in 

the camera system's ability to maintain accuracy across the entire monitored area, especially in regions 

farthest from the cameras. 
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Figure 16. Performance of localization area by all surveillance cameras 
 

 

The presence of overlapping camera coverage was intended to enhance accuracy by providing 

multiple viewpoints for triangulating the robot's position. However, the test results indicate that despite this 

overlap, the accuracy was still compromised at greater distances. This outcome suggests that the calibration 

of the cameras may not have been optimal, particularly for distant objects, leading to less accurate 

calculations of the robot's position based on the PnP technique. 

The influence of camera calibration on the accuracy of the PnP technique highlights the importance 

of precise calibration in minimizing positional errors. Inaccurate calibration can distort the relationship 

between the camera's perspective and the actual position of the robot, resulting in errors that could affect the 

reliability of the system in practical applications. 

To improve the system's performance in future tests, several strategies could be considered. Firstly, 

enhancing the calibration process to ensure that it is more accurate across different distances and angles could 

reduce the observed errors. Additionally, adjusting the camera placements or using higher-resolution cameras 

might help mitigate the increase in error as the robot moves further from the cameras. Finally, implementing 

advanced post-processing techniques to refine the position estimates, particularly in areas with greater 

distances from the cameras, could further enhance the accuracy of the system. 

 

3.4. Dynamic test 

The dynamic test results provide valuable insights into the performance and limitations of the 

camera-based positioning system. The data indicates that while individual cameras can offer accurate 

position tracking, errors increase significantly as the robot moves farther away from the cameras. This 

observation aligns with the findings from the static test, reinforcing the importance of proximity in achieving 

high positional accuracy. 

When the robot moves beyond 2 meters from any single camera, the use of the Combine Method, 

which averages data from multiple cameras in specific area, was intended to mitigate the increase in error. 

However, while this method provides continuous position tracking along the entire path, it also introduces 

higher errors, particularly in areas where the cameras are furthest from the robot. This increased error is most 

notable in the X-axis between 4 and 6 meters and the Y-axis around 4 meters, where the positional 

inaccuracies were consistent with those observed in the static test. 

The main issue with the Combine Method lies in its averaging process, which includes data from 

cameras with higher errors. While this method maintains continuous tracking, the inclusion of less accurate 

data from distant cameras dilutes the overall accuracy, leading to higher positional errors. This is evident in 

the significant errors observed when the robot is farthest from the cameras, particularly in the X and Y 

coordinates. 

Figure 17 illustrates the results of the robot's movement test, comparing the results of separate 

camera movement and averaged movement, including the combine method used to determine the average 

area from the side cameras. This method provided the best results compared to all assessments. In the first 

path, as shown in Figure 17(a), the movement passed through the aforementioned critical point, leading to 

high positional errors. In the second path, as shown in Figure 17(b), where the robot moved from X = 0 

meters, Y = 6 meters to X = 6 meters, Y = 0 meters, the results were similar to the first path. When the robot 

reached the 4-meter mark along both axes, positional errors from the combine method increased, particularly 
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in areas distant from the cameras. Camera 4 exhibited high errors at X = 6 meters and Y = 2 meters, 

contributing to the observed inaccuracies in the averaged positions. 

To improve the accuracy of this method, future work could focus on refining the averaging process, 

perhaps by weighting the data from each camera according to its reliability or proximity to the robot. 

Additionally, enhancing the calibration of the cameras or employing more advanced algorithms for position 

estimation could help reduce errors, particularly in areas where the robot is distant from the cameras. 

 

 

 
(a) 

 
(b) 

 

Figure 17. Dynamic moving result (a) route 1 and (b) route 2 

 

 

4. CONCLUSION 

The advancements in accurately determining the position of autonomous robots using external data 

sources and integrating surveillance cameras in indoor environments represent a significant leap forward in 

technology. This research stands at the forefront of technological innovation by introducing a novel method 

that leverages artificial intelligence techniques, particularly the integration of the YOLOv5 algorithm with 

the PnP method. This combination enables real-time robot localization as it navigates through meticulously 

monitored environments, utilizing strategically placed surveillance cameras. 

The experiments conducted within a 36-square-meter area, monitored by four cameras, involved the 

Rosmaster X1 robot navigating the space. The robot's position was determined using calibrated data from the 

four cameras, with a hybrid approach employed to minimize localization errors by adjusting the pixel scale 

and using a hybrid solution. The experiments were carried out in a meticulously calibrated environment, 

demonstrating the capability of the system to accurately track the robot's position in real-time as it moved 

through the monitored area. 

The findings of this research were divided into four key sections. The first section involved 

collecting visual data of the robot to create a dataset for training a model developed using the YOLOv5 

algorithm. The dataset was enhanced with brightness adjustments to increase data volume and suitability for 

varying lighting conditions. The trained model was then utilized in the second section, focusing on camera 

verification. All four cameras were calibrated using chessboard calibration and perspective calibration 

techniques, resulting in internal matrices that defined the relationship of translation and rotation vectors. The 

accuracy of robot localization within a 3x3 square meter sub-area was evaluated using the model from the 

previous section. The experiments highlighted errors, particularly with inconsistent scale factors during robot 

detection, and applied hybrid solutions to address this issue, reducing detection errors when the robot was 

close to the camera but increasing with distance. 

The third section involved static testing by placing the robot at predetermined positions while 

recording the detected positions. The performance evaluation of the calibrated surveillance cameras revealed 

that localization errors increased as the robot moved further away from each camera. The maximum 

deviation, occurring at the center of the map at X=4 and Y=3, was 420 millimeters. The calculated positional 

errors, assessed through RMS, prompted improvements in the overall localization process by integrating data 

from all four cameras. This combined data was used in the fourth section, where the robot moved along two 

predefined paths. The performance of single-camera localization was compared to the combined data from all 

four cameras. The combined method demonstrated superior performance, particularly in scenarios where the 

robot was farther away, compared to the path-averaging method, which provided the most accurate positioning. 
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The outcomes of this research underscore a proactive approach to localization using widely 

available and cost-effective surveillance cameras, as opposed to relying on expensive sensors. This method 

not only demonstrates a cost-effective approach but also lays the groundwork for future engineering 

applications. The integration of external processing not only enhances localization accuracy but also 

represents a significant step forward in incorporating advanced technology within the domain of autonomous 

robots or automated guided vehicles (AGVs). This approach not only reduces the financial burden associated 

with specialized sensors but also paves the way for further technological advancements in efficient and cost-

effective engineering solutions, particularly in autonomous navigation. 

One of the most significant discoveries of this research is the validation of using external cameras 

for robot localization, which offers a stable and non-accumulative error-prone alternative compared to 

previous methods. By addressing and overcoming the challenges of traditional sensor-based localization, this 

method provides a robust solution that can be further developed and applied in a wide range of industrial and 

commercial applications. The potential for future development includes refining the hybrid method, 

improving camera calibration techniques, and expanding the application of this approach to more complex 

environments. 

In summary, this research not only contributes to the field of autonomous robot localization but also 

opens new avenues for the application of affordable and scalable technology in precision positioning 

systems. The findings have the potential to influence future research and development, leading to more 

reliable and efficient solutions in the rapidly evolving field of autonomous systems. 
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